From 8fdf9104af7c10a778e4ed6bd0c501c7d2087cdd Mon Sep 17 00:00:00 2001 From: pixel Date: Sat, 28 Oct 2006 16:42:19 +0000 Subject: Task manager now has timeout support. --- doc/rfc959.txt | 7866 +++++++++++++++++++++++++------------------------- include/Exceptions.h | 4 +- include/Task.h | 28 +- include/TaskMan.h | 18 +- lib/Exceptions.cc | 16 +- lib/Task.cc | 4 +- lib/TaskMan.cc | 305 +- 7 files changed, 4192 insertions(+), 4049 deletions(-) diff --git a/doc/rfc959.txt b/doc/rfc959.txt index 1d7ce14..5c9f11a 100644 --- a/doc/rfc959.txt +++ b/doc/rfc959.txt @@ -1,3933 +1,3933 @@ - - -Network Working Group J. Postel -Request for Comments: 959 J. Reynolds - ISI -Obsoletes RFC: 765 (IEN 149) October 1985 - - FILE TRANSFER PROTOCOL (FTP) - - -Status of this Memo - - This memo is the official specification of the File Transfer - Protocol (FTP). Distribution of this memo is unlimited. - - The following new optional commands are included in this edition of - the specification: - - CDUP (Change to Parent Directory), SMNT (Structure Mount), STOU - (Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD - (Print Directory), and SYST (System). - - Note that this specification is compatible with the previous edition. - -1. INTRODUCTION - - The objectives of FTP are 1) to promote sharing of files (computer - programs and/or data), 2) to encourage indirect or implicit (via - programs) use of remote computers, 3) to shield a user from - variations in file storage systems among hosts, and 4) to transfer - data reliably and efficiently. FTP, though usable directly by a user - at a terminal, is designed mainly for use by programs. - - The attempt in this specification is to satisfy the diverse needs of - users of maxi-hosts, mini-hosts, personal workstations, and TACs, - with a simple, and easily implemented protocol design. - - This paper assumes knowledge of the Transmission Control Protocol - (TCP) [2] and the Telnet Protocol [3]. These documents are contained - in the ARPA-Internet protocol handbook [1]. - -2. OVERVIEW - - In this section, the history, the terminology, and the FTP model are - discussed. The terms defined in this section are only those that - have special significance in FTP. Some of the terminology is very - specific to the FTP model; some readers may wish to turn to the - section on the FTP model while reviewing the terminology. - - - - - - - -Postel & Reynolds [Page 1] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 2.1. HISTORY - - FTP has had a long evolution over the years. Appendix III is a - chronological compilation of Request for Comments documents - relating to FTP. These include the first proposed file transfer - mechanisms in 1971 that were developed for implementation on hosts - at M.I.T. (RFC 114), plus comments and discussion in RFC 141. - - RFC 172 provided a user-level oriented protocol for file transfer - between host computers (including terminal IMPs). A revision of - this as RFC 265, restated FTP for additional review, while RFC 281 - suggested further changes. The use of a "Set Data Type" - transaction was proposed in RFC 294 in January 1982. - - RFC 354 obsoleted RFCs 264 and 265. The File Transfer Protocol - was now defined as a protocol for file transfer between HOSTs on - the ARPANET, with the primary function of FTP defined as - transfering files efficiently and reliably among hosts and - allowing the convenient use of remote file storage capabilities. - RFC 385 further commented on errors, emphasis points, and - additions to the protocol, while RFC 414 provided a status report - on the working server and user FTPs. RFC 430, issued in 1973, - (among other RFCs too numerous to mention) presented further - comments on FTP. Finally, an "official" FTP document was - published as RFC 454. - - By July 1973, considerable changes from the last versions of FTP - were made, but the general structure remained the same. RFC 542 - was published as a new "official" specification to reflect these - changes. However, many implementations based on the older - specification were not updated. - - In 1974, RFCs 607 and 614 continued comments on FTP. RFC 624 - proposed further design changes and minor modifications. In 1975, - RFC 686 entitled, "Leaving Well Enough Alone", discussed the - differences between all of the early and later versions of FTP. - RFC 691 presented a minor revision of RFC 686, regarding the - subject of print files. - - Motivated by the transition from the NCP to the TCP as the - underlying protocol, a phoenix was born out of all of the above - efforts in RFC 765 as the specification of FTP for use on TCP. - - This current edition of the FTP specification is intended to - correct some minor documentation errors, to improve the - explanation of some protocol features, and to add some new - optional commands. - - -Postel & Reynolds [Page 2] - - - -RFC 959 October 1985 -File Transfer Protocol - - - In particular, the following new optional commands are included in - this edition of the specification: - - CDUP - Change to Parent Directory - - SMNT - Structure Mount - - STOU - Store Unique - - RMD - Remove Directory - - MKD - Make Directory - - PWD - Print Directory - - SYST - System - - This specification is compatible with the previous edition. A - program implemented in conformance to the previous specification - should automatically be in conformance to this specification. - - 2.2. TERMINOLOGY - - ASCII - - The ASCII character set is as defined in the ARPA-Internet - Protocol Handbook. In FTP, ASCII characters are defined to be - the lower half of an eight-bit code set (i.e., the most - significant bit is zero). - - access controls - - Access controls define users' access privileges to the use of a - system, and to the files in that system. Access controls are - necessary to prevent unauthorized or accidental use of files. - It is the prerogative of a server-FTP process to invoke access - controls. - - byte size - - There are two byte sizes of interest in FTP: the logical byte - size of the file, and the transfer byte size used for the - transmission of the data. The transfer byte size is always 8 - bits. The transfer byte size is not necessarily the byte size - in which data is to be stored in a system, nor the logical byte - size for interpretation of the structure of the data. - - - -Postel & Reynolds [Page 3] - - - -RFC 959 October 1985 -File Transfer Protocol - - - control connection - - The communication path between the USER-PI and SERVER-PI for - the exchange of commands and replies. This connection follows - the Telnet Protocol. - - data connection - - A full duplex connection over which data is transferred, in a - specified mode and type. The data transferred may be a part of - a file, an entire file or a number of files. The path may be - between a server-DTP and a user-DTP, or between two - server-DTPs. - - data port - - The passive data transfer process "listens" on the data port - for a connection from the active transfer process in order to - open the data connection. - - DTP - - The data transfer process establishes and manages the data - connection. The DTP can be passive or active. - - End-of-Line - - The end-of-line sequence defines the separation of printing - lines. The sequence is Carriage Return, followed by Line Feed. - - EOF - - The end-of-file condition that defines the end of a file being - transferred. - - EOR - - The end-of-record condition that defines the end of a record - being transferred. - - error recovery - - A procedure that allows a user to recover from certain errors - such as failure of either host system or transfer process. In - FTP, error recovery may involve restarting a file transfer at a - given checkpoint. - - - -Postel & Reynolds [Page 4] - - - -RFC 959 October 1985 -File Transfer Protocol - - - FTP commands - - A set of commands that comprise the control information flowing - from the user-FTP to the server-FTP process. - - file - - An ordered set of computer data (including programs), of - arbitrary length, uniquely identified by a pathname. - - mode - - The mode in which data is to be transferred via the data - connection. The mode defines the data format during transfer - including EOR and EOF. The transfer modes defined in FTP are - described in the Section on Transmission Modes. - - NVT - - The Network Virtual Terminal as defined in the Telnet Protocol. - - NVFS - - The Network Virtual File System. A concept which defines a - standard network file system with standard commands and - pathname conventions. - - page - - A file may be structured as a set of independent parts called - pages. FTP supports the transmission of discontinuous files as - independent indexed pages. - - pathname - - Pathname is defined to be the character string which must be - input to a file system by a user in order to identify a file. - Pathname normally contains device and/or directory names, and - file name specification. FTP does not yet specify a standard - pathname convention. Each user must follow the file naming - conventions of the file systems involved in the transfer. - - PI - - The protocol interpreter. The user and server sides of the - protocol have distinct roles implemented in a user-PI and a - server-PI. - - -Postel & Reynolds [Page 5] - - - -RFC 959 October 1985 -File Transfer Protocol - - - record - - A sequential file may be structured as a number of contiguous - parts called records. Record structures are supported by FTP - but a file need not have record structure. - - reply - - A reply is an acknowledgment (positive or negative) sent from - server to user via the control connection in response to FTP - commands. The general form of a reply is a completion code - (including error codes) followed by a text string. The codes - are for use by programs and the text is usually intended for - human users. - - server-DTP - - The data transfer process, in its normal "active" state, - establishes the data connection with the "listening" data port. - It sets up parameters for transfer and storage, and transfers - data on command from its PI. The DTP can be placed in a - "passive" state to listen for, rather than initiate a - connection on the data port. - - server-FTP process - - A process or set of processes which perform the function of - file transfer in cooperation with a user-FTP process and, - possibly, another server. The functions consist of a protocol - interpreter (PI) and a data transfer process (DTP). - - server-PI - - The server protocol interpreter "listens" on Port L for a - connection from a user-PI and establishes a control - communication connection. It receives standard FTP commands - from the user-PI, sends replies, and governs the server-DTP. - - type - - The data representation type used for data transfer and - storage. Type implies certain transformations between the time - of data storage and data transfer. The representation types - defined in FTP are described in the Section on Establishing - Data Connections. - - - - -Postel & Reynolds [Page 6] - - - -RFC 959 October 1985 -File Transfer Protocol - - - user - - A person or a process on behalf of a person wishing to obtain - file transfer service. The human user may interact directly - with a server-FTP process, but use of a user-FTP process is - preferred since the protocol design is weighted towards - automata. - - user-DTP - - The data transfer process "listens" on the data port for a - connection from a server-FTP process. If two servers are - transferring data between them, the user-DTP is inactive. - - user-FTP process - - A set of functions including a protocol interpreter, a data - transfer process and a user interface which together perform - the function of file transfer in cooperation with one or more - server-FTP processes. The user interface allows a local - language to be used in the command-reply dialogue with the - user. - - user-PI - - The user protocol interpreter initiates the control connection - from its port U to the server-FTP process, initiates FTP - commands, and governs the user-DTP if that process is part of - the file transfer. - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 7] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 2.3. THE FTP MODEL - - With the above definitions in mind, the following model (shown in - Figure 1) may be diagrammed for an FTP service. - - ------------- - |/---------\| - || User || -------- - ||Interface|<--->| User | - |\----^----/| -------- - ---------- | | | - |/------\| FTP Commands |/----V----\| - ||Server|<---------------->| User || - || PI || FTP Replies || PI || - |\--^---/| |\----^----/| - | | | | | | - -------- |/--V---\| Data |/----V----\| -------- - | File |<--->|Server|<---------------->| User |<--->| File | - |System| || DTP || Connection || DTP || |System| - -------- |\------/| |\---------/| -------- - ---------- ------------- - - Server-FTP USER-FTP - - NOTES: 1. The data connection may be used in either direction. - 2. The data connection need not exist all of the time. - - Figure 1 Model for FTP Use - - In the model described in Figure 1, the user-protocol interpreter - initiates the control connection. The control connection follows - the Telnet protocol. At the initiation of the user, standard FTP - commands are generated by the user-PI and transmitted to the - server process via the control connection. (The user may - establish a direct control connection to the server-FTP, from a - TAC terminal for example, and generate standard FTP commands - independently, bypassing the user-FTP process.) Standard replies - are sent from the server-PI to the user-PI over the control - connection in response to the commands. - - The FTP commands specify the parameters for the data connection - (data port, transfer mode, representation type, and structure) and - the nature of file system operation (store, retrieve, append, - delete, etc.). The user-DTP or its designate should "listen" on - the specified data port, and the server initiate the data - connection and data transfer in accordance with the specified - parameters. It should be noted that the data port need not be in - - -Postel & Reynolds [Page 8] - - - -RFC 959 October 1985 -File Transfer Protocol - - - the same host that initiates the FTP commands via the control - connection, but the user or the user-FTP process must ensure a - "listen" on the specified data port. It ought to also be noted - that the data connection may be used for simultaneous sending and - receiving. - - In another situation a user might wish to transfer files between - two hosts, neither of which is a local host. The user sets up - control connections to the two servers and then arranges for a - data connection between them. In this manner, control information - is passed to the user-PI but data is transferred between the - server data transfer processes. Following is a model of this - server-server interaction. - - - Control ------------ Control - ---------->| User-FTP |<----------- - | | User-PI | | - | | "C" | | - V ------------ V - -------------- -------------- - | Server-FTP | Data Connection | Server-FTP | - | "A" |<---------------------->| "B" | - -------------- Port (A) Port (B) -------------- - - - Figure 2 - - The protocol requires that the control connections be open while - data transfer is in progress. It is the responsibility of the - user to request the closing of the control connections when - finished using the FTP service, while it is the server who takes - the action. The server may abort data transfer if the control - connections are closed without command. - - The Relationship between FTP and Telnet: - - The FTP uses the Telnet protocol on the control connection. - This can be achieved in two ways: first, the user-PI or the - server-PI may implement the rules of the Telnet Protocol - directly in their own procedures; or, second, the user-PI or - the server-PI may make use of the existing Telnet module in the - system. - - Ease of implementaion, sharing code, and modular programming - argue for the second approach. Efficiency and independence - - - -Postel & Reynolds [Page 9] - - - -RFC 959 October 1985 -File Transfer Protocol - - - argue for the first approach. In practice, FTP relies on very - little of the Telnet Protocol, so the first approach does not - necessarily involve a large amount of code. - -3. DATA TRANSFER FUNCTIONS - - Files are transferred only via the data connection. The control - connection is used for the transfer of commands, which describe the - functions to be performed, and the replies to these commands (see the - Section on FTP Replies). Several commands are concerned with the - transfer of data between hosts. These data transfer commands include - the MODE command which specify how the bits of the data are to be - transmitted, and the STRUcture and TYPE commands, which are used to - define the way in which the data are to be represented. The - transmission and representation are basically independent but the - "Stream" transmission mode is dependent on the file structure - attribute and if "Compressed" transmission mode is used, the nature - of the filler byte depends on the representation type. - - 3.1. DATA REPRESENTATION AND STORAGE - - Data is transferred from a storage device in the sending host to a - storage device in the receiving host. Often it is necessary to - perform certain transformations on the data because data storage - representations in the two systems are different. For example, - NVT-ASCII has different data storage representations in different - systems. DEC TOPS-20s's generally store NVT-ASCII as five 7-bit - ASCII characters, left-justified in a 36-bit word. IBM Mainframe's - store NVT-ASCII as 8-bit EBCDIC codes. Multics stores NVT-ASCII - as four 9-bit characters in a 36-bit word. It is desirable to - convert characters into the standard NVT-ASCII representation when - transmitting text between dissimilar systems. The sending and - receiving sites would have to perform the necessary - transformations between the standard representation and their - internal representations. - - A different problem in representation arises when transmitting - binary data (not character codes) between host systems with - different word lengths. It is not always clear how the sender - should send data, and the receiver store it. For example, when - transmitting 32-bit bytes from a 32-bit word-length system to a - 36-bit word-length system, it may be desirable (for reasons of - efficiency and usefulness) to store the 32-bit bytes - right-justified in a 36-bit word in the latter system. In any - case, the user should have the option of specifying data - representation and transformation functions. It should be noted - - - -Postel & Reynolds [Page 10] - - - -RFC 959 October 1985 -File Transfer Protocol - - - that FTP provides for very limited data type representations. - Transformations desired beyond this limited capability should be - performed by the user directly. - - 3.1.1. DATA TYPES - - Data representations are handled in FTP by a user specifying a - representation type. This type may implicitly (as in ASCII or - EBCDIC) or explicitly (as in Local byte) define a byte size for - interpretation which is referred to as the "logical byte size." - Note that this has nothing to do with the byte size used for - transmission over the data connection, called the "transfer - byte size", and the two should not be confused. For example, - NVT-ASCII has a logical byte size of 8 bits. If the type is - Local byte, then the TYPE command has an obligatory second - parameter specifying the logical byte size. The transfer byte - size is always 8 bits. - - 3.1.1.1. ASCII TYPE - - This is the default type and must be accepted by all FTP - implementations. It is intended primarily for the transfer - of text files, except when both hosts would find the EBCDIC - type more convenient. - - The sender converts the data from an internal character - representation to the standard 8-bit NVT-ASCII - representation (see the Telnet specification). The receiver - will convert the data from the standard form to his own - internal form. - - In accordance with the NVT standard, the sequence - should be used where necessary to denote the end of a line - of text. (See the discussion of file structure at the end - of the Section on Data Representation and Storage.) - - Using the standard NVT-ASCII representation means that data - must be interpreted as 8-bit bytes. - - The Format parameter for ASCII and EBCDIC types is discussed - below. - - - - - - - - -Postel & Reynolds [Page 11] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 3.1.1.2. EBCDIC TYPE - - This type is intended for efficient transfer between hosts - which use EBCDIC for their internal character - representation. - - For transmission, the data are represented as 8-bit EBCDIC - characters. The character code is the only difference - between the functional specifications of EBCDIC and ASCII - types. - - End-of-line (as opposed to end-of-record--see the discussion - of structure) will probably be rarely used with EBCDIC type - for purposes of denoting structure, but where it is - necessary the character should be used. - - 3.1.1.3. IMAGE TYPE - - The data are sent as contiguous bits which, for transfer, - are packed into the 8-bit transfer bytes. The receiving - site must store the data as contiguous bits. The structure - of the storage system might necessitate the padding of the - file (or of each record, for a record-structured file) to - some convenient boundary (byte, word or block). This - padding, which must be all zeros, may occur only at the end - of the file (or at the end of each record) and there must be - a way of identifying the padding bits so that they may be - stripped off if the file is retrieved. The padding - transformation should be well publicized to enable a user to - process a file at the storage site. - - Image type is intended for the efficient storage and - retrieval of files and for the transfer of binary data. It - is recommended that this type be accepted by all FTP - implementations. - - 3.1.1.4. LOCAL TYPE - - The data is transferred in logical bytes of the size - specified by the obligatory second parameter, Byte size. - The value of Byte size must be a decimal integer; there is - no default value. The logical byte size is not necessarily - the same as the transfer byte size. If there is a - difference in byte sizes, then the logical bytes should be - packed contiguously, disregarding transfer byte boundaries - and with any necessary padding at the end. - - - -Postel & Reynolds [Page 12] - - - -RFC 959 October 1985 -File Transfer Protocol - - - When the data reaches the receiving host, it will be - transformed in a manner dependent on the logical byte size - and the particular host. This transformation must be - invertible (i.e., an identical file can be retrieved if the - same parameters are used) and should be well publicized by - the FTP implementors. - - For example, a user sending 36-bit floating-point numbers to - a host with a 32-bit word could send that data as Local byte - with a logical byte size of 36. The receiving host would - then be expected to store the logical bytes so that they - could be easily manipulated; in this example putting the - 36-bit logical bytes into 64-bit double words should - suffice. - - In another example, a pair of hosts with a 36-bit word size - may send data to one another in words by using TYPE L 36. - The data would be sent in the 8-bit transmission bytes - packed so that 9 transmission bytes carried two host words. - - 3.1.1.5. FORMAT CONTROL - - The types ASCII and EBCDIC also take a second (optional) - parameter; this is to indicate what kind of vertical format - control, if any, is associated with a file. The following - data representation types are defined in FTP: - - A character file may be transferred to a host for one of - three purposes: for printing, for storage and later - retrieval, or for processing. If a file is sent for - printing, the receiving host must know how the vertical - format control is represented. In the second case, it must - be possible to store a file at a host and then retrieve it - later in exactly the same form. Finally, it should be - possible to move a file from one host to another and process - the file at the second host without undue trouble. A single - ASCII or EBCDIC format does not satisfy all these - conditions. Therefore, these types have a second parameter - specifying one of the following three formats: - - 3.1.1.5.1. NON PRINT - - This is the default format to be used if the second - (format) parameter is omitted. Non-print format must be - accepted by all FTP implementations. - - - - -Postel & Reynolds [Page 13] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The file need contain no vertical format information. If - it is passed to a printer process, this process may - assume standard values for spacing and margins. - - Normally, this format will be used with files destined - for processing or just storage. - - 3.1.1.5.2. TELNET FORMAT CONTROLS - - The file contains ASCII/EBCDIC vertical format controls - (i.e., , , , , ) which the printer - process will interpret appropriately. , in exactly - this sequence, also denotes end-of-line. - - 3.1.1.5.2. CARRIAGE CONTROL (ASA) - - The file contains ASA (FORTRAN) vertical format control - characters. (See RFC 740 Appendix C; and Communications - of the ACM, Vol. 7, No. 10, p. 606, October 1964.) In a - line or a record formatted according to the ASA Standard, - the first character is not to be printed. Instead, it - should be used to determine the vertical movement of the - paper which should take place before the rest of the - record is printed. - - The ASA Standard specifies the following control - characters: - - Character Vertical Spacing - - blank Move paper up one line - 0 Move paper up two lines - 1 Move paper to top of next page - + No movement, i.e., overprint - - Clearly there must be some way for a printer process to - distinguish the end of the structural entity. If a file - has record structure (see below) this is no problem; - records will be explicitly marked during transfer and - storage. If the file has no record structure, the - end-of-line sequence is used to separate printing lines, - but these format effectors are overridden by the ASA - controls. - - - - - - -Postel & Reynolds [Page 14] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 3.1.2. DATA STRUCTURES - - In addition to different representation types, FTP allows the - structure of a file to be specified. Three file structures are - defined in FTP: - - file-structure, where there is no internal structure and - the file is considered to be a - continuous sequence of data bytes, - - record-structure, where the file is made up of sequential - records, - - and page-structure, where the file is made up of independent - indexed pages. - - File-structure is the default to be assumed if the STRUcture - command has not been used but both file and record structures - must be accepted for "text" files (i.e., files with TYPE ASCII - or EBCDIC) by all FTP implementations. The structure of a file - will affect both the transfer mode of a file (see the Section - on Transmission Modes) and the interpretation and storage of - the file. - - The "natural" structure of a file will depend on which host - stores the file. A source-code file will usually be stored on - an IBM Mainframe in fixed length records but on a DEC TOPS-20 - as a stream of characters partitioned into lines, for example - by . If the transfer of files between such disparate - sites is to be useful, there must be some way for one site to - recognize the other's assumptions about the file. - - With some sites being naturally file-oriented and others - naturally record-oriented there may be problems if a file with - one structure is sent to a host oriented to the other. If a - text file is sent with record-structure to a host which is file - oriented, then that host should apply an internal - transformation to the file based on the record structure. - Obviously, this transformation should be useful, but it must - also be invertible so that an identical file may be retrieved - using record structure. - - In the case of a file being sent with file-structure to a - record-oriented host, there exists the question of what - criteria the host should use to divide the file into records - which can be processed locally. If this division is necessary, - the FTP implementation should use the end-of-line sequence, - - -Postel & Reynolds [Page 15] - - - -RFC 959 October 1985 -File Transfer Protocol - - - for ASCII, or for EBCDIC text files, as the - delimiter. If an FTP implementation adopts this technique, it - must be prepared to reverse the transformation if the file is - retrieved with file-structure. - - 3.1.2.1. FILE STRUCTURE - - File structure is the default to be assumed if the STRUcture - command has not been used. - - In file-structure there is no internal structure and the - file is considered to be a continuous sequence of data - bytes. - - 3.1.2.2. RECORD STRUCTURE - - Record structures must be accepted for "text" files (i.e., - files with TYPE ASCII or EBCDIC) by all FTP implementations. - - In record-structure the file is made up of sequential - records. - - 3.1.2.3. PAGE STRUCTURE - - To transmit files that are discontinuous, FTP defines a page - structure. Files of this type are sometimes known as - "random access files" or even as "holey files". In these - files there is sometimes other information associated with - the file as a whole (e.g., a file descriptor), or with a - section of the file (e.g., page access controls), or both. - In FTP, the sections of the file are called pages. - - To provide for various page sizes and associated - information, each page is sent with a page header. The page - header has the following defined fields: - - Header Length - - The number of logical bytes in the page header - including this byte. The minimum header length is 4. - - Page Index - - The logical page number of this section of the file. - This is not the transmission sequence number of this - page, but the index used to identify this page of the - file. - - -Postel & Reynolds [Page 16] - - - -RFC 959 October 1985 -File Transfer Protocol - - - Data Length - - The number of logical bytes in the page data. The - minimum data length is 0. - - Page Type - - The type of page this is. The following page types - are defined: - - 0 = Last Page - - This is used to indicate the end of a paged - structured transmission. The header length must - be 4, and the data length must be 0. - - 1 = Simple Page - - This is the normal type for simple paged files - with no page level associated control - information. The header length must be 4. - - 2 = Descriptor Page - - This type is used to transmit the descriptive - information for the file as a whole. - - 3 = Access Controlled Page - - This type includes an additional header field - for paged files with page level access control - information. The header length must be 5. - - Optional Fields - - Further header fields may be used to supply per page - control information, for example, per page access - control. - - All fields are one logical byte in length. The logical byte - size is specified by the TYPE command. See Appendix I for - further details and a specific case at the page structure. - - A note of caution about parameters: a file must be stored and - retrieved with the same parameters if the retrieved version is to - - - - -Postel & Reynolds [Page 17] - - - -RFC 959 October 1985 -File Transfer Protocol - - - be identical to the version originally transmitted. Conversely, - FTP implementations must return a file identical to the original - if the parameters used to store and retrieve a file are the same. - - 3.2. ESTABLISHING DATA CONNECTIONS - - The mechanics of transferring data consists of setting up the data - connection to the appropriate ports and choosing the parameters - for transfer. Both the user and the server-DTPs have a default - data port. The user-process default data port is the same as the - control connection port (i.e., U). The server-process default - data port is the port adjacent to the control connection port - (i.e., L-1). - - The transfer byte size is 8-bit bytes. This byte size is relevant - only for the actual transfer of the data; it has no bearing on - representation of the data within a host's file system. - - The passive data transfer process (this may be a user-DTP or a - second server-DTP) shall "listen" on the data port prior to - sending a transfer request command. The FTP request command - determines the direction of the data transfer. The server, upon - receiving the transfer request, will initiate the data connection - to the port. When the connection is established, the data - transfer begins between DTP's, and the server-PI sends a - confirming reply to the user-PI. - - Every FTP implementation must support the use of the default data - ports, and only the USER-PI can initiate a change to non-default - ports. - - It is possible for the user to specify an alternate data port by - use of the PORT command. The user may want a file dumped on a TAC - line printer or retrieved from a third party host. In the latter - case, the user-PI sets up control connections with both - server-PI's. One server is then told (by an FTP command) to - "listen" for a connection which the other will initiate. The - user-PI sends one server-PI a PORT command indicating the data - port of the other. Finally, both are sent the appropriate - transfer commands. The exact sequence of commands and replies - sent between the user-controller and the servers is defined in the - Section on FTP Replies. - - In general, it is the server's responsibility to maintain the data - connection--to initiate it and to close it. The exception to this - - - - -Postel & Reynolds [Page 18] - - - -RFC 959 October 1985 -File Transfer Protocol - - - is when the user-DTP is sending the data in a transfer mode that - requires the connection to be closed to indicate EOF. The server - MUST close the data connection under the following conditions: - - 1. The server has completed sending data in a transfer mode - that requires a close to indicate EOF. - - 2. The server receives an ABORT command from the user. - - 3. The port specification is changed by a command from the - user. - - 4. The control connection is closed legally or otherwise. - - 5. An irrecoverable error condition occurs. - - Otherwise the close is a server option, the exercise of which the - server must indicate to the user-process by either a 250 or 226 - reply only. - - 3.3. DATA CONNECTION MANAGEMENT - - Default Data Connection Ports: All FTP implementations must - support use of the default data connection ports, and only the - User-PI may initiate the use of non-default ports. - - Negotiating Non-Default Data Ports: The User-PI may specify a - non-default user side data port with the PORT command. The - User-PI may request the server side to identify a non-default - server side data port with the PASV command. Since a connection - is defined by the pair of addresses, either of these actions is - enough to get a different data connection, still it is permitted - to do both commands to use new ports on both ends of the data - connection. - - Reuse of the Data Connection: When using the stream mode of data - transfer the end of the file must be indicated by closing the - connection. This causes a problem if multiple files are to be - transfered in the session, due to need for TCP to hold the - connection record for a time out period to guarantee the reliable - communication. Thus the connection can not be reopened at once. - - There are two solutions to this problem. The first is to - negotiate a non-default port. The second is to use another - transfer mode. - - A comment on transfer modes. The stream transfer mode is - - -Postel & Reynolds [Page 19] - - - -RFC 959 October 1985 -File Transfer Protocol - - - inherently unreliable, since one can not determine if the - connection closed prematurely or not. The other transfer modes - (Block, Compressed) do not close the connection to indicate the - end of file. They have enough FTP encoding that the data - connection can be parsed to determine the end of the file. - Thus using these modes one can leave the data connection open - for multiple file transfers. - - 3.4. TRANSMISSION MODES - - The next consideration in transferring data is choosing the - appropriate transmission mode. There are three modes: one which - formats the data and allows for restart procedures; one which also - compresses the data for efficient transfer; and one which passes - the data with little or no processing. In this last case the mode - interacts with the structure attribute to determine the type of - processing. In the compressed mode, the representation type - determines the filler byte. - - All data transfers must be completed with an end-of-file (EOF) - which may be explicitly stated or implied by the closing of the - data connection. For files with record structure, all the - end-of-record markers (EOR) are explicit, including the final one. - For files transmitted in page structure a "last-page" page type is - used. - - NOTE: In the rest of this section, byte means "transfer byte" - except where explicitly stated otherwise. - - For the purpose of standardized transfer, the sending host will - translate its internal end of line or end of record denotation - into the representation prescribed by the transfer mode and file - structure, and the receiving host will perform the inverse - translation to its internal denotation. An IBM Mainframe record - count field may not be recognized at another host, so the - end-of-record information may be transferred as a two byte control - code in Stream mode or as a flagged bit in a Block or Compressed - mode descriptor. End-of-line in an ASCII or EBCDIC file with no - record structure should be indicated by or , - respectively. Since these transformations imply extra work for - some systems, identical systems transferring non-record structured - text files might wish to use a binary representation and stream - mode for the transfer. - - - - - - -Postel & Reynolds [Page 20] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The following transmission modes are defined in FTP: - - 3.4.1. STREAM MODE - - The data is transmitted as a stream of bytes. There is no - restriction on the representation type used; record structures - are allowed. - - In a record structured file EOR and EOF will each be indicated - by a two-byte control code. The first byte of the control code - will be all ones, the escape character. The second byte will - have the low order bit on and zeros elsewhere for EOR and the - second low order bit on for EOF; that is, the byte will have - value 1 for EOR and value 2 for EOF. EOR and EOF may be - indicated together on the last byte transmitted by turning both - low order bits on (i.e., the value 3). If a byte of all ones - was intended to be sent as data, it should be repeated in the - second byte of the control code. - - If the structure is a file structure, the EOF is indicated by - the sending host closing the data connection and all bytes are - data bytes. - - 3.4.2. BLOCK MODE - - The file is transmitted as a series of data blocks preceded by - one or more header bytes. The header bytes contain a count - field, and descriptor code. The count field indicates the - total length of the data block in bytes, thus marking the - beginning of the next data block (there are no filler bits). - The descriptor code defines: last block in the file (EOF) last - block in the record (EOR), restart marker (see the Section on - Error Recovery and Restart) or suspect data (i.e., the data - being transferred is suspected of errors and is not reliable). - This last code is NOT intended for error control within FTP. - It is motivated by the desire of sites exchanging certain types - of data (e.g., seismic or weather data) to send and receive all - the data despite local errors (such as "magnetic tape read - errors"), but to indicate in the transmission that certain - portions are suspect). Record structures are allowed in this - mode, and any representation type may be used. - - The header consists of the three bytes. Of the 24 bits of - header information, the 16 low order bits shall represent byte - count, and the 8 high order bits shall represent descriptor - codes as shown below. - - - -Postel & Reynolds [Page 21] - - - -RFC 959 October 1985 -File Transfer Protocol - - - Block Header - - +----------------+----------------+----------------+ - | Descriptor | Byte Count | - | 8 bits | 16 bits | - +----------------+----------------+----------------+ - - - The descriptor codes are indicated by bit flags in the - descriptor byte. Four codes have been assigned, where each - code number is the decimal value of the corresponding bit in - the byte. - - Code Meaning - - 128 End of data block is EOR - 64 End of data block is EOF - 32 Suspected errors in data block - 16 Data block is a restart marker - - With this encoding, more than one descriptor coded condition - may exist for a particular block. As many bits as necessary - may be flagged. - - The restart marker is embedded in the data stream as an - integral number of 8-bit bytes representing printable - characters in the language being used over the control - connection (e.g., default--NVT-ASCII). (Space, in the - appropriate language) must not be used WITHIN a restart marker. - - For example, to transmit a six-character marker, the following - would be sent: - - +--------+--------+--------+ - |Descrptr| Byte count | - |code= 16| = 6 | - +--------+--------+--------+ - - +--------+--------+--------+ - | Marker | Marker | Marker | - | 8 bits | 8 bits | 8 bits | - +--------+--------+--------+ - - +--------+--------+--------+ - | Marker | Marker | Marker | - | 8 bits | 8 bits | 8 bits | - +--------+--------+--------+ - - -Postel & Reynolds [Page 22] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 3.4.3. COMPRESSED MODE - - There are three kinds of information to be sent: regular data, - sent in a byte string; compressed data, consisting of - replications or filler; and control information, sent in a - two-byte escape sequence. If n>0 bytes (up to 127) of regular - data are sent, these n bytes are preceded by a byte with the - left-most bit set to 0 and the right-most 7 bits containing the - number n. - - Byte string: - - 1 7 8 8 - +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ - |0| n | | d(1) | ... | d(n) | - +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ - ^ ^ - |---n bytes---| - of data - - String of n data bytes d(1),..., d(n) - Count n must be positive. - - To compress a string of n replications of the data byte d, the - following 2 bytes are sent: - - Replicated Byte: - - 2 6 8 - +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ - |1 0| n | | d | - +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ - - A string of n filler bytes can be compressed into a single - byte, where the filler byte varies with the representation - type. If the type is ASCII or EBCDIC the filler byte is - (Space, ASCII code 32, EBCDIC code 64). If the type is Image - or Local byte the filler is a zero byte. - - Filler String: - - 2 6 - +-+-+-+-+-+-+-+-+ - |1 1| n | - +-+-+-+-+-+-+-+-+ - - The escape sequence is a double byte, the first of which is the - - -Postel & Reynolds [Page 23] - - - -RFC 959 October 1985 -File Transfer Protocol - - - escape byte (all zeros) and the second of which contains - descriptor codes as defined in Block mode. The descriptor - codes have the same meaning as in Block mode and apply to the - succeeding string of bytes. - - Compressed mode is useful for obtaining increased bandwidth on - very large network transmissions at a little extra CPU cost. - It can be most effectively used to reduce the size of printer - files such as those generated by RJE hosts. - - 3.5. ERROR RECOVERY AND RESTART - - There is no provision for detecting bits lost or scrambled in data - transfer; this level of error control is handled by the TCP. - However, a restart procedure is provided to protect users from - gross system failures (including failures of a host, an - FTP-process, or the underlying network). - - The restart procedure is defined only for the block and compressed - modes of data transfer. It requires the sender of data to insert - a special marker code in the data stream with some marker - information. The marker information has meaning only to the - sender, but must consist of printable characters in the default or - negotiated language of the control connection (ASCII or EBCDIC). - The marker could represent a bit-count, a record-count, or any - other information by which a system may identify a data - checkpoint. The receiver of data, if it implements the restart - procedure, would then mark the corresponding position of this - marker in the receiving system, and return this information to the - user. - - In the event of a system failure, the user can restart the data - transfer by identifying the marker point with the FTP restart - procedure. The following example illustrates the use of the - restart procedure. - - The sender of the data inserts an appropriate marker block in the - data stream at a convenient point. The receiving host marks the - corresponding data point in its file system and conveys the last - known sender and receiver marker information to the user, either - directly or over the control connection in a 110 reply (depending - on who is the sender). In the event of a system failure, the user - or controller process restarts the server at the last server - marker by sending a restart command with server's marker code as - its argument. The restart command is transmitted over the control - - - - -Postel & Reynolds [Page 24] - - - -RFC 959 October 1985 -File Transfer Protocol - - - connection and is immediately followed by the command (such as - RETR, STOR or LIST) which was being executed when the system - failure occurred. - -4. FILE TRANSFER FUNCTIONS - - The communication channel from the user-PI to the server-PI is - established as a TCP connection from the user to the standard server - port. The user protocol interpreter is responsible for sending FTP - commands and interpreting the replies received; the server-PI - interprets commands, sends replies and directs its DTP to set up the - data connection and transfer the data. If the second party to the - data transfer (the passive transfer process) is the user-DTP, then it - is governed through the internal protocol of the user-FTP host; if it - is a second server-DTP, then it is governed by its PI on command from - the user-PI. The FTP replies are discussed in the next section. In - the description of a few of the commands in this section, it is - helpful to be explicit about the possible replies. - - 4.1. FTP COMMANDS - - 4.1.1. ACCESS CONTROL COMMANDS - - The following commands specify access control identifiers - (command codes are shown in parentheses). - - USER NAME (USER) - - The argument field is a Telnet string identifying the user. - The user identification is that which is required by the - server for access to its file system. This command will - normally be the first command transmitted by the user after - the control connections are made (some servers may require - this). Additional identification information in the form of - a password and/or an account command may also be required by - some servers. Servers may allow a new USER command to be - entered at any point in order to change the access control - and/or accounting information. This has the effect of - flushing any user, password, and account information already - supplied and beginning the login sequence again. All - transfer parameters are unchanged and any file transfer in - progress is completed under the old access control - parameters. - - - - - - -Postel & Reynolds [Page 25] - - - -RFC 959 October 1985 -File Transfer Protocol - - - PASSWORD (PASS) - - The argument field is a Telnet string specifying the user's - password. This command must be immediately preceded by the - user name command, and, for some sites, completes the user's - identification for access control. Since password - information is quite sensitive, it is desirable in general - to "mask" it or suppress typeout. It appears that the - server has no foolproof way to achieve this. It is - therefore the responsibility of the user-FTP process to hide - the sensitive password information. - - ACCOUNT (ACCT) - - The argument field is a Telnet string identifying the user's - account. The command is not necessarily related to the USER - command, as some sites may require an account for login and - others only for specific access, such as storing files. In - the latter case the command may arrive at any time. - - There are reply codes to differentiate these cases for the - automation: when account information is required for login, - the response to a successful PASSword command is reply code - 332. On the other hand, if account information is NOT - required for login, the reply to a successful PASSword - command is 230; and if the account information is needed for - a command issued later in the dialogue, the server should - return a 332 or 532 reply depending on whether it stores - (pending receipt of the ACCounT command) or discards the - command, respectively. - - CHANGE WORKING DIRECTORY (CWD) - - This command allows the user to work with a different - directory or dataset for file storage or retrieval without - altering his login or accounting information. Transfer - parameters are similarly unchanged. The argument is a - pathname specifying a directory or other system dependent - file group designator. - - CHANGE TO PARENT DIRECTORY (CDUP) - - This command is a special case of CWD, and is included to - simplify the implementation of programs for transferring - directory trees between operating systems having different - - - - -Postel & Reynolds [Page 26] - - - -RFC 959 October 1985 -File Transfer Protocol - - - syntaxes for naming the parent directory. The reply codes - shall be identical to the reply codes of CWD. See - Appendix II for further details. - - STRUCTURE MOUNT (SMNT) - - This command allows the user to mount a different file - system data structure without altering his login or - accounting information. Transfer parameters are similarly - unchanged. The argument is a pathname specifying a - directory or other system dependent file group designator. - - REINITIALIZE (REIN) - - This command terminates a USER, flushing all I/O and account - information, except to allow any transfer in progress to be - completed. All parameters are reset to the default settings - and the control connection is left open. This is identical - to the state in which a user finds himself immediately after - the control connection is opened. A USER command may be - expected to follow. - - LOGOUT (QUIT) - - This command terminates a USER and if file transfer is not - in progress, the server closes the control connection. If - file transfer is in progress, the connection will remain - open for result response and the server will then close it. - If the user-process is transferring files for several USERs - but does not wish to close and then reopen connections for - each, then the REIN command should be used instead of QUIT. - - An unexpected close on the control connection will cause the - server to take the effective action of an abort (ABOR) and a - logout (QUIT). - - 4.1.2. TRANSFER PARAMETER COMMANDS - - All data transfer parameters have default values, and the - commands specifying data transfer parameters are required only - if the default parameter values are to be changed. The default - value is the last specified value, or if no value has been - specified, the standard default value is as stated here. This - implies that the server must "remember" the applicable default - values. The commands may be in any order except that they must - precede the FTP service request. The following commands - specify data transfer parameters: - - -Postel & Reynolds [Page 27] - - - -RFC 959 October 1985 -File Transfer Protocol - - - DATA PORT (PORT) - - The argument is a HOST-PORT specification for the data port - to be used in data connection. There are defaults for both - the user and server data ports, and under normal - circumstances this command and its reply are not needed. If - this command is used, the argument is the concatenation of a - 32-bit internet host address and a 16-bit TCP port address. - This address information is broken into 8-bit fields and the - value of each field is transmitted as a decimal number (in - character string representation). The fields are separated - by commas. A port command would be: - - PORT h1,h2,h3,h4,p1,p2 - - where h1 is the high order 8 bits of the internet host - address. - - PASSIVE (PASV) - - This command requests the server-DTP to "listen" on a data - port (which is not its default data port) and to wait for a - connection rather than initiate one upon receipt of a - transfer command. The response to this command includes the - host and port address this server is listening on. - - REPRESENTATION TYPE (TYPE) - - The argument specifies the representation type as described - in the Section on Data Representation and Storage. Several - types take a second parameter. The first parameter is - denoted by a single Telnet character, as is the second - Format parameter for ASCII and EBCDIC; the second parameter - for local byte is a decimal integer to indicate Bytesize. - The parameters are separated by a (Space, ASCII code - 32). - - The following codes are assigned for type: - - \ / - A - ASCII | | N - Non-print - |-><-| T - Telnet format effectors - E - EBCDIC| | C - Carriage Control (ASA) - / \ - I - Image - - L - Local byte Byte size - - -Postel & Reynolds [Page 28] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The default representation type is ASCII Non-print. If the - Format parameter is changed, and later just the first - argument is changed, Format then returns to the Non-print - default. - - FILE STRUCTURE (STRU) - - The argument is a single Telnet character code specifying - file structure described in the Section on Data - Representation and Storage. - - The following codes are assigned for structure: - - F - File (no record structure) - R - Record structure - P - Page structure - - The default structure is File. - - TRANSFER MODE (MODE) - - The argument is a single Telnet character code specifying - the data transfer modes described in the Section on - Transmission Modes. - - The following codes are assigned for transfer modes: - - S - Stream - B - Block - C - Compressed - - The default transfer mode is Stream. - - 4.1.3. FTP SERVICE COMMANDS - - The FTP service commands define the file transfer or the file - system function requested by the user. The argument of an FTP - service command will normally be a pathname. The syntax of - pathnames must conform to server site conventions (with - standard defaults applicable), and the language conventions of - the control connection. The suggested default handling is to - use the last specified device, directory or file name, or the - standard default defined for local users. The commands may be - in any order except that a "rename from" command must be - followed by a "rename to" command and the restart command must - be followed by the interrupted service command (e.g., STOR or - RETR). The data, when transferred in response to FTP service - - -Postel & Reynolds [Page 29] - - - -RFC 959 October 1985 -File Transfer Protocol - - - commands, shall always be sent over the data connection, except - for certain informative replies. The following commands - specify FTP service requests: - - RETRIEVE (RETR) - - This command causes the server-DTP to transfer a copy of the - file, specified in the pathname, to the server- or user-DTP - at the other end of the data connection. The status and - contents of the file at the server site shall be unaffected. - - STORE (STOR) - - This command causes the server-DTP to accept the data - transferred via the data connection and to store the data as - a file at the server site. If the file specified in the - pathname exists at the server site, then its contents shall - be replaced by the data being transferred. A new file is - created at the server site if the file specified in the - pathname does not already exist. - - STORE UNIQUE (STOU) - - This command behaves like STOR except that the resultant - file is to be created in the current directory under a name - unique to that directory. The 250 Transfer Started response - must include the name generated. - - APPEND (with create) (APPE) - - This command causes the server-DTP to accept the data - transferred via the data connection and to store the data in - a file at the server site. If the file specified in the - pathname exists at the server site, then the data shall be - appended to that file; otherwise the file specified in the - pathname shall be created at the server site. - - ALLOCATE (ALLO) - - This command may be required by some servers to reserve - sufficient storage to accommodate the new file to be - transferred. The argument shall be a decimal integer - representing the number of bytes (using the logical byte - size) of storage to be reserved for the file. For files - sent with record or page structure a maximum record or page - size (in logical bytes) might also be necessary; this is - indicated by a decimal integer in a second argument field of - - -Postel & Reynolds [Page 30] - - - -RFC 959 October 1985 -File Transfer Protocol - - - the command. This second argument is optional, but when - present should be separated from the first by the three - Telnet characters R . This command shall be - followed by a STORe or APPEnd command. The ALLO command - should be treated as a NOOP (no operation) by those servers - which do not require that the maximum size of the file be - declared beforehand, and those servers interested in only - the maximum record or page size should accept a dummy value - in the first argument and ignore it. - - RESTART (REST) - - The argument field represents the server marker at which - file transfer is to be restarted. This command does not - cause file transfer but skips over the file to the specified - data checkpoint. This command shall be immediately followed - by the appropriate FTP service command which shall cause - file transfer to resume. - - RENAME FROM (RNFR) - - This command specifies the old pathname of the file which is - to be renamed. This command must be immediately followed by - a "rename to" command specifying the new file pathname. - - RENAME TO (RNTO) - - This command specifies the new pathname of the file - specified in the immediately preceding "rename from" - command. Together the two commands cause a file to be - renamed. - - ABORT (ABOR) - - This command tells the server to abort the previous FTP - service command and any associated transfer of data. The - abort command may require "special action", as discussed in - the Section on FTP Commands, to force recognition by the - server. No action is to be taken if the previous command - has been completed (including data transfer). The control - connection is not to be closed by the server, but the data - connection must be closed. - - There are two cases for the server upon receipt of this - command: (1) the FTP service command was already completed, - or (2) the FTP service command is still in progress. - - - -Postel & Reynolds [Page 31] - - - -RFC 959 October 1985 -File Transfer Protocol - - - In the first case, the server closes the data connection - (if it is open) and responds with a 226 reply, indicating - that the abort command was successfully processed. - - In the second case, the server aborts the FTP service in - progress and closes the data connection, returning a 426 - reply to indicate that the service request terminated - abnormally. The server then sends a 226 reply, - indicating that the abort command was successfully - processed. - - DELETE (DELE) - - This command causes the file specified in the pathname to be - deleted at the server site. If an extra level of protection - is desired (such as the query, "Do you really wish to - delete?"), it should be provided by the user-FTP process. - - REMOVE DIRECTORY (RMD) - - This command causes the directory specified in the pathname - to be removed as a directory (if the pathname is absolute) - or as a subdirectory of the current working directory (if - the pathname is relative). See Appendix II. - - MAKE DIRECTORY (MKD) - - This command causes the directory specified in the pathname - to be created as a directory (if the pathname is absolute) - or as a subdirectory of the current working directory (if - the pathname is relative). See Appendix II. - - PRINT WORKING DIRECTORY (PWD) - - This command causes the name of the current working - directory to be returned in the reply. See Appendix II. - - LIST (LIST) - - This command causes a list to be sent from the server to the - passive DTP. If the pathname specifies a directory or other - group of files, the server should transfer a list of files - in the specified directory. If the pathname specifies a - file then the server should send current information on the - file. A null argument implies the user's current working or - default directory. The data transfer is over the data - connection in type ASCII or type EBCDIC. (The user must - - -Postel & Reynolds [Page 32] - - - -RFC 959 October 1985 -File Transfer Protocol - - - ensure that the TYPE is appropriately ASCII or EBCDIC). - Since the information on a file may vary widely from system - to system, this information may be hard to use automatically - in a program, but may be quite useful to a human user. - - NAME LIST (NLST) - - This command causes a directory listing to be sent from - server to user site. The pathname should specify a - directory or other system-specific file group descriptor; a - null argument implies the current directory. The server - will return a stream of names of files and no other - information. The data will be transferred in ASCII or - EBCDIC type over the data connection as valid pathname - strings separated by or . (Again the user must - ensure that the TYPE is correct.) This command is intended - to return information that can be used by a program to - further process the files automatically. For example, in - the implementation of a "multiple get" function. - - SITE PARAMETERS (SITE) - - This command is used by the server to provide services - specific to his system that are essential to file transfer - but not sufficiently universal to be included as commands in - the protocol. The nature of these services and the - specification of their syntax can be stated in a reply to - the HELP SITE command. - - SYSTEM (SYST) - - This command is used to find out the type of operating - system at the server. The reply shall have as its first - word one of the system names listed in the current version - of the Assigned Numbers document [4]. - - STATUS (STAT) - - This command shall cause a status response to be sent over - the control connection in the form of a reply. The command - may be sent during a file transfer (along with the Telnet IP - and Synch signals--see the Section on FTP Commands) in which - case the server will respond with the status of the - operation in progress, or it may be sent between file - transfers. In the latter case, the command may have an - argument field. If the argument is a pathname, the command - is analogous to the "list" command except that data shall be - - -Postel & Reynolds [Page 33] - - - -RFC 959 October 1985 -File Transfer Protocol - - - transferred over the control connection. If a partial - pathname is given, the server may respond with a list of - file names or attributes associated with that specification. - If no argument is given, the server should return general - status information about the server FTP process. This - should include current values of all transfer parameters and - the status of connections. - - HELP (HELP) - - This command shall cause the server to send helpful - information regarding its implementation status over the - control connection to the user. The command may take an - argument (e.g., any command name) and return more specific - information as a response. The reply is type 211 or 214. - It is suggested that HELP be allowed before entering a USER - command. The server may use this reply to specify - site-dependent parameters, e.g., in response to HELP SITE. - - NOOP (NOOP) - - This command does not affect any parameters or previously - entered commands. It specifies no action other than that the - server send an OK reply. - - The File Transfer Protocol follows the specifications of the Telnet - protocol for all communications over the control connection. Since - the language used for Telnet communication may be a negotiated - option, all references in the next two sections will be to the - "Telnet language" and the corresponding "Telnet end-of-line code". - Currently, one may take these to mean NVT-ASCII and . No other - specifications of the Telnet protocol will be cited. - - FTP commands are "Telnet strings" terminated by the "Telnet end of - line code". The command codes themselves are alphabetic characters - terminated by the character (Space) if parameters follow and - Telnet-EOL otherwise. The command codes and the semantics of - commands are described in this section; the detailed syntax of - commands is specified in the Section on Commands, the reply sequences - are discussed in the Section on Sequencing of Commands and Replies, - and scenarios illustrating the use of commands are provided in the - Section on Typical FTP Scenarios. - - FTP commands may be partitioned as those specifying access-control - identifiers, data transfer parameters, or FTP service requests. - Certain commands (such as ABOR, STAT, QUIT) may be sent over the - control connection while a data transfer is in progress. Some - - -Postel & Reynolds [Page 34] - - - -RFC 959 October 1985 -File Transfer Protocol - - - servers may not be able to monitor the control and data connections - simultaneously, in which case some special action will be necessary - to get the server's attention. The following ordered format is - tentatively recommended: - - 1. User system inserts the Telnet "Interrupt Process" (IP) signal - in the Telnet stream. - - 2. User system sends the Telnet "Synch" signal. - - 3. User system inserts the command (e.g., ABOR) in the Telnet - stream. - - 4. Server PI, after receiving "IP", scans the Telnet stream for - EXACTLY ONE FTP command. - - (For other servers this may not be necessary but the actions listed - above should have no unusual effect.) - - 4.2. FTP REPLIES - - Replies to File Transfer Protocol commands are devised to ensure - the synchronization of requests and actions in the process of file - transfer, and to guarantee that the user process always knows the - state of the Server. Every command must generate at least one - reply, although there may be more than one; in the latter case, - the multiple replies must be easily distinguished. In addition, - some commands occur in sequential groups, such as USER, PASS and - ACCT, or RNFR and RNTO. The replies show the existence of an - intermediate state if all preceding commands have been successful. - A failure at any point in the sequence necessitates the repetition - of the entire sequence from the beginning. - - The details of the command-reply sequence are made explicit in - a set of state diagrams below. - - An FTP reply consists of a three digit number (transmitted as - three alphanumeric characters) followed by some text. The number - is intended for use by automata to determine what state to enter - next; the text is intended for the human user. It is intended - that the three digits contain enough encoded information that the - user-process (the User-PI) will not need to examine the text and - may either discard it or pass it on to the user, as appropriate. - In particular, the text may be server-dependent, so there are - likely to be varying texts for each reply code. - - A reply is defined to contain the 3-digit code, followed by Space - - -Postel & Reynolds [Page 35] - - - -RFC 959 October 1985 -File Transfer Protocol - - - , followed by one line of text (where some maximum line length - has been specified), and terminated by the Telnet end-of-line - code. There will be cases however, where the text is longer than - a single line. In these cases the complete text must be bracketed - so the User-process knows when it may stop reading the reply (i.e. - stop processing input on the control connection) and go do other - things. This requires a special format on the first line to - indicate that more than one line is coming, and another on the - last line to designate it as the last. At least one of these must - contain the appropriate reply code to indicate the state of the - transaction. To satisfy all factions, it was decided that both - the first and last line codes should be the same. - - Thus the format for multi-line replies is that the first line - will begin with the exact required reply code, followed - immediately by a Hyphen, "-" (also known as Minus), followed by - text. The last line will begin with the same code, followed - immediately by Space , optionally some text, and the Telnet - end-of-line code. - - For example: - 123-First line - Second line - 234 A line beginning with numbers - 123 The last line - - The user-process then simply needs to search for the second - occurrence of the same reply code, followed by (Space), at - the beginning of a line, and ignore all intermediary lines. If - an intermediary line begins with a 3-digit number, the Server - must pad the front to avoid confusion. - - This scheme allows standard system routines to be used for - reply information (such as for the STAT reply), with - "artificial" first and last lines tacked on. In rare cases - where these routines are able to generate three digits and a - Space at the beginning of any line, the beginning of each - text line should be offset by some neutral text, like Space. - - This scheme assumes that multi-line replies may not be nested. - - The three digits of the reply each have a special significance. - This is intended to allow a range of very simple to very - sophisticated responses by the user-process. The first digit - denotes whether the response is good, bad or incomplete. - (Referring to the state diagram), an unsophisticated user-process - will be able to determine its next action (proceed as planned, - - -Postel & Reynolds [Page 36] - - - -RFC 959 October 1985 -File Transfer Protocol - - - redo, retrench, etc.) by simply examining this first digit. A - user-process that wants to know approximately what kind of error - occurred (e.g. file system error, command syntax error) may - examine the second digit, reserving the third digit for the finest - gradation of information (e.g., RNTO command without a preceding - RNFR). - - There are five values for the first digit of the reply code: - - 1yz Positive Preliminary reply - - The requested action is being initiated; expect another - reply before proceeding with a new command. (The - user-process sending another command before the - completion reply would be in violation of protocol; but - server-FTP processes should queue any commands that - arrive while a preceding command is in progress.) This - type of reply can be used to indicate that the command - was accepted and the user-process may now pay attention - to the data connections, for implementations where - simultaneous monitoring is difficult. The server-FTP - process may send at most, one 1yz reply per command. - - 2yz Positive Completion reply - - The requested action has been successfully completed. A - new request may be initiated. - - 3yz Positive Intermediate reply - - The command has been accepted, but the requested action - is being held in abeyance, pending receipt of further - information. The user should send another command - specifying this information. This reply is used in - command sequence groups. - - 4yz Transient Negative Completion reply - - The command was not accepted and the requested action did - not take place, but the error condition is temporary and - the action may be requested again. The user should - return to the beginning of the command sequence, if any. - It is difficult to assign a meaning to "transient", - particularly when two distinct sites (Server- and - User-processes) have to agree on the interpretation. - Each reply in the 4yz category might have a slightly - different time value, but the intent is that the - - -Postel & Reynolds [Page 37] - - - -RFC 959 October 1985 -File Transfer Protocol - - - user-process is encouraged to try again. A rule of thumb - in determining if a reply fits into the 4yz or the 5yz - (Permanent Negative) category is that replies are 4yz if - the commands can be repeated without any change in - command form or in properties of the User or Server - (e.g., the command is spelled the same with the same - arguments used; the user does not change his file access - or user name; the server does not put up a new - implementation.) - - 5yz Permanent Negative Completion reply - - The command was not accepted and the requested action did - not take place. The User-process is discouraged from - repeating the exact request (in the same sequence). Even - some "permanent" error conditions can be corrected, so - the human user may want to direct his User-process to - reinitiate the command sequence by direct action at some - point in the future (e.g., after the spelling has been - changed, or the user has altered his directory status.) - - The following function groupings are encoded in the second - digit: - - x0z Syntax - These replies refer to syntax errors, - syntactically correct commands that don't fit any - functional category, unimplemented or superfluous - commands. - - x1z Information - These are replies to requests for - information, such as status or help. - - x2z Connections - Replies referring to the control and - data connections. - - x3z Authentication and accounting - Replies for the login - process and accounting procedures. - - x4z Unspecified as yet. - - x5z File system - These replies indicate the status of the - Server file system vis-a-vis the requested transfer or - other file system action. - - The third digit gives a finer gradation of meaning in each of - the function categories, specified by the second digit. The - list of replies below will illustrate this. Note that the text - - -Postel & Reynolds [Page 38] - - - -RFC 959 October 1985 -File Transfer Protocol - - - associated with each reply is recommended, rather than - mandatory, and may even change according to the command with - which it is associated. The reply codes, on the other hand, - must strictly follow the specifications in the last section; - that is, Server implementations should not invent new codes for - situations that are only slightly different from the ones - described here, but rather should adapt codes already defined. - - A command such as TYPE or ALLO whose successful execution - does not offer the user-process any new information will - cause a 200 reply to be returned. If the command is not - implemented by a particular Server-FTP process because it - has no relevance to that computer system, for example ALLO - at a TOPS20 site, a Positive Completion reply is still - desired so that the simple User-process knows it can proceed - with its course of action. A 202 reply is used in this case - with, for example, the reply text: "No storage allocation - necessary." If, on the other hand, the command requests a - non-site-specific action and is unimplemented, the response - is 502. A refinement of that is the 504 reply for a command - that is implemented, but that requests an unimplemented - parameter. - - 4.2.1 Reply Codes by Function Groups - - 200 Command okay. - 500 Syntax error, command unrecognized. - This may include errors such as command line too long. - 501 Syntax error in parameters or arguments. - 202 Command not implemented, superfluous at this site. - 502 Command not implemented. - 503 Bad sequence of commands. - 504 Command not implemented for that parameter. - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 39] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 110 Restart marker reply. - In this case, the text is exact and not left to the - particular implementation; it must read: - MARK yyyy = mmmm - Where yyyy is User-process data stream marker, and mmmm - server's equivalent marker (note the spaces between markers - and "="). - 211 System status, or system help reply. - 212 Directory status. - 213 File status. - 214 Help message. - On how to use the server or the meaning of a particular - non-standard command. This reply is useful only to the - human user. - 215 NAME system type. - Where NAME is an official system name from the list in the - Assigned Numbers document. - - 120 Service ready in nnn minutes. - 220 Service ready for new user. - 221 Service closing control connection. - Logged out if appropriate. - 421 Service not available, closing control connection. - This may be a reply to any command if the service knows it - must shut down. - 125 Data connection already open; transfer starting. - 225 Data connection open; no transfer in progress. - 425 Can't open data connection. - 226 Closing data connection. - Requested file action successful (for example, file - transfer or file abort). - 426 Connection closed; transfer aborted. - 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2). - - 230 User logged in, proceed. - 530 Not logged in. - 331 User name okay, need password. - 332 Need account for login. - 532 Need account for storing files. - - - - - - - - - - -Postel & Reynolds [Page 40] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 150 File status okay; about to open data connection. - 250 Requested file action okay, completed. - 257 "PATHNAME" created. - 350 Requested file action pending further information. - 450 Requested file action not taken. - File unavailable (e.g., file busy). - 550 Requested action not taken. - File unavailable (e.g., file not found, no access). - 451 Requested action aborted. Local error in processing. - 551 Requested action aborted. Page type unknown. - 452 Requested action not taken. - Insufficient storage space in system. - 552 Requested file action aborted. - Exceeded storage allocation (for current directory or - dataset). - 553 Requested action not taken. - File name not allowed. - - - 4.2.2 Numeric Order List of Reply Codes - - 110 Restart marker reply. - In this case, the text is exact and not left to the - particular implementation; it must read: - MARK yyyy = mmmm - Where yyyy is User-process data stream marker, and mmmm - server's equivalent marker (note the spaces between markers - and "="). - 120 Service ready in nnn minutes. - 125 Data connection already open; transfer starting. - 150 File status okay; about to open data connection. - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 41] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 200 Command okay. - 202 Command not implemented, superfluous at this site. - 211 System status, or system help reply. - 212 Directory status. - 213 File status. - 214 Help message. - On how to use the server or the meaning of a particular - non-standard command. This reply is useful only to the - human user. - 215 NAME system type. - Where NAME is an official system name from the list in the - Assigned Numbers document. - 220 Service ready for new user. - 221 Service closing control connection. - Logged out if appropriate. - 225 Data connection open; no transfer in progress. - 226 Closing data connection. - Requested file action successful (for example, file - transfer or file abort). - 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2). - 230 User logged in, proceed. - 250 Requested file action okay, completed. - 257 "PATHNAME" created. - - 331 User name okay, need password. - 332 Need account for login. - 350 Requested file action pending further information. - - 421 Service not available, closing control connection. - This may be a reply to any command if the service knows it - must shut down. - 425 Can't open data connection. - 426 Connection closed; transfer aborted. - 450 Requested file action not taken. - File unavailable (e.g., file busy). - 451 Requested action aborted: local error in processing. - 452 Requested action not taken. - Insufficient storage space in system. - - - - - - - - - - - -Postel & Reynolds [Page 42] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 500 Syntax error, command unrecognized. - This may include errors such as command line too long. - 501 Syntax error in parameters or arguments. - 502 Command not implemented. - 503 Bad sequence of commands. - 504 Command not implemented for that parameter. - 530 Not logged in. - 532 Need account for storing files. - 550 Requested action not taken. - File unavailable (e.g., file not found, no access). - 551 Requested action aborted: page type unknown. - 552 Requested file action aborted. - Exceeded storage allocation (for current directory or - dataset). - 553 Requested action not taken. - File name not allowed. - - -5. DECLARATIVE SPECIFICATIONS - - 5.1. MINIMUM IMPLEMENTATION - - In order to make FTP workable without needless error messages, the - following minimum implementation is required for all servers: - - TYPE - ASCII Non-print - MODE - Stream - STRUCTURE - File, Record - COMMANDS - USER, QUIT, PORT, - TYPE, MODE, STRU, - for the default values - RETR, STOR, - NOOP. - - The default values for transfer parameters are: - - TYPE - ASCII Non-print - MODE - Stream - STRU - File - - All hosts must accept the above as the standard defaults. - - - - - - - - -Postel & Reynolds [Page 43] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 5.2. CONNECTIONS - - The server protocol interpreter shall "listen" on Port L. The - user or user protocol interpreter shall initiate the full-duplex - control connection. Server- and user- processes should follow the - conventions of the Telnet protocol as specified in the - ARPA-Internet Protocol Handbook [1]. Servers are under no - obligation to provide for editing of command lines and may require - that it be done in the user host. The control connection shall be - closed by the server at the user's request after all transfers and - replies are completed. - - The user-DTP must "listen" on the specified data port; this may be - the default user port (U) or a port specified in the PORT command. - The server shall initiate the data connection from his own default - data port (L-1) using the specified user data port. The direction - of the transfer and the port used will be determined by the FTP - service command. - - Note that all FTP implementation must support data transfer using - the default port, and that only the USER-PI may initiate the use - of non-default ports. - - When data is to be transferred between two servers, A and B (refer - to Figure 2), the user-PI, C, sets up control connections with - both server-PI's. One of the servers, say A, is then sent a PASV - command telling him to "listen" on his data port rather than - initiate a connection when he receives a transfer service command. - When the user-PI receives an acknowledgment to the PASV command, - which includes the identity of the host and port being listened - on, the user-PI then sends A's port, a, to B in a PORT command; a - reply is returned. The user-PI may then send the corresponding - service commands to A and B. Server B initiates the connection - and the transfer proceeds. The command-reply sequence is listed - below where the messages are vertically synchronous but - horizontally asynchronous: - - - - - - - - - - - - - -Postel & Reynolds [Page 44] - - - -RFC 959 October 1985 -File Transfer Protocol - - - User-PI - Server A User-PI - Server B - ------------------ ------------------ - - C->A : Connect C->B : Connect - C->A : PASV - A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2 - C->B : PORT A1,A2,A3,A4,a1,a2 - B->C : 200 Okay - C->A : STOR C->B : RETR - B->A : Connect to HOST-A, PORT-a - - Figure 3 - - The data connection shall be closed by the server under the - conditions described in the Section on Establishing Data - Connections. If the data connection is to be closed following a - data transfer where closing the connection is not required to - indicate the end-of-file, the server must do so immediately. - Waiting until after a new transfer command is not permitted - because the user-process will have already tested the data - connection to see if it needs to do a "listen"; (remember that the - user must "listen" on a closed data port BEFORE sending the - transfer request). To prevent a race condition here, the server - sends a reply (226) after closing the data connection (or if the - connection is left open, a "file transfer completed" reply (250) - and the user-PI should wait for one of these replies before - issuing a new transfer command). - - Any time either the user or server see that the connection is - being closed by the other side, it should promptly read any - remaining data queued on the connection and issue the close on its - own side. - - 5.3. COMMANDS - - The commands are Telnet character strings transmitted over the - control connections as described in the Section on FTP Commands. - The command functions and semantics are described in the Section - on Access Control Commands, Transfer Parameter Commands, FTP - Service Commands, and Miscellaneous Commands. The command syntax - is specified here. - - The commands begin with a command code followed by an argument - field. The command codes are four or fewer alphabetic characters. - Upper and lower case alphabetic characters are to be treated - identically. Thus, any of the following may represent the - retrieve command: - - -Postel & Reynolds [Page 45] - - - -RFC 959 October 1985 -File Transfer Protocol - - - RETR Retr retr ReTr rETr - - This also applies to any symbols representing parameter values, - such as A or a for ASCII TYPE. The command codes and the argument - fields are separated by one or more spaces. - - The argument field consists of a variable length character string - ending with the character sequence (Carriage Return, Line - Feed) for NVT-ASCII representation; for other negotiated languages - a different end of line character might be used. It should be - noted that the server is to take no action until the end of line - code is received. - - The syntax is specified below in NVT-ASCII. All characters in the - argument field are ASCII characters including any ASCII - represented decimal integers. Square brackets denote an optional - argument field. If the option is not taken, the appropriate - default is implied. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 46] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 5.3.1. FTP COMMANDS - - The following are the FTP commands: - - USER - PASS - ACCT - CWD - CDUP - SMNT - QUIT - REIN - PORT - PASV - TYPE - STRU - MODE - RETR - STOR - STOU - APPE - ALLO - [ R ] - REST - RNFR - RNTO - ABOR - DELE - RMD - MKD - PWD - LIST [ ] - NLST [ ] - SITE - SYST - STAT [ ] - HELP [ ] - NOOP - - - - - - - - - - - -Postel & Reynolds [Page 47] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 5.3.2. FTP COMMAND ARGUMENTS - - The syntax of the above argument fields (using BNF notation - where applicable) is: - - ::= - ::= - ::= - ::= | - ::= any of the 128 ASCII characters except and - - ::= - ::= | - ::= printable characters, any - ASCII code 33 through 126 - ::= - ::= , - ::= ,,, - ::= , - ::= any decimal integer 1 through 255 - ::= N | T | C - ::= A [ ] - | E [ ] - | I - | L - ::= F | R | P - ::= S | B | C - ::= - ::= any decimal integer - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 48] - - - -RFC 959 October 1985 -File Transfer Protocol - - - 5.4. SEQUENCING OF COMMANDS AND REPLIES - - The communication between the user and server is intended to be an - alternating dialogue. As such, the user issues an FTP command and - the server responds with a prompt primary reply. The user should - wait for this initial primary success or failure response before - sending further commands. - - Certain commands require a second reply for which the user should - also wait. These replies may, for example, report on the progress - or completion of file transfer or the closing of the data - connection. They are secondary replies to file transfer commands. - - One important group of informational replies is the connection - greetings. Under normal circumstances, a server will send a 220 - reply, "awaiting input", when the connection is completed. The - user should wait for this greeting message before sending any - commands. If the server is unable to accept input right away, a - 120 "expected delay" reply should be sent immediately and a 220 - reply when ready. The user will then know not to hang up if there - is a delay. - - Spontaneous Replies - - Sometimes "the system" spontaneously has a message to be sent - to a user (usually all users). For example, "System going down - in 15 minutes". There is no provision in FTP for such - spontaneous information to be sent from the server to the user. - It is recommended that such information be queued in the - server-PI and delivered to the user-PI in the next reply - (possibly making it a multi-line reply). - - The table below lists alternative success and failure replies for - each command. These must be strictly adhered to; a server may - substitute text in the replies, but the meaning and action implied - by the code numbers and by the specific command reply sequence - cannot be altered. - - Command-Reply Sequences - - In this section, the command-reply sequence is presented. Each - command is listed with its possible replies; command groups are - listed together. Preliminary replies are listed first (with - their succeeding replies indented and under them), then - positive and negative completion, and finally intermediary - - - - -Postel & Reynolds [Page 49] - - - -RFC 959 October 1985 -File Transfer Protocol - - - replies with the remaining commands from the sequence - following. This listing forms the basis for the state - diagrams, which will be presented separately. - - Connection Establishment - 120 - 220 - 220 - 421 - Login - USER - 230 - 530 - 500, 501, 421 - 331, 332 - PASS - 230 - 202 - 530 - 500, 501, 503, 421 - 332 - ACCT - 230 - 202 - 530 - 500, 501, 503, 421 - CWD - 250 - 500, 501, 502, 421, 530, 550 - CDUP - 200 - 500, 501, 502, 421, 530, 550 - SMNT - 202, 250 - 500, 501, 502, 421, 530, 550 - Logout - REIN - 120 - 220 - 220 - 421 - 500, 502 - QUIT - 221 - 500 - - - - -Postel & Reynolds [Page 50] - - - -RFC 959 October 1985 -File Transfer Protocol - - - Transfer parameters - PORT - 200 - 500, 501, 421, 530 - PASV - 227 - 500, 501, 502, 421, 530 - MODE - 200 - 500, 501, 504, 421, 530 - TYPE - 200 - 500, 501, 504, 421, 530 - STRU - 200 - 500, 501, 504, 421, 530 - File action commands - ALLO - 200 - 202 - 500, 501, 504, 421, 530 - REST - 500, 501, 502, 421, 530 - 350 - STOR - 125, 150 - (110) - 226, 250 - 425, 426, 451, 551, 552 - 532, 450, 452, 553 - 500, 501, 421, 530 - STOU - 125, 150 - (110) - 226, 250 - 425, 426, 451, 551, 552 - 532, 450, 452, 553 - 500, 501, 421, 530 - RETR - 125, 150 - (110) - 226, 250 - 425, 426, 451 - 450, 550 - 500, 501, 421, 530 - - - - -Postel & Reynolds [Page 51] - - - -RFC 959 October 1985 -File Transfer Protocol - - - LIST - 125, 150 - 226, 250 - 425, 426, 451 - 450 - 500, 501, 502, 421, 530 - NLST - 125, 150 - 226, 250 - 425, 426, 451 - 450 - 500, 501, 502, 421, 530 - APPE - 125, 150 - (110) - 226, 250 - 425, 426, 451, 551, 552 - 532, 450, 550, 452, 553 - 500, 501, 502, 421, 530 - RNFR - 450, 550 - 500, 501, 502, 421, 530 - 350 - RNTO - 250 - 532, 553 - 500, 501, 502, 503, 421, 530 - DELE - 250 - 450, 550 - 500, 501, 502, 421, 530 - RMD - 250 - 500, 501, 502, 421, 530, 550 - MKD - 257 - 500, 501, 502, 421, 530, 550 - PWD - 257 - 500, 501, 502, 421, 550 - ABOR - 225, 226 - 500, 501, 502, 421 - - - - - - -Postel & Reynolds [Page 52] - - - -RFC 959 October 1985 -File Transfer Protocol - - - Informational commands - SYST - 215 - 500, 501, 502, 421 - STAT - 211, 212, 213 - 450 - 500, 501, 502, 421, 530 - HELP - 211, 214 - 500, 501, 502, 421 - Miscellaneous commands - SITE - 200 - 202 - 500, 501, 530 - NOOP - 200 - 500 421 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 53] - - - -RFC 959 October 1985 -File Transfer Protocol - - -6. STATE DIAGRAMS - - Here we present state diagrams for a very simple minded FTP - implementation. Only the first digit of the reply codes is used. - There is one state diagram for each group of FTP commands or command - sequences. - - The command groupings were determined by constructing a model for - each command then collecting together the commands with structurally - identical models. - - For each command or command sequence there are three possible - outcomes: success (S), failure (F), and error (E). In the state - diagrams below we use the symbol B for "begin", and the symbol W for - "wait for reply". - - We first present the diagram that represents the largest group of FTP - commands: - - - 1,3 +---+ - ----------->| E | - | +---+ - | - +---+ cmd +---+ 2 +---+ - | B |---------->| W |---------->| S | - +---+ +---+ +---+ - | - | 4,5 +---+ - ----------->| F | - +---+ - - - This diagram models the commands: - - ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV, - QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE. - - - - - - - - - - - - -Postel & Reynolds [Page 54] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The other large group of commands is represented by a very similar - diagram: - - - 3 +---+ - ----------->| E | - | +---+ - | - +---+ cmd +---+ 2 +---+ - | B |---------->| W |---------->| S | - +---+ --->+---+ +---+ - | | | - | | | 4,5 +---+ - | 1 | ----------->| F | - ----- +---+ - - - This diagram models the commands: - - APPE, LIST, NLST, REIN, RETR, STOR, and STOU. - - Note that this second model could also be used to represent the first - group of commands, the only difference being that in the first group - the 100 series replies are unexpected and therefore treated as error, - while the second group expects (some may require) 100 series replies. - Remember that at most, one 100 series reply is allowed per command. - - The remaining diagrams model command sequences, perhaps the simplest - of these is the rename sequence: - - - +---+ RNFR +---+ 1,2 +---+ - | B |---------->| W |---------->| E | - +---+ +---+ -->+---+ - | | | - 3 | | 4,5 | - -------------- ------ | - | | | +---+ - | ------------->| S | - | | 1,3 | | +---+ - | 2| -------- - | | | | - V | | | - +---+ RNTO +---+ 4,5 ----->+---+ - | |---------->| W |---------->| F | - +---+ +---+ +---+ - - - -Postel & Reynolds [Page 55] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The next diagram is a simple model of the Restart command: - - - +---+ REST +---+ 1,2 +---+ - | B |---------->| W |---------->| E | - +---+ +---+ -->+---+ - | | | - 3 | | 4,5 | - -------------- ------ | - | | | +---+ - | ------------->| S | - | | 3 | | +---+ - | 2| -------- - | | | | - V | | | - +---+ cmd +---+ 4,5 ----->+---+ - | |---------->| W |---------->| F | - +---+ -->+---+ +---+ - | | - | 1 | - ------ - - - Where "cmd" is APPE, STOR, or RETR. - - We note that the above three models are similar. The Restart differs - from the Rename two only in the treatment of 100 series replies at - the second stage, while the second group expects (some may require) - 100 series replies. Remember that at most, one 100 series reply is - allowed per command. - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 56] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The most complicated diagram is for the Login sequence: - - - 1 - +---+ USER +---+------------->+---+ - | B |---------->| W | 2 ---->| E | - +---+ +---+------ | -->+---+ - | | | | | - 3 | | 4,5 | | | - -------------- ----- | | | - | | | | | - | | | | | - | --------- | - | 1| | | | - V | | | | - +---+ PASS +---+ 2 | ------>+---+ - | |---------->| W |------------->| S | - +---+ +---+ ---------->+---+ - | | | | | - 3 | |4,5| | | - -------------- -------- | - | | | | | - | | | | | - | ----------- - | 1,3| | | | - V | 2| | | - +---+ ACCT +---+-- | ----->+---+ - | |---------->| W | 4,5 -------->| F | - +---+ +---+------------->+---+ - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 57] - - - -RFC 959 October 1985 -File Transfer Protocol - - - Finally, we present a generalized diagram that could be used to model - the command and reply interchange: - - - ------------------------------------ - | | - Begin | | - | V | - | +---+ cmd +---+ 2 +---+ | - -->| |------->| |---------->| | | - | | | W | | S |-----| - -->| | -->| |----- | | | - | +---+ | +---+ 4,5 | +---+ | - | | | | | | | - | | | 1| |3 | +---+ | - | | | | | | | | | - | | ---- | ---->| F |----- - | | | | | - | | | +---+ - ------------------- - | - | - V - End - - - - - - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 58] - - - -RFC 959 October 1985 -File Transfer Protocol - - -7. TYPICAL FTP SCENARIO - - User at host U wanting to transfer files to/from host S: - - In general, the user will communicate to the server via a mediating - user-FTP process. The following may be a typical scenario. The - user-FTP prompts are shown in parentheses, '---->' represents - commands from host U to host S, and '<----' represents replies from - host S to host U. - - LOCAL COMMANDS BY USER ACTION INVOLVED - - ftp (host) multics Connect to host S, port L, - establishing control connections. - <---- 220 Service ready . - username Doe USER Doe----> - <---- 331 User name ok, - need password. - password mumble PASS mumble----> - <---- 230 User logged in. - retrieve (local type) ASCII - (local pathname) test 1 User-FTP opens local file in ASCII. - (for. pathname) test.pl1 RETR test.pl1 ----> - <---- 150 File status okay; - about to open data - connection. - Server makes data connection - to port U. - - <---- 226 Closing data connection, - file transfer successful. - type Image TYPE I ----> - <---- 200 Command OK - store (local type) image - (local pathname) file dump User-FTP opens local file in Image. - (for.pathname) >udd>cn>fd STOR >udd>cn>fd ----> - <---- 550 Access denied - terminate QUIT ----> - Server closes all - connections. - -8. CONNECTION ESTABLISHMENT - - The FTP control connection is established via TCP between the user - process port U and the server process port L. This protocol is - assigned the service port 21 (25 octal), that is L=21. - - - -Postel & Reynolds [Page 59] - - - -RFC 959 October 1985 -File Transfer Protocol - - -APPENDIX I - PAGE STRUCTURE - - The need for FTP to support page structure derives principally from - the need to support efficient transmission of files between TOPS-20 - systems, particularly the files used by NLS. - - The file system of TOPS-20 is based on the concept of pages. The - operating system is most efficient at manipulating files as pages. - The operating system provides an interface to the file system so that - many applications view files as sequential streams of characters. - However, a few applications use the underlying page structures - directly, and some of these create holey files. - - A TOPS-20 disk file consists of four things: a pathname, a page - table, a (possibly empty) set of pages, and a set of attributes. - - The pathname is specified in the RETR or STOR command. It includes - the directory name, file name, file name extension, and generation - number. - - The page table contains up to 2**18 entries. Each entry may be - EMPTY, or may point to a page. If it is not empty, there are also - some page-specific access bits; not all pages of a file need have the - same access protection. - - A page is a contiguous set of 512 words of 36 bits each. - - The attributes of the file, in the File Descriptor Block (FDB), - contain such things as creation time, write time, read time, writer's - byte-size, end-of-file pointer, count of reads and writes, backup - system tape numbers, etc. - - Note that there is NO requirement that entries in the page table be - contiguous. There may be empty page table slots between occupied - ones. Also, the end of file pointer is simply a number. There is no - requirement that it in fact point at the "last" datum in the file. - Ordinary sequential I/O calls in TOPS-20 will cause the end of file - pointer to be left after the last datum written, but other operations - may cause it not to be so, if a particular programming system so - requires. - - In fact, in both of these special cases, "holey" files and - end-of-file pointers NOT at the end of the file, occur with NLS data - files. - - - - - -Postel & Reynolds [Page 60] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The TOPS-20 paged files can be sent with the FTP transfer parameters: - TYPE L 36, STRU P, and MODE S (in fact, any mode could be used). - - Each page of information has a header. Each header field, which is a - logical byte, is a TOPS-20 word, since the TYPE is L 36. - - The header fields are: - - Word 0: Header Length. - - The header length is 5. - - Word 1: Page Index. - - If the data is a disk file page, this is the number of that - page in the file's page map. Empty pages (holes) in the file - are simply not sent. Note that a hole is NOT the same as a - page of zeros. - - Word 2: Data Length. - - The number of data words in this page, following the header. - Thus, the total length of the transmission unit is the Header - Length plus the Data Length. - - Word 3: Page Type. - - A code for what type of chunk this is. A data page is type 3, - the FDB page is type 2. - - Word 4: Page Access Control. - - The access bits associated with the page in the file's page - map. (This full word quantity is put into AC2 of an SPACS by - the program reading from net to disk.) - - After the header are Data Length data words. Data Length is - currently either 512 for a data page or 31 for an FDB. Trailing - zeros in a disk file page may be discarded, making Data Length less - than 512 in that case. - - - - - - - - - -Postel & Reynolds [Page 61] - - - -RFC 959 October 1985 -File Transfer Protocol - - -APPENDIX II - DIRECTORY COMMANDS - - Since UNIX has a tree-like directory structure in which directories - are as easy to manipulate as ordinary files, it is useful to expand - the FTP servers on these machines to include commands which deal with - the creation of directories. Since there are other hosts on the - ARPA-Internet which have tree-like directories (including TOPS-20 and - Multics), these commands are as general as possible. - - Four directory commands have been added to FTP: - - MKD pathname - - Make a directory with the name "pathname". - - RMD pathname - - Remove the directory with the name "pathname". - - PWD - - Print the current working directory name. - - CDUP - - Change to the parent of the current working directory. - - The "pathname" argument should be created (removed) as a - subdirectory of the current working directory, unless the "pathname" - string contains sufficient information to specify otherwise to the - server, e.g., "pathname" is an absolute pathname (in UNIX and - Multics), or pathname is something like "" to - TOPS-20. - - REPLY CODES - - The CDUP command is a special case of CWD, and is included to - simplify the implementation of programs for transferring directory - trees between operating systems having different syntaxes for - naming the parent directory. The reply codes for CDUP be - identical to the reply codes of CWD. - - The reply codes for RMD be identical to the reply codes for its - file analogue, DELE. - - The reply codes for MKD, however, are a bit more complicated. A - freshly created directory will probably be the object of a future - - -Postel & Reynolds [Page 62] - - - -RFC 959 October 1985 -File Transfer Protocol - - - CWD command. Unfortunately, the argument to MKD may not always be - a suitable argument for CWD. This is the case, for example, when - a TOPS-20 subdirectory is created by giving just the subdirectory - name. That is, with a TOPS-20 server FTP, the command sequence - - MKD MYDIR - CWD MYDIR - - will fail. The new directory may only be referred to by its - "absolute" name; e.g., if the MKD command above were issued while - connected to the directory , the new subdirectory - could only be referred to by the name . - - Even on UNIX and Multics, however, the argument given to MKD may - not be suitable. If it is a "relative" pathname (i.e., a pathname - which is interpreted relative to the current directory), the user - would need to be in the same current directory in order to reach - the subdirectory. Depending on the application, this may be - inconvenient. It is not very robust in any case. - - To solve these problems, upon successful completion of an MKD - command, the server should return a line of the form: - - 257"" - - That is, the server will tell the user what string to use when - referring to the created directory. The directory name can - contain any character; embedded double-quotes should be escaped by - double-quotes (the "quote-doubling" convention). - - For example, a user connects to the directory /usr/dm, and creates - a subdirectory, named pathname: - - CWD /usr/dm - 200 directory changed to /usr/dm - MKD pathname - 257 "/usr/dm/pathname" directory created - - An example with an embedded double quote: - - MKD foo"bar - 257 "/usr/dm/foo""bar" directory created - CWD /usr/dm/foo"bar - 200 directory changed to /usr/dm/foo"bar - - - - - -Postel & Reynolds [Page 63] - - - -RFC 959 October 1985 -File Transfer Protocol - - - The prior existence of a subdirectory with the same name is an - error, and the server must return an "access denied" error reply - in that case. - - CWD /usr/dm - 200 directory changed to /usr/dm - MKD pathname - 521-"/usr/dm/pathname" directory already exists; - 521 taking no action. - - The failure replies for MKD are analogous to its file creating - cousin, STOR. Also, an "access denied" return is given if a file - name with the same name as the subdirectory will conflict with the - creation of the subdirectory (this is a problem on UNIX, but - shouldn't be one on TOPS-20). - - Essentially because the PWD command returns the same type of - information as the successful MKD command, the successful PWD - command uses the 257 reply code as well. - - SUBTLETIES - - Because these commands will be most useful in transferring - subtrees from one machine to another, carefully observe that the - argument to MKD is to be interpreted as a sub-directory of the - current working directory, unless it contains enough information - for the destination host to tell otherwise. A hypothetical - example of its use in the TOPS-20 world: - - CWD - 200 Working directory changed - MKD overrainbow - 257 "" directory created - CWD overrainbow - 431 No such directory - CWD - 200 Working directory changed - - CWD - 200 Working directory changed to - MKD - 257 "" directory created - CWD - - Note that the first example results in a subdirectory of the - connected directory. In contrast, the argument in the second - example contains enough information for TOPS-20 to tell that the - - -Postel & Reynolds [Page 64] - - - -RFC 959 October 1985 -File Transfer Protocol - - - directory is a top-level directory. Note also that - in the first example the user "violated" the protocol by - attempting to access the freshly created directory with a name - other than the one returned by TOPS-20. Problems could have - resulted in this case had there been an directory; - this is an ambiguity inherent in some TOPS-20 implementations. - Similar considerations apply to the RMD command. The point is - this: except where to do so would violate a host's conventions for - denoting relative versus absolute pathnames, the host should treat - the operands of the MKD and RMD commands as subdirectories. The - 257 reply to the MKD command must always contain the absolute - pathname of the created directory. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 65] - - - -RFC 959 October 1985 -File Transfer Protocol - - -APPENDIX III - RFCs on FTP - - Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823), - MIT-Project MAC, 16 April 1971. - - Harslem, Eric, and John Heafner, "Comments on RFC 114 (A File - Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971. - - Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172 - (NIC 6794), MIT-Project MAC, 23 June 1971. - - Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663), - UCLA/CCN, 29 September 1971. - - Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265 - (NIC 7813), MIT-Project MAC, 17 November 1971. - - McKenzie, Alex, "A Suggested Addition to File Transfer Protocol", - RFC 281 (NIC 8163), BBN, 8 December 1971. - - Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File - Transfer Protocol", RFC 294 (NIC 8304), MIT-Project MAC, - 25 January 1972. - - Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596), - MIT-Project MAC, 8 July 1972. - - Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)", - RFC 385 (NIC 11357), MIT-Project MAC, 18 August 1972. - - Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah, - 27 November 1972. - - Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further - Comments", RFC 414 (NIC 12406), MIT-Project MAC, 20 November 1972. - - Braden, Bob, "Comments on File Transfer Protocol", RFC 430 - (NIC 13299), UCLA/CCN, 7 February 1973. - - Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction", - RFC 438 (NIC 13770), BBN, 15 January 1973. - - Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299), UCLA/CCN, - 27 February 1973. - - McKenzie, Alex, "File Transfer Protocol", RFC 454 (NIC 14333), BBN, - 16 February 1973. - - -Postel & Reynolds [Page 66] - - - -RFC 959 October 1985 -File Transfer Protocol - - - Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458 - (NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973. - - Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN, - 12 July 1973. - - Krilanovich, Mark, and George Gregg, "Comments on the File Transfer - Protocol", RFC 607 (NIC 21255), UCSB, 7 January 1974. - - Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the - File Transfer Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974. - - Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White, - "Comments on the File Transfer Protocol", RFC 624 (NIC 22054), UCSB, - Ames Research Center, SRI-ARC, 28 February 1974. - - Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463 - (NIC 14573), MIT-DMCG, 21 February 1973. - - Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN, - 8 March 1973. - - Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919), - MIT-DMCG, 6 March 1973. - - Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II", - RFC 478 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973. - - White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948), - SRI-ARC, 8 March 1973. - - White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949), - SRI-ARC, 8 March 1973. - - Padlipsky, Mike, "An FTP Command-Naming Problem", RFC 506 - (NIC 16157), MIT-Multics, 26 June 1973. - - Day, John, "Memo to FTP Group (Proposal for File Access Protocol)", - RFC 520 (NIC 16819), Illinois, 25 June 1973. - - Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532 - (NIC 17451), UCSD-CC, 22 June 1973. - - Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN, - 15 November 1973. - - - - -Postel & Reynolds [Page 67] - - - -RFC 959 October 1985 -File Transfer Protocol - - - McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation - - Schedule Change", RFC 593 (NIC 20615), BBN and MITRE, - 29 November 1973. - - Sussman, Julie, "FTP Error Code Usage for More Reliable Mail - Service", RFC 630 (NIC 30237), BBN, 10 April 1974. - - Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843), - UCLA/NMC, 5 June 1974. - - Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481), - SU-AI, 10 May 1975. - - Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI, - 28 May 1975. - - Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975. - - Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL, - 31 October 1977. - - Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758), - SRI-KL, 30 December 1977. - - Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT, - 10 December 1978. - - Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI, - June 1980. - - Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP - Commands", RFC 776, BBN, December 1980. - - Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE, - July 1985. - - - - - - - - - - - - - - -Postel & Reynolds [Page 68] - - - -RFC 959 October 1985 -File Transfer Protocol - - -REFERENCES - - [1] Feinler, Elizabeth, "Internet Protocol Transition Workbook", - Network Information Center, SRI International, March 1982. - - [2] Postel, Jon, "Transmission Control Protocol - DARPA Internet - Program Protocol Specification", RFC 793, DARPA, September 1981. - - [3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol - Specification", RFC 854, ISI, May 1983. - - [4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943, - ISI, April 1985. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Postel & Reynolds [Page 69] - + + +Network Working Group J. Postel +Request for Comments: 959 J. Reynolds + ISI +Obsoletes RFC: 765 (IEN 149) October 1985 + + FILE TRANSFER PROTOCOL (FTP) + + +Status of this Memo + + This memo is the official specification of the File Transfer + Protocol (FTP). Distribution of this memo is unlimited. + + The following new optional commands are included in this edition of + the specification: + + CDUP (Change to Parent Directory), SMNT (Structure Mount), STOU + (Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD + (Print Directory), and SYST (System). + + Note that this specification is compatible with the previous edition. + +1. INTRODUCTION + + The objectives of FTP are 1) to promote sharing of files (computer + programs and/or data), 2) to encourage indirect or implicit (via + programs) use of remote computers, 3) to shield a user from + variations in file storage systems among hosts, and 4) to transfer + data reliably and efficiently. FTP, though usable directly by a user + at a terminal, is designed mainly for use by programs. + + The attempt in this specification is to satisfy the diverse needs of + users of maxi-hosts, mini-hosts, personal workstations, and TACs, + with a simple, and easily implemented protocol design. + + This paper assumes knowledge of the Transmission Control Protocol + (TCP) [2] and the Telnet Protocol [3]. These documents are contained + in the ARPA-Internet protocol handbook [1]. + +2. OVERVIEW + + In this section, the history, the terminology, and the FTP model are + discussed. The terms defined in this section are only those that + have special significance in FTP. Some of the terminology is very + specific to the FTP model; some readers may wish to turn to the + section on the FTP model while reviewing the terminology. + + + + + + + +Postel & Reynolds [Page 1] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 2.1. HISTORY + + FTP has had a long evolution over the years. Appendix III is a + chronological compilation of Request for Comments documents + relating to FTP. These include the first proposed file transfer + mechanisms in 1971 that were developed for implementation on hosts + at M.I.T. (RFC 114), plus comments and discussion in RFC 141. + + RFC 172 provided a user-level oriented protocol for file transfer + between host computers (including terminal IMPs). A revision of + this as RFC 265, restated FTP for additional review, while RFC 281 + suggested further changes. The use of a "Set Data Type" + transaction was proposed in RFC 294 in January 1982. + + RFC 354 obsoleted RFCs 264 and 265. The File Transfer Protocol + was now defined as a protocol for file transfer between HOSTs on + the ARPANET, with the primary function of FTP defined as + transfering files efficiently and reliably among hosts and + allowing the convenient use of remote file storage capabilities. + RFC 385 further commented on errors, emphasis points, and + additions to the protocol, while RFC 414 provided a status report + on the working server and user FTPs. RFC 430, issued in 1973, + (among other RFCs too numerous to mention) presented further + comments on FTP. Finally, an "official" FTP document was + published as RFC 454. + + By July 1973, considerable changes from the last versions of FTP + were made, but the general structure remained the same. RFC 542 + was published as a new "official" specification to reflect these + changes. However, many implementations based on the older + specification were not updated. + + In 1974, RFCs 607 and 614 continued comments on FTP. RFC 624 + proposed further design changes and minor modifications. In 1975, + RFC 686 entitled, "Leaving Well Enough Alone", discussed the + differences between all of the early and later versions of FTP. + RFC 691 presented a minor revision of RFC 686, regarding the + subject of print files. + + Motivated by the transition from the NCP to the TCP as the + underlying protocol, a phoenix was born out of all of the above + efforts in RFC 765 as the specification of FTP for use on TCP. + + This current edition of the FTP specification is intended to + correct some minor documentation errors, to improve the + explanation of some protocol features, and to add some new + optional commands. + + +Postel & Reynolds [Page 2] + + + +RFC 959 October 1985 +File Transfer Protocol + + + In particular, the following new optional commands are included in + this edition of the specification: + + CDUP - Change to Parent Directory + + SMNT - Structure Mount + + STOU - Store Unique + + RMD - Remove Directory + + MKD - Make Directory + + PWD - Print Directory + + SYST - System + + This specification is compatible with the previous edition. A + program implemented in conformance to the previous specification + should automatically be in conformance to this specification. + + 2.2. TERMINOLOGY + + ASCII + + The ASCII character set is as defined in the ARPA-Internet + Protocol Handbook. In FTP, ASCII characters are defined to be + the lower half of an eight-bit code set (i.e., the most + significant bit is zero). + + access controls + + Access controls define users' access privileges to the use of a + system, and to the files in that system. Access controls are + necessary to prevent unauthorized or accidental use of files. + It is the prerogative of a server-FTP process to invoke access + controls. + + byte size + + There are two byte sizes of interest in FTP: the logical byte + size of the file, and the transfer byte size used for the + transmission of the data. The transfer byte size is always 8 + bits. The transfer byte size is not necessarily the byte size + in which data is to be stored in a system, nor the logical byte + size for interpretation of the structure of the data. + + + +Postel & Reynolds [Page 3] + + + +RFC 959 October 1985 +File Transfer Protocol + + + control connection + + The communication path between the USER-PI and SERVER-PI for + the exchange of commands and replies. This connection follows + the Telnet Protocol. + + data connection + + A full duplex connection over which data is transferred, in a + specified mode and type. The data transferred may be a part of + a file, an entire file or a number of files. The path may be + between a server-DTP and a user-DTP, or between two + server-DTPs. + + data port + + The passive data transfer process "listens" on the data port + for a connection from the active transfer process in order to + open the data connection. + + DTP + + The data transfer process establishes and manages the data + connection. The DTP can be passive or active. + + End-of-Line + + The end-of-line sequence defines the separation of printing + lines. The sequence is Carriage Return, followed by Line Feed. + + EOF + + The end-of-file condition that defines the end of a file being + transferred. + + EOR + + The end-of-record condition that defines the end of a record + being transferred. + + error recovery + + A procedure that allows a user to recover from certain errors + such as failure of either host system or transfer process. In + FTP, error recovery may involve restarting a file transfer at a + given checkpoint. + + + +Postel & Reynolds [Page 4] + + + +RFC 959 October 1985 +File Transfer Protocol + + + FTP commands + + A set of commands that comprise the control information flowing + from the user-FTP to the server-FTP process. + + file + + An ordered set of computer data (including programs), of + arbitrary length, uniquely identified by a pathname. + + mode + + The mode in which data is to be transferred via the data + connection. The mode defines the data format during transfer + including EOR and EOF. The transfer modes defined in FTP are + described in the Section on Transmission Modes. + + NVT + + The Network Virtual Terminal as defined in the Telnet Protocol. + + NVFS + + The Network Virtual File System. A concept which defines a + standard network file system with standard commands and + pathname conventions. + + page + + A file may be structured as a set of independent parts called + pages. FTP supports the transmission of discontinuous files as + independent indexed pages. + + pathname + + Pathname is defined to be the character string which must be + input to a file system by a user in order to identify a file. + Pathname normally contains device and/or directory names, and + file name specification. FTP does not yet specify a standard + pathname convention. Each user must follow the file naming + conventions of the file systems involved in the transfer. + + PI + + The protocol interpreter. The user and server sides of the + protocol have distinct roles implemented in a user-PI and a + server-PI. + + +Postel & Reynolds [Page 5] + + + +RFC 959 October 1985 +File Transfer Protocol + + + record + + A sequential file may be structured as a number of contiguous + parts called records. Record structures are supported by FTP + but a file need not have record structure. + + reply + + A reply is an acknowledgment (positive or negative) sent from + server to user via the control connection in response to FTP + commands. The general form of a reply is a completion code + (including error codes) followed by a text string. The codes + are for use by programs and the text is usually intended for + human users. + + server-DTP + + The data transfer process, in its normal "active" state, + establishes the data connection with the "listening" data port. + It sets up parameters for transfer and storage, and transfers + data on command from its PI. The DTP can be placed in a + "passive" state to listen for, rather than initiate a + connection on the data port. + + server-FTP process + + A process or set of processes which perform the function of + file transfer in cooperation with a user-FTP process and, + possibly, another server. The functions consist of a protocol + interpreter (PI) and a data transfer process (DTP). + + server-PI + + The server protocol interpreter "listens" on Port L for a + connection from a user-PI and establishes a control + communication connection. It receives standard FTP commands + from the user-PI, sends replies, and governs the server-DTP. + + type + + The data representation type used for data transfer and + storage. Type implies certain transformations between the time + of data storage and data transfer. The representation types + defined in FTP are described in the Section on Establishing + Data Connections. + + + + +Postel & Reynolds [Page 6] + + + +RFC 959 October 1985 +File Transfer Protocol + + + user + + A person or a process on behalf of a person wishing to obtain + file transfer service. The human user may interact directly + with a server-FTP process, but use of a user-FTP process is + preferred since the protocol design is weighted towards + automata. + + user-DTP + + The data transfer process "listens" on the data port for a + connection from a server-FTP process. If two servers are + transferring data between them, the user-DTP is inactive. + + user-FTP process + + A set of functions including a protocol interpreter, a data + transfer process and a user interface which together perform + the function of file transfer in cooperation with one or more + server-FTP processes. The user interface allows a local + language to be used in the command-reply dialogue with the + user. + + user-PI + + The user protocol interpreter initiates the control connection + from its port U to the server-FTP process, initiates FTP + commands, and governs the user-DTP if that process is part of + the file transfer. + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 7] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 2.3. THE FTP MODEL + + With the above definitions in mind, the following model (shown in + Figure 1) may be diagrammed for an FTP service. + + ------------- + |/---------\| + || User || -------- + ||Interface|<--->| User | + |\----^----/| -------- + ---------- | | | + |/------\| FTP Commands |/----V----\| + ||Server|<---------------->| User || + || PI || FTP Replies || PI || + |\--^---/| |\----^----/| + | | | | | | + -------- |/--V---\| Data |/----V----\| -------- + | File |<--->|Server|<---------------->| User |<--->| File | + |System| || DTP || Connection || DTP || |System| + -------- |\------/| |\---------/| -------- + ---------- ------------- + + Server-FTP USER-FTP + + NOTES: 1. The data connection may be used in either direction. + 2. The data connection need not exist all of the time. + + Figure 1 Model for FTP Use + + In the model described in Figure 1, the user-protocol interpreter + initiates the control connection. The control connection follows + the Telnet protocol. At the initiation of the user, standard FTP + commands are generated by the user-PI and transmitted to the + server process via the control connection. (The user may + establish a direct control connection to the server-FTP, from a + TAC terminal for example, and generate standard FTP commands + independently, bypassing the user-FTP process.) Standard replies + are sent from the server-PI to the user-PI over the control + connection in response to the commands. + + The FTP commands specify the parameters for the data connection + (data port, transfer mode, representation type, and structure) and + the nature of file system operation (store, retrieve, append, + delete, etc.). The user-DTP or its designate should "listen" on + the specified data port, and the server initiate the data + connection and data transfer in accordance with the specified + parameters. It should be noted that the data port need not be in + + +Postel & Reynolds [Page 8] + + + +RFC 959 October 1985 +File Transfer Protocol + + + the same host that initiates the FTP commands via the control + connection, but the user or the user-FTP process must ensure a + "listen" on the specified data port. It ought to also be noted + that the data connection may be used for simultaneous sending and + receiving. + + In another situation a user might wish to transfer files between + two hosts, neither of which is a local host. The user sets up + control connections to the two servers and then arranges for a + data connection between them. In this manner, control information + is passed to the user-PI but data is transferred between the + server data transfer processes. Following is a model of this + server-server interaction. + + + Control ------------ Control + ---------->| User-FTP |<----------- + | | User-PI | | + | | "C" | | + V ------------ V + -------------- -------------- + | Server-FTP | Data Connection | Server-FTP | + | "A" |<---------------------->| "B" | + -------------- Port (A) Port (B) -------------- + + + Figure 2 + + The protocol requires that the control connections be open while + data transfer is in progress. It is the responsibility of the + user to request the closing of the control connections when + finished using the FTP service, while it is the server who takes + the action. The server may abort data transfer if the control + connections are closed without command. + + The Relationship between FTP and Telnet: + + The FTP uses the Telnet protocol on the control connection. + This can be achieved in two ways: first, the user-PI or the + server-PI may implement the rules of the Telnet Protocol + directly in their own procedures; or, second, the user-PI or + the server-PI may make use of the existing Telnet module in the + system. + + Ease of implementaion, sharing code, and modular programming + argue for the second approach. Efficiency and independence + + + +Postel & Reynolds [Page 9] + + + +RFC 959 October 1985 +File Transfer Protocol + + + argue for the first approach. In practice, FTP relies on very + little of the Telnet Protocol, so the first approach does not + necessarily involve a large amount of code. + +3. DATA TRANSFER FUNCTIONS + + Files are transferred only via the data connection. The control + connection is used for the transfer of commands, which describe the + functions to be performed, and the replies to these commands (see the + Section on FTP Replies). Several commands are concerned with the + transfer of data between hosts. These data transfer commands include + the MODE command which specify how the bits of the data are to be + transmitted, and the STRUcture and TYPE commands, which are used to + define the way in which the data are to be represented. The + transmission and representation are basically independent but the + "Stream" transmission mode is dependent on the file structure + attribute and if "Compressed" transmission mode is used, the nature + of the filler byte depends on the representation type. + + 3.1. DATA REPRESENTATION AND STORAGE + + Data is transferred from a storage device in the sending host to a + storage device in the receiving host. Often it is necessary to + perform certain transformations on the data because data storage + representations in the two systems are different. For example, + NVT-ASCII has different data storage representations in different + systems. DEC TOPS-20s's generally store NVT-ASCII as five 7-bit + ASCII characters, left-justified in a 36-bit word. IBM Mainframe's + store NVT-ASCII as 8-bit EBCDIC codes. Multics stores NVT-ASCII + as four 9-bit characters in a 36-bit word. It is desirable to + convert characters into the standard NVT-ASCII representation when + transmitting text between dissimilar systems. The sending and + receiving sites would have to perform the necessary + transformations between the standard representation and their + internal representations. + + A different problem in representation arises when transmitting + binary data (not character codes) between host systems with + different word lengths. It is not always clear how the sender + should send data, and the receiver store it. For example, when + transmitting 32-bit bytes from a 32-bit word-length system to a + 36-bit word-length system, it may be desirable (for reasons of + efficiency and usefulness) to store the 32-bit bytes + right-justified in a 36-bit word in the latter system. In any + case, the user should have the option of specifying data + representation and transformation functions. It should be noted + + + +Postel & Reynolds [Page 10] + + + +RFC 959 October 1985 +File Transfer Protocol + + + that FTP provides for very limited data type representations. + Transformations desired beyond this limited capability should be + performed by the user directly. + + 3.1.1. DATA TYPES + + Data representations are handled in FTP by a user specifying a + representation type. This type may implicitly (as in ASCII or + EBCDIC) or explicitly (as in Local byte) define a byte size for + interpretation which is referred to as the "logical byte size." + Note that this has nothing to do with the byte size used for + transmission over the data connection, called the "transfer + byte size", and the two should not be confused. For example, + NVT-ASCII has a logical byte size of 8 bits. If the type is + Local byte, then the TYPE command has an obligatory second + parameter specifying the logical byte size. The transfer byte + size is always 8 bits. + + 3.1.1.1. ASCII TYPE + + This is the default type and must be accepted by all FTP + implementations. It is intended primarily for the transfer + of text files, except when both hosts would find the EBCDIC + type more convenient. + + The sender converts the data from an internal character + representation to the standard 8-bit NVT-ASCII + representation (see the Telnet specification). The receiver + will convert the data from the standard form to his own + internal form. + + In accordance with the NVT standard, the sequence + should be used where necessary to denote the end of a line + of text. (See the discussion of file structure at the end + of the Section on Data Representation and Storage.) + + Using the standard NVT-ASCII representation means that data + must be interpreted as 8-bit bytes. + + The Format parameter for ASCII and EBCDIC types is discussed + below. + + + + + + + + +Postel & Reynolds [Page 11] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 3.1.1.2. EBCDIC TYPE + + This type is intended for efficient transfer between hosts + which use EBCDIC for their internal character + representation. + + For transmission, the data are represented as 8-bit EBCDIC + characters. The character code is the only difference + between the functional specifications of EBCDIC and ASCII + types. + + End-of-line (as opposed to end-of-record--see the discussion + of structure) will probably be rarely used with EBCDIC type + for purposes of denoting structure, but where it is + necessary the character should be used. + + 3.1.1.3. IMAGE TYPE + + The data are sent as contiguous bits which, for transfer, + are packed into the 8-bit transfer bytes. The receiving + site must store the data as contiguous bits. The structure + of the storage system might necessitate the padding of the + file (or of each record, for a record-structured file) to + some convenient boundary (byte, word or block). This + padding, which must be all zeros, may occur only at the end + of the file (or at the end of each record) and there must be + a way of identifying the padding bits so that they may be + stripped off if the file is retrieved. The padding + transformation should be well publicized to enable a user to + process a file at the storage site. + + Image type is intended for the efficient storage and + retrieval of files and for the transfer of binary data. It + is recommended that this type be accepted by all FTP + implementations. + + 3.1.1.4. LOCAL TYPE + + The data is transferred in logical bytes of the size + specified by the obligatory second parameter, Byte size. + The value of Byte size must be a decimal integer; there is + no default value. The logical byte size is not necessarily + the same as the transfer byte size. If there is a + difference in byte sizes, then the logical bytes should be + packed contiguously, disregarding transfer byte boundaries + and with any necessary padding at the end. + + + +Postel & Reynolds [Page 12] + + + +RFC 959 October 1985 +File Transfer Protocol + + + When the data reaches the receiving host, it will be + transformed in a manner dependent on the logical byte size + and the particular host. This transformation must be + invertible (i.e., an identical file can be retrieved if the + same parameters are used) and should be well publicized by + the FTP implementors. + + For example, a user sending 36-bit floating-point numbers to + a host with a 32-bit word could send that data as Local byte + with a logical byte size of 36. The receiving host would + then be expected to store the logical bytes so that they + could be easily manipulated; in this example putting the + 36-bit logical bytes into 64-bit double words should + suffice. + + In another example, a pair of hosts with a 36-bit word size + may send data to one another in words by using TYPE L 36. + The data would be sent in the 8-bit transmission bytes + packed so that 9 transmission bytes carried two host words. + + 3.1.1.5. FORMAT CONTROL + + The types ASCII and EBCDIC also take a second (optional) + parameter; this is to indicate what kind of vertical format + control, if any, is associated with a file. The following + data representation types are defined in FTP: + + A character file may be transferred to a host for one of + three purposes: for printing, for storage and later + retrieval, or for processing. If a file is sent for + printing, the receiving host must know how the vertical + format control is represented. In the second case, it must + be possible to store a file at a host and then retrieve it + later in exactly the same form. Finally, it should be + possible to move a file from one host to another and process + the file at the second host without undue trouble. A single + ASCII or EBCDIC format does not satisfy all these + conditions. Therefore, these types have a second parameter + specifying one of the following three formats: + + 3.1.1.5.1. NON PRINT + + This is the default format to be used if the second + (format) parameter is omitted. Non-print format must be + accepted by all FTP implementations. + + + + +Postel & Reynolds [Page 13] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The file need contain no vertical format information. If + it is passed to a printer process, this process may + assume standard values for spacing and margins. + + Normally, this format will be used with files destined + for processing or just storage. + + 3.1.1.5.2. TELNET FORMAT CONTROLS + + The file contains ASCII/EBCDIC vertical format controls + (i.e., , , , , ) which the printer + process will interpret appropriately. , in exactly + this sequence, also denotes end-of-line. + + 3.1.1.5.2. CARRIAGE CONTROL (ASA) + + The file contains ASA (FORTRAN) vertical format control + characters. (See RFC 740 Appendix C; and Communications + of the ACM, Vol. 7, No. 10, p. 606, October 1964.) In a + line or a record formatted according to the ASA Standard, + the first character is not to be printed. Instead, it + should be used to determine the vertical movement of the + paper which should take place before the rest of the + record is printed. + + The ASA Standard specifies the following control + characters: + + Character Vertical Spacing + + blank Move paper up one line + 0 Move paper up two lines + 1 Move paper to top of next page + + No movement, i.e., overprint + + Clearly there must be some way for a printer process to + distinguish the end of the structural entity. If a file + has record structure (see below) this is no problem; + records will be explicitly marked during transfer and + storage. If the file has no record structure, the + end-of-line sequence is used to separate printing lines, + but these format effectors are overridden by the ASA + controls. + + + + + + +Postel & Reynolds [Page 14] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 3.1.2. DATA STRUCTURES + + In addition to different representation types, FTP allows the + structure of a file to be specified. Three file structures are + defined in FTP: + + file-structure, where there is no internal structure and + the file is considered to be a + continuous sequence of data bytes, + + record-structure, where the file is made up of sequential + records, + + and page-structure, where the file is made up of independent + indexed pages. + + File-structure is the default to be assumed if the STRUcture + command has not been used but both file and record structures + must be accepted for "text" files (i.e., files with TYPE ASCII + or EBCDIC) by all FTP implementations. The structure of a file + will affect both the transfer mode of a file (see the Section + on Transmission Modes) and the interpretation and storage of + the file. + + The "natural" structure of a file will depend on which host + stores the file. A source-code file will usually be stored on + an IBM Mainframe in fixed length records but on a DEC TOPS-20 + as a stream of characters partitioned into lines, for example + by . If the transfer of files between such disparate + sites is to be useful, there must be some way for one site to + recognize the other's assumptions about the file. + + With some sites being naturally file-oriented and others + naturally record-oriented there may be problems if a file with + one structure is sent to a host oriented to the other. If a + text file is sent with record-structure to a host which is file + oriented, then that host should apply an internal + transformation to the file based on the record structure. + Obviously, this transformation should be useful, but it must + also be invertible so that an identical file may be retrieved + using record structure. + + In the case of a file being sent with file-structure to a + record-oriented host, there exists the question of what + criteria the host should use to divide the file into records + which can be processed locally. If this division is necessary, + the FTP implementation should use the end-of-line sequence, + + +Postel & Reynolds [Page 15] + + + +RFC 959 October 1985 +File Transfer Protocol + + + for ASCII, or for EBCDIC text files, as the + delimiter. If an FTP implementation adopts this technique, it + must be prepared to reverse the transformation if the file is + retrieved with file-structure. + + 3.1.2.1. FILE STRUCTURE + + File structure is the default to be assumed if the STRUcture + command has not been used. + + In file-structure there is no internal structure and the + file is considered to be a continuous sequence of data + bytes. + + 3.1.2.2. RECORD STRUCTURE + + Record structures must be accepted for "text" files (i.e., + files with TYPE ASCII or EBCDIC) by all FTP implementations. + + In record-structure the file is made up of sequential + records. + + 3.1.2.3. PAGE STRUCTURE + + To transmit files that are discontinuous, FTP defines a page + structure. Files of this type are sometimes known as + "random access files" or even as "holey files". In these + files there is sometimes other information associated with + the file as a whole (e.g., a file descriptor), or with a + section of the file (e.g., page access controls), or both. + In FTP, the sections of the file are called pages. + + To provide for various page sizes and associated + information, each page is sent with a page header. The page + header has the following defined fields: + + Header Length + + The number of logical bytes in the page header + including this byte. The minimum header length is 4. + + Page Index + + The logical page number of this section of the file. + This is not the transmission sequence number of this + page, but the index used to identify this page of the + file. + + +Postel & Reynolds [Page 16] + + + +RFC 959 October 1985 +File Transfer Protocol + + + Data Length + + The number of logical bytes in the page data. The + minimum data length is 0. + + Page Type + + The type of page this is. The following page types + are defined: + + 0 = Last Page + + This is used to indicate the end of a paged + structured transmission. The header length must + be 4, and the data length must be 0. + + 1 = Simple Page + + This is the normal type for simple paged files + with no page level associated control + information. The header length must be 4. + + 2 = Descriptor Page + + This type is used to transmit the descriptive + information for the file as a whole. + + 3 = Access Controlled Page + + This type includes an additional header field + for paged files with page level access control + information. The header length must be 5. + + Optional Fields + + Further header fields may be used to supply per page + control information, for example, per page access + control. + + All fields are one logical byte in length. The logical byte + size is specified by the TYPE command. See Appendix I for + further details and a specific case at the page structure. + + A note of caution about parameters: a file must be stored and + retrieved with the same parameters if the retrieved version is to + + + + +Postel & Reynolds [Page 17] + + + +RFC 959 October 1985 +File Transfer Protocol + + + be identical to the version originally transmitted. Conversely, + FTP implementations must return a file identical to the original + if the parameters used to store and retrieve a file are the same. + + 3.2. ESTABLISHING DATA CONNECTIONS + + The mechanics of transferring data consists of setting up the data + connection to the appropriate ports and choosing the parameters + for transfer. Both the user and the server-DTPs have a default + data port. The user-process default data port is the same as the + control connection port (i.e., U). The server-process default + data port is the port adjacent to the control connection port + (i.e., L-1). + + The transfer byte size is 8-bit bytes. This byte size is relevant + only for the actual transfer of the data; it has no bearing on + representation of the data within a host's file system. + + The passive data transfer process (this may be a user-DTP or a + second server-DTP) shall "listen" on the data port prior to + sending a transfer request command. The FTP request command + determines the direction of the data transfer. The server, upon + receiving the transfer request, will initiate the data connection + to the port. When the connection is established, the data + transfer begins between DTP's, and the server-PI sends a + confirming reply to the user-PI. + + Every FTP implementation must support the use of the default data + ports, and only the USER-PI can initiate a change to non-default + ports. + + It is possible for the user to specify an alternate data port by + use of the PORT command. The user may want a file dumped on a TAC + line printer or retrieved from a third party host. In the latter + case, the user-PI sets up control connections with both + server-PI's. One server is then told (by an FTP command) to + "listen" for a connection which the other will initiate. The + user-PI sends one server-PI a PORT command indicating the data + port of the other. Finally, both are sent the appropriate + transfer commands. The exact sequence of commands and replies + sent between the user-controller and the servers is defined in the + Section on FTP Replies. + + In general, it is the server's responsibility to maintain the data + connection--to initiate it and to close it. The exception to this + + + + +Postel & Reynolds [Page 18] + + + +RFC 959 October 1985 +File Transfer Protocol + + + is when the user-DTP is sending the data in a transfer mode that + requires the connection to be closed to indicate EOF. The server + MUST close the data connection under the following conditions: + + 1. The server has completed sending data in a transfer mode + that requires a close to indicate EOF. + + 2. The server receives an ABORT command from the user. + + 3. The port specification is changed by a command from the + user. + + 4. The control connection is closed legally or otherwise. + + 5. An irrecoverable error condition occurs. + + Otherwise the close is a server option, the exercise of which the + server must indicate to the user-process by either a 250 or 226 + reply only. + + 3.3. DATA CONNECTION MANAGEMENT + + Default Data Connection Ports: All FTP implementations must + support use of the default data connection ports, and only the + User-PI may initiate the use of non-default ports. + + Negotiating Non-Default Data Ports: The User-PI may specify a + non-default user side data port with the PORT command. The + User-PI may request the server side to identify a non-default + server side data port with the PASV command. Since a connection + is defined by the pair of addresses, either of these actions is + enough to get a different data connection, still it is permitted + to do both commands to use new ports on both ends of the data + connection. + + Reuse of the Data Connection: When using the stream mode of data + transfer the end of the file must be indicated by closing the + connection. This causes a problem if multiple files are to be + transfered in the session, due to need for TCP to hold the + connection record for a time out period to guarantee the reliable + communication. Thus the connection can not be reopened at once. + + There are two solutions to this problem. The first is to + negotiate a non-default port. The second is to use another + transfer mode. + + A comment on transfer modes. The stream transfer mode is + + +Postel & Reynolds [Page 19] + + + +RFC 959 October 1985 +File Transfer Protocol + + + inherently unreliable, since one can not determine if the + connection closed prematurely or not. The other transfer modes + (Block, Compressed) do not close the connection to indicate the + end of file. They have enough FTP encoding that the data + connection can be parsed to determine the end of the file. + Thus using these modes one can leave the data connection open + for multiple file transfers. + + 3.4. TRANSMISSION MODES + + The next consideration in transferring data is choosing the + appropriate transmission mode. There are three modes: one which + formats the data and allows for restart procedures; one which also + compresses the data for efficient transfer; and one which passes + the data with little or no processing. In this last case the mode + interacts with the structure attribute to determine the type of + processing. In the compressed mode, the representation type + determines the filler byte. + + All data transfers must be completed with an end-of-file (EOF) + which may be explicitly stated or implied by the closing of the + data connection. For files with record structure, all the + end-of-record markers (EOR) are explicit, including the final one. + For files transmitted in page structure a "last-page" page type is + used. + + NOTE: In the rest of this section, byte means "transfer byte" + except where explicitly stated otherwise. + + For the purpose of standardized transfer, the sending host will + translate its internal end of line or end of record denotation + into the representation prescribed by the transfer mode and file + structure, and the receiving host will perform the inverse + translation to its internal denotation. An IBM Mainframe record + count field may not be recognized at another host, so the + end-of-record information may be transferred as a two byte control + code in Stream mode or as a flagged bit in a Block or Compressed + mode descriptor. End-of-line in an ASCII or EBCDIC file with no + record structure should be indicated by or , + respectively. Since these transformations imply extra work for + some systems, identical systems transferring non-record structured + text files might wish to use a binary representation and stream + mode for the transfer. + + + + + + +Postel & Reynolds [Page 20] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The following transmission modes are defined in FTP: + + 3.4.1. STREAM MODE + + The data is transmitted as a stream of bytes. There is no + restriction on the representation type used; record structures + are allowed. + + In a record structured file EOR and EOF will each be indicated + by a two-byte control code. The first byte of the control code + will be all ones, the escape character. The second byte will + have the low order bit on and zeros elsewhere for EOR and the + second low order bit on for EOF; that is, the byte will have + value 1 for EOR and value 2 for EOF. EOR and EOF may be + indicated together on the last byte transmitted by turning both + low order bits on (i.e., the value 3). If a byte of all ones + was intended to be sent as data, it should be repeated in the + second byte of the control code. + + If the structure is a file structure, the EOF is indicated by + the sending host closing the data connection and all bytes are + data bytes. + + 3.4.2. BLOCK MODE + + The file is transmitted as a series of data blocks preceded by + one or more header bytes. The header bytes contain a count + field, and descriptor code. The count field indicates the + total length of the data block in bytes, thus marking the + beginning of the next data block (there are no filler bits). + The descriptor code defines: last block in the file (EOF) last + block in the record (EOR), restart marker (see the Section on + Error Recovery and Restart) or suspect data (i.e., the data + being transferred is suspected of errors and is not reliable). + This last code is NOT intended for error control within FTP. + It is motivated by the desire of sites exchanging certain types + of data (e.g., seismic or weather data) to send and receive all + the data despite local errors (such as "magnetic tape read + errors"), but to indicate in the transmission that certain + portions are suspect). Record structures are allowed in this + mode, and any representation type may be used. + + The header consists of the three bytes. Of the 24 bits of + header information, the 16 low order bits shall represent byte + count, and the 8 high order bits shall represent descriptor + codes as shown below. + + + +Postel & Reynolds [Page 21] + + + +RFC 959 October 1985 +File Transfer Protocol + + + Block Header + + +----------------+----------------+----------------+ + | Descriptor | Byte Count | + | 8 bits | 16 bits | + +----------------+----------------+----------------+ + + + The descriptor codes are indicated by bit flags in the + descriptor byte. Four codes have been assigned, where each + code number is the decimal value of the corresponding bit in + the byte. + + Code Meaning + + 128 End of data block is EOR + 64 End of data block is EOF + 32 Suspected errors in data block + 16 Data block is a restart marker + + With this encoding, more than one descriptor coded condition + may exist for a particular block. As many bits as necessary + may be flagged. + + The restart marker is embedded in the data stream as an + integral number of 8-bit bytes representing printable + characters in the language being used over the control + connection (e.g., default--NVT-ASCII). (Space, in the + appropriate language) must not be used WITHIN a restart marker. + + For example, to transmit a six-character marker, the following + would be sent: + + +--------+--------+--------+ + |Descrptr| Byte count | + |code= 16| = 6 | + +--------+--------+--------+ + + +--------+--------+--------+ + | Marker | Marker | Marker | + | 8 bits | 8 bits | 8 bits | + +--------+--------+--------+ + + +--------+--------+--------+ + | Marker | Marker | Marker | + | 8 bits | 8 bits | 8 bits | + +--------+--------+--------+ + + +Postel & Reynolds [Page 22] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 3.4.3. COMPRESSED MODE + + There are three kinds of information to be sent: regular data, + sent in a byte string; compressed data, consisting of + replications or filler; and control information, sent in a + two-byte escape sequence. If n>0 bytes (up to 127) of regular + data are sent, these n bytes are preceded by a byte with the + left-most bit set to 0 and the right-most 7 bits containing the + number n. + + Byte string: + + 1 7 8 8 + +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ + |0| n | | d(1) | ... | d(n) | + +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ + ^ ^ + |---n bytes---| + of data + + String of n data bytes d(1),..., d(n) + Count n must be positive. + + To compress a string of n replications of the data byte d, the + following 2 bytes are sent: + + Replicated Byte: + + 2 6 8 + +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ + |1 0| n | | d | + +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ + + A string of n filler bytes can be compressed into a single + byte, where the filler byte varies with the representation + type. If the type is ASCII or EBCDIC the filler byte is + (Space, ASCII code 32, EBCDIC code 64). If the type is Image + or Local byte the filler is a zero byte. + + Filler String: + + 2 6 + +-+-+-+-+-+-+-+-+ + |1 1| n | + +-+-+-+-+-+-+-+-+ + + The escape sequence is a double byte, the first of which is the + + +Postel & Reynolds [Page 23] + + + +RFC 959 October 1985 +File Transfer Protocol + + + escape byte (all zeros) and the second of which contains + descriptor codes as defined in Block mode. The descriptor + codes have the same meaning as in Block mode and apply to the + succeeding string of bytes. + + Compressed mode is useful for obtaining increased bandwidth on + very large network transmissions at a little extra CPU cost. + It can be most effectively used to reduce the size of printer + files such as those generated by RJE hosts. + + 3.5. ERROR RECOVERY AND RESTART + + There is no provision for detecting bits lost or scrambled in data + transfer; this level of error control is handled by the TCP. + However, a restart procedure is provided to protect users from + gross system failures (including failures of a host, an + FTP-process, or the underlying network). + + The restart procedure is defined only for the block and compressed + modes of data transfer. It requires the sender of data to insert + a special marker code in the data stream with some marker + information. The marker information has meaning only to the + sender, but must consist of printable characters in the default or + negotiated language of the control connection (ASCII or EBCDIC). + The marker could represent a bit-count, a record-count, or any + other information by which a system may identify a data + checkpoint. The receiver of data, if it implements the restart + procedure, would then mark the corresponding position of this + marker in the receiving system, and return this information to the + user. + + In the event of a system failure, the user can restart the data + transfer by identifying the marker point with the FTP restart + procedure. The following example illustrates the use of the + restart procedure. + + The sender of the data inserts an appropriate marker block in the + data stream at a convenient point. The receiving host marks the + corresponding data point in its file system and conveys the last + known sender and receiver marker information to the user, either + directly or over the control connection in a 110 reply (depending + on who is the sender). In the event of a system failure, the user + or controller process restarts the server at the last server + marker by sending a restart command with server's marker code as + its argument. The restart command is transmitted over the control + + + + +Postel & Reynolds [Page 24] + + + +RFC 959 October 1985 +File Transfer Protocol + + + connection and is immediately followed by the command (such as + RETR, STOR or LIST) which was being executed when the system + failure occurred. + +4. FILE TRANSFER FUNCTIONS + + The communication channel from the user-PI to the server-PI is + established as a TCP connection from the user to the standard server + port. The user protocol interpreter is responsible for sending FTP + commands and interpreting the replies received; the server-PI + interprets commands, sends replies and directs its DTP to set up the + data connection and transfer the data. If the second party to the + data transfer (the passive transfer process) is the user-DTP, then it + is governed through the internal protocol of the user-FTP host; if it + is a second server-DTP, then it is governed by its PI on command from + the user-PI. The FTP replies are discussed in the next section. In + the description of a few of the commands in this section, it is + helpful to be explicit about the possible replies. + + 4.1. FTP COMMANDS + + 4.1.1. ACCESS CONTROL COMMANDS + + The following commands specify access control identifiers + (command codes are shown in parentheses). + + USER NAME (USER) + + The argument field is a Telnet string identifying the user. + The user identification is that which is required by the + server for access to its file system. This command will + normally be the first command transmitted by the user after + the control connections are made (some servers may require + this). Additional identification information in the form of + a password and/or an account command may also be required by + some servers. Servers may allow a new USER command to be + entered at any point in order to change the access control + and/or accounting information. This has the effect of + flushing any user, password, and account information already + supplied and beginning the login sequence again. All + transfer parameters are unchanged and any file transfer in + progress is completed under the old access control + parameters. + + + + + + +Postel & Reynolds [Page 25] + + + +RFC 959 October 1985 +File Transfer Protocol + + + PASSWORD (PASS) + + The argument field is a Telnet string specifying the user's + password. This command must be immediately preceded by the + user name command, and, for some sites, completes the user's + identification for access control. Since password + information is quite sensitive, it is desirable in general + to "mask" it or suppress typeout. It appears that the + server has no foolproof way to achieve this. It is + therefore the responsibility of the user-FTP process to hide + the sensitive password information. + + ACCOUNT (ACCT) + + The argument field is a Telnet string identifying the user's + account. The command is not necessarily related to the USER + command, as some sites may require an account for login and + others only for specific access, such as storing files. In + the latter case the command may arrive at any time. + + There are reply codes to differentiate these cases for the + automation: when account information is required for login, + the response to a successful PASSword command is reply code + 332. On the other hand, if account information is NOT + required for login, the reply to a successful PASSword + command is 230; and if the account information is needed for + a command issued later in the dialogue, the server should + return a 332 or 532 reply depending on whether it stores + (pending receipt of the ACCounT command) or discards the + command, respectively. + + CHANGE WORKING DIRECTORY (CWD) + + This command allows the user to work with a different + directory or dataset for file storage or retrieval without + altering his login or accounting information. Transfer + parameters are similarly unchanged. The argument is a + pathname specifying a directory or other system dependent + file group designator. + + CHANGE TO PARENT DIRECTORY (CDUP) + + This command is a special case of CWD, and is included to + simplify the implementation of programs for transferring + directory trees between operating systems having different + + + + +Postel & Reynolds [Page 26] + + + +RFC 959 October 1985 +File Transfer Protocol + + + syntaxes for naming the parent directory. The reply codes + shall be identical to the reply codes of CWD. See + Appendix II for further details. + + STRUCTURE MOUNT (SMNT) + + This command allows the user to mount a different file + system data structure without altering his login or + accounting information. Transfer parameters are similarly + unchanged. The argument is a pathname specifying a + directory or other system dependent file group designator. + + REINITIALIZE (REIN) + + This command terminates a USER, flushing all I/O and account + information, except to allow any transfer in progress to be + completed. All parameters are reset to the default settings + and the control connection is left open. This is identical + to the state in which a user finds himself immediately after + the control connection is opened. A USER command may be + expected to follow. + + LOGOUT (QUIT) + + This command terminates a USER and if file transfer is not + in progress, the server closes the control connection. If + file transfer is in progress, the connection will remain + open for result response and the server will then close it. + If the user-process is transferring files for several USERs + but does not wish to close and then reopen connections for + each, then the REIN command should be used instead of QUIT. + + An unexpected close on the control connection will cause the + server to take the effective action of an abort (ABOR) and a + logout (QUIT). + + 4.1.2. TRANSFER PARAMETER COMMANDS + + All data transfer parameters have default values, and the + commands specifying data transfer parameters are required only + if the default parameter values are to be changed. The default + value is the last specified value, or if no value has been + specified, the standard default value is as stated here. This + implies that the server must "remember" the applicable default + values. The commands may be in any order except that they must + precede the FTP service request. The following commands + specify data transfer parameters: + + +Postel & Reynolds [Page 27] + + + +RFC 959 October 1985 +File Transfer Protocol + + + DATA PORT (PORT) + + The argument is a HOST-PORT specification for the data port + to be used in data connection. There are defaults for both + the user and server data ports, and under normal + circumstances this command and its reply are not needed. If + this command is used, the argument is the concatenation of a + 32-bit internet host address and a 16-bit TCP port address. + This address information is broken into 8-bit fields and the + value of each field is transmitted as a decimal number (in + character string representation). The fields are separated + by commas. A port command would be: + + PORT h1,h2,h3,h4,p1,p2 + + where h1 is the high order 8 bits of the internet host + address. + + PASSIVE (PASV) + + This command requests the server-DTP to "listen" on a data + port (which is not its default data port) and to wait for a + connection rather than initiate one upon receipt of a + transfer command. The response to this command includes the + host and port address this server is listening on. + + REPRESENTATION TYPE (TYPE) + + The argument specifies the representation type as described + in the Section on Data Representation and Storage. Several + types take a second parameter. The first parameter is + denoted by a single Telnet character, as is the second + Format parameter for ASCII and EBCDIC; the second parameter + for local byte is a decimal integer to indicate Bytesize. + The parameters are separated by a (Space, ASCII code + 32). + + The following codes are assigned for type: + + \ / + A - ASCII | | N - Non-print + |-><-| T - Telnet format effectors + E - EBCDIC| | C - Carriage Control (ASA) + / \ + I - Image + + L - Local byte Byte size + + +Postel & Reynolds [Page 28] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The default representation type is ASCII Non-print. If the + Format parameter is changed, and later just the first + argument is changed, Format then returns to the Non-print + default. + + FILE STRUCTURE (STRU) + + The argument is a single Telnet character code specifying + file structure described in the Section on Data + Representation and Storage. + + The following codes are assigned for structure: + + F - File (no record structure) + R - Record structure + P - Page structure + + The default structure is File. + + TRANSFER MODE (MODE) + + The argument is a single Telnet character code specifying + the data transfer modes described in the Section on + Transmission Modes. + + The following codes are assigned for transfer modes: + + S - Stream + B - Block + C - Compressed + + The default transfer mode is Stream. + + 4.1.3. FTP SERVICE COMMANDS + + The FTP service commands define the file transfer or the file + system function requested by the user. The argument of an FTP + service command will normally be a pathname. The syntax of + pathnames must conform to server site conventions (with + standard defaults applicable), and the language conventions of + the control connection. The suggested default handling is to + use the last specified device, directory or file name, or the + standard default defined for local users. The commands may be + in any order except that a "rename from" command must be + followed by a "rename to" command and the restart command must + be followed by the interrupted service command (e.g., STOR or + RETR). The data, when transferred in response to FTP service + + +Postel & Reynolds [Page 29] + + + +RFC 959 October 1985 +File Transfer Protocol + + + commands, shall always be sent over the data connection, except + for certain informative replies. The following commands + specify FTP service requests: + + RETRIEVE (RETR) + + This command causes the server-DTP to transfer a copy of the + file, specified in the pathname, to the server- or user-DTP + at the other end of the data connection. The status and + contents of the file at the server site shall be unaffected. + + STORE (STOR) + + This command causes the server-DTP to accept the data + transferred via the data connection and to store the data as + a file at the server site. If the file specified in the + pathname exists at the server site, then its contents shall + be replaced by the data being transferred. A new file is + created at the server site if the file specified in the + pathname does not already exist. + + STORE UNIQUE (STOU) + + This command behaves like STOR except that the resultant + file is to be created in the current directory under a name + unique to that directory. The 250 Transfer Started response + must include the name generated. + + APPEND (with create) (APPE) + + This command causes the server-DTP to accept the data + transferred via the data connection and to store the data in + a file at the server site. If the file specified in the + pathname exists at the server site, then the data shall be + appended to that file; otherwise the file specified in the + pathname shall be created at the server site. + + ALLOCATE (ALLO) + + This command may be required by some servers to reserve + sufficient storage to accommodate the new file to be + transferred. The argument shall be a decimal integer + representing the number of bytes (using the logical byte + size) of storage to be reserved for the file. For files + sent with record or page structure a maximum record or page + size (in logical bytes) might also be necessary; this is + indicated by a decimal integer in a second argument field of + + +Postel & Reynolds [Page 30] + + + +RFC 959 October 1985 +File Transfer Protocol + + + the command. This second argument is optional, but when + present should be separated from the first by the three + Telnet characters R . This command shall be + followed by a STORe or APPEnd command. The ALLO command + should be treated as a NOOP (no operation) by those servers + which do not require that the maximum size of the file be + declared beforehand, and those servers interested in only + the maximum record or page size should accept a dummy value + in the first argument and ignore it. + + RESTART (REST) + + The argument field represents the server marker at which + file transfer is to be restarted. This command does not + cause file transfer but skips over the file to the specified + data checkpoint. This command shall be immediately followed + by the appropriate FTP service command which shall cause + file transfer to resume. + + RENAME FROM (RNFR) + + This command specifies the old pathname of the file which is + to be renamed. This command must be immediately followed by + a "rename to" command specifying the new file pathname. + + RENAME TO (RNTO) + + This command specifies the new pathname of the file + specified in the immediately preceding "rename from" + command. Together the two commands cause a file to be + renamed. + + ABORT (ABOR) + + This command tells the server to abort the previous FTP + service command and any associated transfer of data. The + abort command may require "special action", as discussed in + the Section on FTP Commands, to force recognition by the + server. No action is to be taken if the previous command + has been completed (including data transfer). The control + connection is not to be closed by the server, but the data + connection must be closed. + + There are two cases for the server upon receipt of this + command: (1) the FTP service command was already completed, + or (2) the FTP service command is still in progress. + + + +Postel & Reynolds [Page 31] + + + +RFC 959 October 1985 +File Transfer Protocol + + + In the first case, the server closes the data connection + (if it is open) and responds with a 226 reply, indicating + that the abort command was successfully processed. + + In the second case, the server aborts the FTP service in + progress and closes the data connection, returning a 426 + reply to indicate that the service request terminated + abnormally. The server then sends a 226 reply, + indicating that the abort command was successfully + processed. + + DELETE (DELE) + + This command causes the file specified in the pathname to be + deleted at the server site. If an extra level of protection + is desired (such as the query, "Do you really wish to + delete?"), it should be provided by the user-FTP process. + + REMOVE DIRECTORY (RMD) + + This command causes the directory specified in the pathname + to be removed as a directory (if the pathname is absolute) + or as a subdirectory of the current working directory (if + the pathname is relative). See Appendix II. + + MAKE DIRECTORY (MKD) + + This command causes the directory specified in the pathname + to be created as a directory (if the pathname is absolute) + or as a subdirectory of the current working directory (if + the pathname is relative). See Appendix II. + + PRINT WORKING DIRECTORY (PWD) + + This command causes the name of the current working + directory to be returned in the reply. See Appendix II. + + LIST (LIST) + + This command causes a list to be sent from the server to the + passive DTP. If the pathname specifies a directory or other + group of files, the server should transfer a list of files + in the specified directory. If the pathname specifies a + file then the server should send current information on the + file. A null argument implies the user's current working or + default directory. The data transfer is over the data + connection in type ASCII or type EBCDIC. (The user must + + +Postel & Reynolds [Page 32] + + + +RFC 959 October 1985 +File Transfer Protocol + + + ensure that the TYPE is appropriately ASCII or EBCDIC). + Since the information on a file may vary widely from system + to system, this information may be hard to use automatically + in a program, but may be quite useful to a human user. + + NAME LIST (NLST) + + This command causes a directory listing to be sent from + server to user site. The pathname should specify a + directory or other system-specific file group descriptor; a + null argument implies the current directory. The server + will return a stream of names of files and no other + information. The data will be transferred in ASCII or + EBCDIC type over the data connection as valid pathname + strings separated by or . (Again the user must + ensure that the TYPE is correct.) This command is intended + to return information that can be used by a program to + further process the files automatically. For example, in + the implementation of a "multiple get" function. + + SITE PARAMETERS (SITE) + + This command is used by the server to provide services + specific to his system that are essential to file transfer + but not sufficiently universal to be included as commands in + the protocol. The nature of these services and the + specification of their syntax can be stated in a reply to + the HELP SITE command. + + SYSTEM (SYST) + + This command is used to find out the type of operating + system at the server. The reply shall have as its first + word one of the system names listed in the current version + of the Assigned Numbers document [4]. + + STATUS (STAT) + + This command shall cause a status response to be sent over + the control connection in the form of a reply. The command + may be sent during a file transfer (along with the Telnet IP + and Synch signals--see the Section on FTP Commands) in which + case the server will respond with the status of the + operation in progress, or it may be sent between file + transfers. In the latter case, the command may have an + argument field. If the argument is a pathname, the command + is analogous to the "list" command except that data shall be + + +Postel & Reynolds [Page 33] + + + +RFC 959 October 1985 +File Transfer Protocol + + + transferred over the control connection. If a partial + pathname is given, the server may respond with a list of + file names or attributes associated with that specification. + If no argument is given, the server should return general + status information about the server FTP process. This + should include current values of all transfer parameters and + the status of connections. + + HELP (HELP) + + This command shall cause the server to send helpful + information regarding its implementation status over the + control connection to the user. The command may take an + argument (e.g., any command name) and return more specific + information as a response. The reply is type 211 or 214. + It is suggested that HELP be allowed before entering a USER + command. The server may use this reply to specify + site-dependent parameters, e.g., in response to HELP SITE. + + NOOP (NOOP) + + This command does not affect any parameters or previously + entered commands. It specifies no action other than that the + server send an OK reply. + + The File Transfer Protocol follows the specifications of the Telnet + protocol for all communications over the control connection. Since + the language used for Telnet communication may be a negotiated + option, all references in the next two sections will be to the + "Telnet language" and the corresponding "Telnet end-of-line code". + Currently, one may take these to mean NVT-ASCII and . No other + specifications of the Telnet protocol will be cited. + + FTP commands are "Telnet strings" terminated by the "Telnet end of + line code". The command codes themselves are alphabetic characters + terminated by the character (Space) if parameters follow and + Telnet-EOL otherwise. The command codes and the semantics of + commands are described in this section; the detailed syntax of + commands is specified in the Section on Commands, the reply sequences + are discussed in the Section on Sequencing of Commands and Replies, + and scenarios illustrating the use of commands are provided in the + Section on Typical FTP Scenarios. + + FTP commands may be partitioned as those specifying access-control + identifiers, data transfer parameters, or FTP service requests. + Certain commands (such as ABOR, STAT, QUIT) may be sent over the + control connection while a data transfer is in progress. Some + + +Postel & Reynolds [Page 34] + + + +RFC 959 October 1985 +File Transfer Protocol + + + servers may not be able to monitor the control and data connections + simultaneously, in which case some special action will be necessary + to get the server's attention. The following ordered format is + tentatively recommended: + + 1. User system inserts the Telnet "Interrupt Process" (IP) signal + in the Telnet stream. + + 2. User system sends the Telnet "Synch" signal. + + 3. User system inserts the command (e.g., ABOR) in the Telnet + stream. + + 4. Server PI, after receiving "IP", scans the Telnet stream for + EXACTLY ONE FTP command. + + (For other servers this may not be necessary but the actions listed + above should have no unusual effect.) + + 4.2. FTP REPLIES + + Replies to File Transfer Protocol commands are devised to ensure + the synchronization of requests and actions in the process of file + transfer, and to guarantee that the user process always knows the + state of the Server. Every command must generate at least one + reply, although there may be more than one; in the latter case, + the multiple replies must be easily distinguished. In addition, + some commands occur in sequential groups, such as USER, PASS and + ACCT, or RNFR and RNTO. The replies show the existence of an + intermediate state if all preceding commands have been successful. + A failure at any point in the sequence necessitates the repetition + of the entire sequence from the beginning. + + The details of the command-reply sequence are made explicit in + a set of state diagrams below. + + An FTP reply consists of a three digit number (transmitted as + three alphanumeric characters) followed by some text. The number + is intended for use by automata to determine what state to enter + next; the text is intended for the human user. It is intended + that the three digits contain enough encoded information that the + user-process (the User-PI) will not need to examine the text and + may either discard it or pass it on to the user, as appropriate. + In particular, the text may be server-dependent, so there are + likely to be varying texts for each reply code. + + A reply is defined to contain the 3-digit code, followed by Space + + +Postel & Reynolds [Page 35] + + + +RFC 959 October 1985 +File Transfer Protocol + + + , followed by one line of text (where some maximum line length + has been specified), and terminated by the Telnet end-of-line + code. There will be cases however, where the text is longer than + a single line. In these cases the complete text must be bracketed + so the User-process knows when it may stop reading the reply (i.e. + stop processing input on the control connection) and go do other + things. This requires a special format on the first line to + indicate that more than one line is coming, and another on the + last line to designate it as the last. At least one of these must + contain the appropriate reply code to indicate the state of the + transaction. To satisfy all factions, it was decided that both + the first and last line codes should be the same. + + Thus the format for multi-line replies is that the first line + will begin with the exact required reply code, followed + immediately by a Hyphen, "-" (also known as Minus), followed by + text. The last line will begin with the same code, followed + immediately by Space , optionally some text, and the Telnet + end-of-line code. + + For example: + 123-First line + Second line + 234 A line beginning with numbers + 123 The last line + + The user-process then simply needs to search for the second + occurrence of the same reply code, followed by (Space), at + the beginning of a line, and ignore all intermediary lines. If + an intermediary line begins with a 3-digit number, the Server + must pad the front to avoid confusion. + + This scheme allows standard system routines to be used for + reply information (such as for the STAT reply), with + "artificial" first and last lines tacked on. In rare cases + where these routines are able to generate three digits and a + Space at the beginning of any line, the beginning of each + text line should be offset by some neutral text, like Space. + + This scheme assumes that multi-line replies may not be nested. + + The three digits of the reply each have a special significance. + This is intended to allow a range of very simple to very + sophisticated responses by the user-process. The first digit + denotes whether the response is good, bad or incomplete. + (Referring to the state diagram), an unsophisticated user-process + will be able to determine its next action (proceed as planned, + + +Postel & Reynolds [Page 36] + + + +RFC 959 October 1985 +File Transfer Protocol + + + redo, retrench, etc.) by simply examining this first digit. A + user-process that wants to know approximately what kind of error + occurred (e.g. file system error, command syntax error) may + examine the second digit, reserving the third digit for the finest + gradation of information (e.g., RNTO command without a preceding + RNFR). + + There are five values for the first digit of the reply code: + + 1yz Positive Preliminary reply + + The requested action is being initiated; expect another + reply before proceeding with a new command. (The + user-process sending another command before the + completion reply would be in violation of protocol; but + server-FTP processes should queue any commands that + arrive while a preceding command is in progress.) This + type of reply can be used to indicate that the command + was accepted and the user-process may now pay attention + to the data connections, for implementations where + simultaneous monitoring is difficult. The server-FTP + process may send at most, one 1yz reply per command. + + 2yz Positive Completion reply + + The requested action has been successfully completed. A + new request may be initiated. + + 3yz Positive Intermediate reply + + The command has been accepted, but the requested action + is being held in abeyance, pending receipt of further + information. The user should send another command + specifying this information. This reply is used in + command sequence groups. + + 4yz Transient Negative Completion reply + + The command was not accepted and the requested action did + not take place, but the error condition is temporary and + the action may be requested again. The user should + return to the beginning of the command sequence, if any. + It is difficult to assign a meaning to "transient", + particularly when two distinct sites (Server- and + User-processes) have to agree on the interpretation. + Each reply in the 4yz category might have a slightly + different time value, but the intent is that the + + +Postel & Reynolds [Page 37] + + + +RFC 959 October 1985 +File Transfer Protocol + + + user-process is encouraged to try again. A rule of thumb + in determining if a reply fits into the 4yz or the 5yz + (Permanent Negative) category is that replies are 4yz if + the commands can be repeated without any change in + command form or in properties of the User or Server + (e.g., the command is spelled the same with the same + arguments used; the user does not change his file access + or user name; the server does not put up a new + implementation.) + + 5yz Permanent Negative Completion reply + + The command was not accepted and the requested action did + not take place. The User-process is discouraged from + repeating the exact request (in the same sequence). Even + some "permanent" error conditions can be corrected, so + the human user may want to direct his User-process to + reinitiate the command sequence by direct action at some + point in the future (e.g., after the spelling has been + changed, or the user has altered his directory status.) + + The following function groupings are encoded in the second + digit: + + x0z Syntax - These replies refer to syntax errors, + syntactically correct commands that don't fit any + functional category, unimplemented or superfluous + commands. + + x1z Information - These are replies to requests for + information, such as status or help. + + x2z Connections - Replies referring to the control and + data connections. + + x3z Authentication and accounting - Replies for the login + process and accounting procedures. + + x4z Unspecified as yet. + + x5z File system - These replies indicate the status of the + Server file system vis-a-vis the requested transfer or + other file system action. + + The third digit gives a finer gradation of meaning in each of + the function categories, specified by the second digit. The + list of replies below will illustrate this. Note that the text + + +Postel & Reynolds [Page 38] + + + +RFC 959 October 1985 +File Transfer Protocol + + + associated with each reply is recommended, rather than + mandatory, and may even change according to the command with + which it is associated. The reply codes, on the other hand, + must strictly follow the specifications in the last section; + that is, Server implementations should not invent new codes for + situations that are only slightly different from the ones + described here, but rather should adapt codes already defined. + + A command such as TYPE or ALLO whose successful execution + does not offer the user-process any new information will + cause a 200 reply to be returned. If the command is not + implemented by a particular Server-FTP process because it + has no relevance to that computer system, for example ALLO + at a TOPS20 site, a Positive Completion reply is still + desired so that the simple User-process knows it can proceed + with its course of action. A 202 reply is used in this case + with, for example, the reply text: "No storage allocation + necessary." If, on the other hand, the command requests a + non-site-specific action and is unimplemented, the response + is 502. A refinement of that is the 504 reply for a command + that is implemented, but that requests an unimplemented + parameter. + + 4.2.1 Reply Codes by Function Groups + + 200 Command okay. + 500 Syntax error, command unrecognized. + This may include errors such as command line too long. + 501 Syntax error in parameters or arguments. + 202 Command not implemented, superfluous at this site. + 502 Command not implemented. + 503 Bad sequence of commands. + 504 Command not implemented for that parameter. + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 39] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 110 Restart marker reply. + In this case, the text is exact and not left to the + particular implementation; it must read: + MARK yyyy = mmmm + Where yyyy is User-process data stream marker, and mmmm + server's equivalent marker (note the spaces between markers + and "="). + 211 System status, or system help reply. + 212 Directory status. + 213 File status. + 214 Help message. + On how to use the server or the meaning of a particular + non-standard command. This reply is useful only to the + human user. + 215 NAME system type. + Where NAME is an official system name from the list in the + Assigned Numbers document. + + 120 Service ready in nnn minutes. + 220 Service ready for new user. + 221 Service closing control connection. + Logged out if appropriate. + 421 Service not available, closing control connection. + This may be a reply to any command if the service knows it + must shut down. + 125 Data connection already open; transfer starting. + 225 Data connection open; no transfer in progress. + 425 Can't open data connection. + 226 Closing data connection. + Requested file action successful (for example, file + transfer or file abort). + 426 Connection closed; transfer aborted. + 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2). + + 230 User logged in, proceed. + 530 Not logged in. + 331 User name okay, need password. + 332 Need account for login. + 532 Need account for storing files. + + + + + + + + + + +Postel & Reynolds [Page 40] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 150 File status okay; about to open data connection. + 250 Requested file action okay, completed. + 257 "PATHNAME" created. + 350 Requested file action pending further information. + 450 Requested file action not taken. + File unavailable (e.g., file busy). + 550 Requested action not taken. + File unavailable (e.g., file not found, no access). + 451 Requested action aborted. Local error in processing. + 551 Requested action aborted. Page type unknown. + 452 Requested action not taken. + Insufficient storage space in system. + 552 Requested file action aborted. + Exceeded storage allocation (for current directory or + dataset). + 553 Requested action not taken. + File name not allowed. + + + 4.2.2 Numeric Order List of Reply Codes + + 110 Restart marker reply. + In this case, the text is exact and not left to the + particular implementation; it must read: + MARK yyyy = mmmm + Where yyyy is User-process data stream marker, and mmmm + server's equivalent marker (note the spaces between markers + and "="). + 120 Service ready in nnn minutes. + 125 Data connection already open; transfer starting. + 150 File status okay; about to open data connection. + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 41] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 200 Command okay. + 202 Command not implemented, superfluous at this site. + 211 System status, or system help reply. + 212 Directory status. + 213 File status. + 214 Help message. + On how to use the server or the meaning of a particular + non-standard command. This reply is useful only to the + human user. + 215 NAME system type. + Where NAME is an official system name from the list in the + Assigned Numbers document. + 220 Service ready for new user. + 221 Service closing control connection. + Logged out if appropriate. + 225 Data connection open; no transfer in progress. + 226 Closing data connection. + Requested file action successful (for example, file + transfer or file abort). + 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2). + 230 User logged in, proceed. + 250 Requested file action okay, completed. + 257 "PATHNAME" created. + + 331 User name okay, need password. + 332 Need account for login. + 350 Requested file action pending further information. + + 421 Service not available, closing control connection. + This may be a reply to any command if the service knows it + must shut down. + 425 Can't open data connection. + 426 Connection closed; transfer aborted. + 450 Requested file action not taken. + File unavailable (e.g., file busy). + 451 Requested action aborted: local error in processing. + 452 Requested action not taken. + Insufficient storage space in system. + + + + + + + + + + + +Postel & Reynolds [Page 42] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 500 Syntax error, command unrecognized. + This may include errors such as command line too long. + 501 Syntax error in parameters or arguments. + 502 Command not implemented. + 503 Bad sequence of commands. + 504 Command not implemented for that parameter. + 530 Not logged in. + 532 Need account for storing files. + 550 Requested action not taken. + File unavailable (e.g., file not found, no access). + 551 Requested action aborted: page type unknown. + 552 Requested file action aborted. + Exceeded storage allocation (for current directory or + dataset). + 553 Requested action not taken. + File name not allowed. + + +5. DECLARATIVE SPECIFICATIONS + + 5.1. MINIMUM IMPLEMENTATION + + In order to make FTP workable without needless error messages, the + following minimum implementation is required for all servers: + + TYPE - ASCII Non-print + MODE - Stream + STRUCTURE - File, Record + COMMANDS - USER, QUIT, PORT, + TYPE, MODE, STRU, + for the default values + RETR, STOR, + NOOP. + + The default values for transfer parameters are: + + TYPE - ASCII Non-print + MODE - Stream + STRU - File + + All hosts must accept the above as the standard defaults. + + + + + + + + +Postel & Reynolds [Page 43] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 5.2. CONNECTIONS + + The server protocol interpreter shall "listen" on Port L. The + user or user protocol interpreter shall initiate the full-duplex + control connection. Server- and user- processes should follow the + conventions of the Telnet protocol as specified in the + ARPA-Internet Protocol Handbook [1]. Servers are under no + obligation to provide for editing of command lines and may require + that it be done in the user host. The control connection shall be + closed by the server at the user's request after all transfers and + replies are completed. + + The user-DTP must "listen" on the specified data port; this may be + the default user port (U) or a port specified in the PORT command. + The server shall initiate the data connection from his own default + data port (L-1) using the specified user data port. The direction + of the transfer and the port used will be determined by the FTP + service command. + + Note that all FTP implementation must support data transfer using + the default port, and that only the USER-PI may initiate the use + of non-default ports. + + When data is to be transferred between two servers, A and B (refer + to Figure 2), the user-PI, C, sets up control connections with + both server-PI's. One of the servers, say A, is then sent a PASV + command telling him to "listen" on his data port rather than + initiate a connection when he receives a transfer service command. + When the user-PI receives an acknowledgment to the PASV command, + which includes the identity of the host and port being listened + on, the user-PI then sends A's port, a, to B in a PORT command; a + reply is returned. The user-PI may then send the corresponding + service commands to A and B. Server B initiates the connection + and the transfer proceeds. The command-reply sequence is listed + below where the messages are vertically synchronous but + horizontally asynchronous: + + + + + + + + + + + + + +Postel & Reynolds [Page 44] + + + +RFC 959 October 1985 +File Transfer Protocol + + + User-PI - Server A User-PI - Server B + ------------------ ------------------ + + C->A : Connect C->B : Connect + C->A : PASV + A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2 + C->B : PORT A1,A2,A3,A4,a1,a2 + B->C : 200 Okay + C->A : STOR C->B : RETR + B->A : Connect to HOST-A, PORT-a + + Figure 3 + + The data connection shall be closed by the server under the + conditions described in the Section on Establishing Data + Connections. If the data connection is to be closed following a + data transfer where closing the connection is not required to + indicate the end-of-file, the server must do so immediately. + Waiting until after a new transfer command is not permitted + because the user-process will have already tested the data + connection to see if it needs to do a "listen"; (remember that the + user must "listen" on a closed data port BEFORE sending the + transfer request). To prevent a race condition here, the server + sends a reply (226) after closing the data connection (or if the + connection is left open, a "file transfer completed" reply (250) + and the user-PI should wait for one of these replies before + issuing a new transfer command). + + Any time either the user or server see that the connection is + being closed by the other side, it should promptly read any + remaining data queued on the connection and issue the close on its + own side. + + 5.3. COMMANDS + + The commands are Telnet character strings transmitted over the + control connections as described in the Section on FTP Commands. + The command functions and semantics are described in the Section + on Access Control Commands, Transfer Parameter Commands, FTP + Service Commands, and Miscellaneous Commands. The command syntax + is specified here. + + The commands begin with a command code followed by an argument + field. The command codes are four or fewer alphabetic characters. + Upper and lower case alphabetic characters are to be treated + identically. Thus, any of the following may represent the + retrieve command: + + +Postel & Reynolds [Page 45] + + + +RFC 959 October 1985 +File Transfer Protocol + + + RETR Retr retr ReTr rETr + + This also applies to any symbols representing parameter values, + such as A or a for ASCII TYPE. The command codes and the argument + fields are separated by one or more spaces. + + The argument field consists of a variable length character string + ending with the character sequence (Carriage Return, Line + Feed) for NVT-ASCII representation; for other negotiated languages + a different end of line character might be used. It should be + noted that the server is to take no action until the end of line + code is received. + + The syntax is specified below in NVT-ASCII. All characters in the + argument field are ASCII characters including any ASCII + represented decimal integers. Square brackets denote an optional + argument field. If the option is not taken, the appropriate + default is implied. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 46] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 5.3.1. FTP COMMANDS + + The following are the FTP commands: + + USER + PASS + ACCT + CWD + CDUP + SMNT + QUIT + REIN + PORT + PASV + TYPE + STRU + MODE + RETR + STOR + STOU + APPE + ALLO + [ R ] + REST + RNFR + RNTO + ABOR + DELE + RMD + MKD + PWD + LIST [ ] + NLST [ ] + SITE + SYST + STAT [ ] + HELP [ ] + NOOP + + + + + + + + + + + +Postel & Reynolds [Page 47] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 5.3.2. FTP COMMAND ARGUMENTS + + The syntax of the above argument fields (using BNF notation + where applicable) is: + + ::= + ::= + ::= + ::= | + ::= any of the 128 ASCII characters except and + + ::= + ::= | + ::= printable characters, any + ASCII code 33 through 126 + ::= + ::= , + ::= ,,, + ::= , + ::= any decimal integer 1 through 255 + ::= N | T | C + ::= A [ ] + | E [ ] + | I + | L + ::= F | R | P + ::= S | B | C + ::= + ::= any decimal integer + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 48] + + + +RFC 959 October 1985 +File Transfer Protocol + + + 5.4. SEQUENCING OF COMMANDS AND REPLIES + + The communication between the user and server is intended to be an + alternating dialogue. As such, the user issues an FTP command and + the server responds with a prompt primary reply. The user should + wait for this initial primary success or failure response before + sending further commands. + + Certain commands require a second reply for which the user should + also wait. These replies may, for example, report on the progress + or completion of file transfer or the closing of the data + connection. They are secondary replies to file transfer commands. + + One important group of informational replies is the connection + greetings. Under normal circumstances, a server will send a 220 + reply, "awaiting input", when the connection is completed. The + user should wait for this greeting message before sending any + commands. If the server is unable to accept input right away, a + 120 "expected delay" reply should be sent immediately and a 220 + reply when ready. The user will then know not to hang up if there + is a delay. + + Spontaneous Replies + + Sometimes "the system" spontaneously has a message to be sent + to a user (usually all users). For example, "System going down + in 15 minutes". There is no provision in FTP for such + spontaneous information to be sent from the server to the user. + It is recommended that such information be queued in the + server-PI and delivered to the user-PI in the next reply + (possibly making it a multi-line reply). + + The table below lists alternative success and failure replies for + each command. These must be strictly adhered to; a server may + substitute text in the replies, but the meaning and action implied + by the code numbers and by the specific command reply sequence + cannot be altered. + + Command-Reply Sequences + + In this section, the command-reply sequence is presented. Each + command is listed with its possible replies; command groups are + listed together. Preliminary replies are listed first (with + their succeeding replies indented and under them), then + positive and negative completion, and finally intermediary + + + + +Postel & Reynolds [Page 49] + + + +RFC 959 October 1985 +File Transfer Protocol + + + replies with the remaining commands from the sequence + following. This listing forms the basis for the state + diagrams, which will be presented separately. + + Connection Establishment + 120 + 220 + 220 + 421 + Login + USER + 230 + 530 + 500, 501, 421 + 331, 332 + PASS + 230 + 202 + 530 + 500, 501, 503, 421 + 332 + ACCT + 230 + 202 + 530 + 500, 501, 503, 421 + CWD + 250 + 500, 501, 502, 421, 530, 550 + CDUP + 200 + 500, 501, 502, 421, 530, 550 + SMNT + 202, 250 + 500, 501, 502, 421, 530, 550 + Logout + REIN + 120 + 220 + 220 + 421 + 500, 502 + QUIT + 221 + 500 + + + + +Postel & Reynolds [Page 50] + + + +RFC 959 October 1985 +File Transfer Protocol + + + Transfer parameters + PORT + 200 + 500, 501, 421, 530 + PASV + 227 + 500, 501, 502, 421, 530 + MODE + 200 + 500, 501, 504, 421, 530 + TYPE + 200 + 500, 501, 504, 421, 530 + STRU + 200 + 500, 501, 504, 421, 530 + File action commands + ALLO + 200 + 202 + 500, 501, 504, 421, 530 + REST + 500, 501, 502, 421, 530 + 350 + STOR + 125, 150 + (110) + 226, 250 + 425, 426, 451, 551, 552 + 532, 450, 452, 553 + 500, 501, 421, 530 + STOU + 125, 150 + (110) + 226, 250 + 425, 426, 451, 551, 552 + 532, 450, 452, 553 + 500, 501, 421, 530 + RETR + 125, 150 + (110) + 226, 250 + 425, 426, 451 + 450, 550 + 500, 501, 421, 530 + + + + +Postel & Reynolds [Page 51] + + + +RFC 959 October 1985 +File Transfer Protocol + + + LIST + 125, 150 + 226, 250 + 425, 426, 451 + 450 + 500, 501, 502, 421, 530 + NLST + 125, 150 + 226, 250 + 425, 426, 451 + 450 + 500, 501, 502, 421, 530 + APPE + 125, 150 + (110) + 226, 250 + 425, 426, 451, 551, 552 + 532, 450, 550, 452, 553 + 500, 501, 502, 421, 530 + RNFR + 450, 550 + 500, 501, 502, 421, 530 + 350 + RNTO + 250 + 532, 553 + 500, 501, 502, 503, 421, 530 + DELE + 250 + 450, 550 + 500, 501, 502, 421, 530 + RMD + 250 + 500, 501, 502, 421, 530, 550 + MKD + 257 + 500, 501, 502, 421, 530, 550 + PWD + 257 + 500, 501, 502, 421, 550 + ABOR + 225, 226 + 500, 501, 502, 421 + + + + + + +Postel & Reynolds [Page 52] + + + +RFC 959 October 1985 +File Transfer Protocol + + + Informational commands + SYST + 215 + 500, 501, 502, 421 + STAT + 211, 212, 213 + 450 + 500, 501, 502, 421, 530 + HELP + 211, 214 + 500, 501, 502, 421 + Miscellaneous commands + SITE + 200 + 202 + 500, 501, 530 + NOOP + 200 + 500 421 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 53] + + + +RFC 959 October 1985 +File Transfer Protocol + + +6. STATE DIAGRAMS + + Here we present state diagrams for a very simple minded FTP + implementation. Only the first digit of the reply codes is used. + There is one state diagram for each group of FTP commands or command + sequences. + + The command groupings were determined by constructing a model for + each command then collecting together the commands with structurally + identical models. + + For each command or command sequence there are three possible + outcomes: success (S), failure (F), and error (E). In the state + diagrams below we use the symbol B for "begin", and the symbol W for + "wait for reply". + + We first present the diagram that represents the largest group of FTP + commands: + + + 1,3 +---+ + ----------->| E | + | +---+ + | + +---+ cmd +---+ 2 +---+ + | B |---------->| W |---------->| S | + +---+ +---+ +---+ + | + | 4,5 +---+ + ----------->| F | + +---+ + + + This diagram models the commands: + + ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV, + QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE. + + + + + + + + + + + + +Postel & Reynolds [Page 54] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The other large group of commands is represented by a very similar + diagram: + + + 3 +---+ + ----------->| E | + | +---+ + | + +---+ cmd +---+ 2 +---+ + | B |---------->| W |---------->| S | + +---+ --->+---+ +---+ + | | | + | | | 4,5 +---+ + | 1 | ----------->| F | + ----- +---+ + + + This diagram models the commands: + + APPE, LIST, NLST, REIN, RETR, STOR, and STOU. + + Note that this second model could also be used to represent the first + group of commands, the only difference being that in the first group + the 100 series replies are unexpected and therefore treated as error, + while the second group expects (some may require) 100 series replies. + Remember that at most, one 100 series reply is allowed per command. + + The remaining diagrams model command sequences, perhaps the simplest + of these is the rename sequence: + + + +---+ RNFR +---+ 1,2 +---+ + | B |---------->| W |---------->| E | + +---+ +---+ -->+---+ + | | | + 3 | | 4,5 | + -------------- ------ | + | | | +---+ + | ------------->| S | + | | 1,3 | | +---+ + | 2| -------- + | | | | + V | | | + +---+ RNTO +---+ 4,5 ----->+---+ + | |---------->| W |---------->| F | + +---+ +---+ +---+ + + + +Postel & Reynolds [Page 55] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The next diagram is a simple model of the Restart command: + + + +---+ REST +---+ 1,2 +---+ + | B |---------->| W |---------->| E | + +---+ +---+ -->+---+ + | | | + 3 | | 4,5 | + -------------- ------ | + | | | +---+ + | ------------->| S | + | | 3 | | +---+ + | 2| -------- + | | | | + V | | | + +---+ cmd +---+ 4,5 ----->+---+ + | |---------->| W |---------->| F | + +---+ -->+---+ +---+ + | | + | 1 | + ------ + + + Where "cmd" is APPE, STOR, or RETR. + + We note that the above three models are similar. The Restart differs + from the Rename two only in the treatment of 100 series replies at + the second stage, while the second group expects (some may require) + 100 series replies. Remember that at most, one 100 series reply is + allowed per command. + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 56] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The most complicated diagram is for the Login sequence: + + + 1 + +---+ USER +---+------------->+---+ + | B |---------->| W | 2 ---->| E | + +---+ +---+------ | -->+---+ + | | | | | + 3 | | 4,5 | | | + -------------- ----- | | | + | | | | | + | | | | | + | --------- | + | 1| | | | + V | | | | + +---+ PASS +---+ 2 | ------>+---+ + | |---------->| W |------------->| S | + +---+ +---+ ---------->+---+ + | | | | | + 3 | |4,5| | | + -------------- -------- | + | | | | | + | | | | | + | ----------- + | 1,3| | | | + V | 2| | | + +---+ ACCT +---+-- | ----->+---+ + | |---------->| W | 4,5 -------->| F | + +---+ +---+------------->+---+ + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 57] + + + +RFC 959 October 1985 +File Transfer Protocol + + + Finally, we present a generalized diagram that could be used to model + the command and reply interchange: + + + ------------------------------------ + | | + Begin | | + | V | + | +---+ cmd +---+ 2 +---+ | + -->| |------->| |---------->| | | + | | | W | | S |-----| + -->| | -->| |----- | | | + | +---+ | +---+ 4,5 | +---+ | + | | | | | | | + | | | 1| |3 | +---+ | + | | | | | | | | | + | | ---- | ---->| F |----- + | | | | | + | | | +---+ + ------------------- + | + | + V + End + + + + + + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 58] + + + +RFC 959 October 1985 +File Transfer Protocol + + +7. TYPICAL FTP SCENARIO + + User at host U wanting to transfer files to/from host S: + + In general, the user will communicate to the server via a mediating + user-FTP process. The following may be a typical scenario. The + user-FTP prompts are shown in parentheses, '---->' represents + commands from host U to host S, and '<----' represents replies from + host S to host U. + + LOCAL COMMANDS BY USER ACTION INVOLVED + + ftp (host) multics Connect to host S, port L, + establishing control connections. + <---- 220 Service ready . + username Doe USER Doe----> + <---- 331 User name ok, + need password. + password mumble PASS mumble----> + <---- 230 User logged in. + retrieve (local type) ASCII + (local pathname) test 1 User-FTP opens local file in ASCII. + (for. pathname) test.pl1 RETR test.pl1 ----> + <---- 150 File status okay; + about to open data + connection. + Server makes data connection + to port U. + + <---- 226 Closing data connection, + file transfer successful. + type Image TYPE I ----> + <---- 200 Command OK + store (local type) image + (local pathname) file dump User-FTP opens local file in Image. + (for.pathname) >udd>cn>fd STOR >udd>cn>fd ----> + <---- 550 Access denied + terminate QUIT ----> + Server closes all + connections. + +8. CONNECTION ESTABLISHMENT + + The FTP control connection is established via TCP between the user + process port U and the server process port L. This protocol is + assigned the service port 21 (25 octal), that is L=21. + + + +Postel & Reynolds [Page 59] + + + +RFC 959 October 1985 +File Transfer Protocol + + +APPENDIX I - PAGE STRUCTURE + + The need for FTP to support page structure derives principally from + the need to support efficient transmission of files between TOPS-20 + systems, particularly the files used by NLS. + + The file system of TOPS-20 is based on the concept of pages. The + operating system is most efficient at manipulating files as pages. + The operating system provides an interface to the file system so that + many applications view files as sequential streams of characters. + However, a few applications use the underlying page structures + directly, and some of these create holey files. + + A TOPS-20 disk file consists of four things: a pathname, a page + table, a (possibly empty) set of pages, and a set of attributes. + + The pathname is specified in the RETR or STOR command. It includes + the directory name, file name, file name extension, and generation + number. + + The page table contains up to 2**18 entries. Each entry may be + EMPTY, or may point to a page. If it is not empty, there are also + some page-specific access bits; not all pages of a file need have the + same access protection. + + A page is a contiguous set of 512 words of 36 bits each. + + The attributes of the file, in the File Descriptor Block (FDB), + contain such things as creation time, write time, read time, writer's + byte-size, end-of-file pointer, count of reads and writes, backup + system tape numbers, etc. + + Note that there is NO requirement that entries in the page table be + contiguous. There may be empty page table slots between occupied + ones. Also, the end of file pointer is simply a number. There is no + requirement that it in fact point at the "last" datum in the file. + Ordinary sequential I/O calls in TOPS-20 will cause the end of file + pointer to be left after the last datum written, but other operations + may cause it not to be so, if a particular programming system so + requires. + + In fact, in both of these special cases, "holey" files and + end-of-file pointers NOT at the end of the file, occur with NLS data + files. + + + + + +Postel & Reynolds [Page 60] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The TOPS-20 paged files can be sent with the FTP transfer parameters: + TYPE L 36, STRU P, and MODE S (in fact, any mode could be used). + + Each page of information has a header. Each header field, which is a + logical byte, is a TOPS-20 word, since the TYPE is L 36. + + The header fields are: + + Word 0: Header Length. + + The header length is 5. + + Word 1: Page Index. + + If the data is a disk file page, this is the number of that + page in the file's page map. Empty pages (holes) in the file + are simply not sent. Note that a hole is NOT the same as a + page of zeros. + + Word 2: Data Length. + + The number of data words in this page, following the header. + Thus, the total length of the transmission unit is the Header + Length plus the Data Length. + + Word 3: Page Type. + + A code for what type of chunk this is. A data page is type 3, + the FDB page is type 2. + + Word 4: Page Access Control. + + The access bits associated with the page in the file's page + map. (This full word quantity is put into AC2 of an SPACS by + the program reading from net to disk.) + + After the header are Data Length data words. Data Length is + currently either 512 for a data page or 31 for an FDB. Trailing + zeros in a disk file page may be discarded, making Data Length less + than 512 in that case. + + + + + + + + + +Postel & Reynolds [Page 61] + + + +RFC 959 October 1985 +File Transfer Protocol + + +APPENDIX II - DIRECTORY COMMANDS + + Since UNIX has a tree-like directory structure in which directories + are as easy to manipulate as ordinary files, it is useful to expand + the FTP servers on these machines to include commands which deal with + the creation of directories. Since there are other hosts on the + ARPA-Internet which have tree-like directories (including TOPS-20 and + Multics), these commands are as general as possible. + + Four directory commands have been added to FTP: + + MKD pathname + + Make a directory with the name "pathname". + + RMD pathname + + Remove the directory with the name "pathname". + + PWD + + Print the current working directory name. + + CDUP + + Change to the parent of the current working directory. + + The "pathname" argument should be created (removed) as a + subdirectory of the current working directory, unless the "pathname" + string contains sufficient information to specify otherwise to the + server, e.g., "pathname" is an absolute pathname (in UNIX and + Multics), or pathname is something like "" to + TOPS-20. + + REPLY CODES + + The CDUP command is a special case of CWD, and is included to + simplify the implementation of programs for transferring directory + trees between operating systems having different syntaxes for + naming the parent directory. The reply codes for CDUP be + identical to the reply codes of CWD. + + The reply codes for RMD be identical to the reply codes for its + file analogue, DELE. + + The reply codes for MKD, however, are a bit more complicated. A + freshly created directory will probably be the object of a future + + +Postel & Reynolds [Page 62] + + + +RFC 959 October 1985 +File Transfer Protocol + + + CWD command. Unfortunately, the argument to MKD may not always be + a suitable argument for CWD. This is the case, for example, when + a TOPS-20 subdirectory is created by giving just the subdirectory + name. That is, with a TOPS-20 server FTP, the command sequence + + MKD MYDIR + CWD MYDIR + + will fail. The new directory may only be referred to by its + "absolute" name; e.g., if the MKD command above were issued while + connected to the directory , the new subdirectory + could only be referred to by the name . + + Even on UNIX and Multics, however, the argument given to MKD may + not be suitable. If it is a "relative" pathname (i.e., a pathname + which is interpreted relative to the current directory), the user + would need to be in the same current directory in order to reach + the subdirectory. Depending on the application, this may be + inconvenient. It is not very robust in any case. + + To solve these problems, upon successful completion of an MKD + command, the server should return a line of the form: + + 257"" + + That is, the server will tell the user what string to use when + referring to the created directory. The directory name can + contain any character; embedded double-quotes should be escaped by + double-quotes (the "quote-doubling" convention). + + For example, a user connects to the directory /usr/dm, and creates + a subdirectory, named pathname: + + CWD /usr/dm + 200 directory changed to /usr/dm + MKD pathname + 257 "/usr/dm/pathname" directory created + + An example with an embedded double quote: + + MKD foo"bar + 257 "/usr/dm/foo""bar" directory created + CWD /usr/dm/foo"bar + 200 directory changed to /usr/dm/foo"bar + + + + + +Postel & Reynolds [Page 63] + + + +RFC 959 October 1985 +File Transfer Protocol + + + The prior existence of a subdirectory with the same name is an + error, and the server must return an "access denied" error reply + in that case. + + CWD /usr/dm + 200 directory changed to /usr/dm + MKD pathname + 521-"/usr/dm/pathname" directory already exists; + 521 taking no action. + + The failure replies for MKD are analogous to its file creating + cousin, STOR. Also, an "access denied" return is given if a file + name with the same name as the subdirectory will conflict with the + creation of the subdirectory (this is a problem on UNIX, but + shouldn't be one on TOPS-20). + + Essentially because the PWD command returns the same type of + information as the successful MKD command, the successful PWD + command uses the 257 reply code as well. + + SUBTLETIES + + Because these commands will be most useful in transferring + subtrees from one machine to another, carefully observe that the + argument to MKD is to be interpreted as a sub-directory of the + current working directory, unless it contains enough information + for the destination host to tell otherwise. A hypothetical + example of its use in the TOPS-20 world: + + CWD + 200 Working directory changed + MKD overrainbow + 257 "" directory created + CWD overrainbow + 431 No such directory + CWD + 200 Working directory changed + + CWD + 200 Working directory changed to + MKD + 257 "" directory created + CWD + + Note that the first example results in a subdirectory of the + connected directory. In contrast, the argument in the second + example contains enough information for TOPS-20 to tell that the + + +Postel & Reynolds [Page 64] + + + +RFC 959 October 1985 +File Transfer Protocol + + + directory is a top-level directory. Note also that + in the first example the user "violated" the protocol by + attempting to access the freshly created directory with a name + other than the one returned by TOPS-20. Problems could have + resulted in this case had there been an directory; + this is an ambiguity inherent in some TOPS-20 implementations. + Similar considerations apply to the RMD command. The point is + this: except where to do so would violate a host's conventions for + denoting relative versus absolute pathnames, the host should treat + the operands of the MKD and RMD commands as subdirectories. The + 257 reply to the MKD command must always contain the absolute + pathname of the created directory. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 65] + + + +RFC 959 October 1985 +File Transfer Protocol + + +APPENDIX III - RFCs on FTP + + Bhushan, Abhay, "A File Transfer Protocol", RFC 114 (NIC 5823), + MIT-Project MAC, 16 April 1971. + + Harslem, Eric, and John Heafner, "Comments on RFC 114 (A File + Transfer Protocol)", RFC 141 (NIC 6726), RAND, 29 April 1971. + + Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 172 + (NIC 6794), MIT-Project MAC, 23 June 1971. + + Braden, Bob, "Comments on DTP and FTP Proposals", RFC 238 (NIC 7663), + UCLA/CCN, 29 September 1971. + + Bhushan, Abhay, et al, "The File Transfer Protocol", RFC 265 + (NIC 7813), MIT-Project MAC, 17 November 1971. + + McKenzie, Alex, "A Suggested Addition to File Transfer Protocol", + RFC 281 (NIC 8163), BBN, 8 December 1971. + + Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File + Transfer Protocol", RFC 294 (NIC 8304), MIT-Project MAC, + 25 January 1972. + + Bhushan, Abhay, "The File Transfer Protocol", RFC 354 (NIC 10596), + MIT-Project MAC, 8 July 1972. + + Bhushan, Abhay, "Comments on the File Transfer Protocol (RFC 354)", + RFC 385 (NIC 11357), MIT-Project MAC, 18 August 1972. + + Hicks, Greg, "User FTP Documentation", RFC 412 (NIC 12404), Utah, + 27 November 1972. + + Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further + Comments", RFC 414 (NIC 12406), MIT-Project MAC, 20 November 1972. + + Braden, Bob, "Comments on File Transfer Protocol", RFC 430 + (NIC 13299), UCLA/CCN, 7 February 1973. + + Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction", + RFC 438 (NIC 13770), BBN, 15 January 1973. + + Braden, Bob, "Print Files in FTP", RFC 448 (NIC 13299), UCLA/CCN, + 27 February 1973. + + McKenzie, Alex, "File Transfer Protocol", RFC 454 (NIC 14333), BBN, + 16 February 1973. + + +Postel & Reynolds [Page 66] + + + +RFC 959 October 1985 +File Transfer Protocol + + + Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP", RFC 458 + (NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973. + + Neigus, Nancy, "File Transfer Protocol", RFC 542 (NIC 17759), BBN, + 12 July 1973. + + Krilanovich, Mark, and George Gregg, "Comments on the File Transfer + Protocol", RFC 607 (NIC 21255), UCSB, 7 January 1974. + + Pogran, Ken, and Nancy Neigus, "Response to RFC 607 - Comments on the + File Transfer Protocol", RFC 614 (NIC 21530), BBN, 28 January 1974. + + Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White, + "Comments on the File Transfer Protocol", RFC 624 (NIC 22054), UCSB, + Ames Research Center, SRI-ARC, 28 February 1974. + + Bhushan, Abhay, "FTP Comments and Response to RFC 430", RFC 463 + (NIC 14573), MIT-DMCG, 21 February 1973. + + Braden, Bob, "FTP Data Compression", RFC 468 (NIC 14742), UCLA/CCN, + 8 March 1973. + + Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919), + MIT-DMCG, 6 March 1973. + + Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II", + RFC 478 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973. + + White, Jim, "Use of FTP by the NIC Journal", RFC 479 (NIC 14948), + SRI-ARC, 8 March 1973. + + White, Jim, "Host-Dependent FTP Parameters", RFC 480 (NIC 14949), + SRI-ARC, 8 March 1973. + + Padlipsky, Mike, "An FTP Command-Naming Problem", RFC 506 + (NIC 16157), MIT-Multics, 26 June 1973. + + Day, John, "Memo to FTP Group (Proposal for File Access Protocol)", + RFC 520 (NIC 16819), Illinois, 25 June 1973. + + Merryman, Robert, "The UCSD-CC Server-FTP Facility", RFC 532 + (NIC 17451), UCSD-CC, 22 June 1973. + + Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN, + 15 November 1973. + + + + +Postel & Reynolds [Page 67] + + + +RFC 959 October 1985 +File Transfer Protocol + + + McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation - + Schedule Change", RFC 593 (NIC 20615), BBN and MITRE, + 29 November 1973. + + Sussman, Julie, "FTP Error Code Usage for More Reliable Mail + Service", RFC 630 (NIC 30237), BBN, 10 April 1974. + + Postel, Jon, "Revised FTP Reply Codes", RFC 640 (NIC 30843), + UCLA/NMC, 5 June 1974. + + Harvey, Brian, "Leaving Well Enough Alone", RFC 686 (NIC 32481), + SU-AI, 10 May 1975. + + Harvey, Brian, "One More Try on the FTP", RFC 691 (NIC 32700), SU-AI, + 28 May 1975. + + Lieb, J., "CWD Command of FTP", RFC 697 (NIC 32963), 14 July 1975. + + Harrenstien, Ken, "FTP Extension: XSEN", RFC 737 (NIC 42217), SRI-KL, + 31 October 1977. + + Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", RFC 743 (NIC 42758), + SRI-KL, 30 December 1977. + + Lebling, P. David, "Survey of FTP Mail and MLFL", RFC 751, MIT, + 10 December 1978. + + Postel, Jon, "File Transfer Protocol Specification", RFC 765, ISI, + June 1980. + + Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP + Commands", RFC 776, BBN, December 1980. + + Padlipsky, Michael, "FTP Unique-Named Store Command", RFC 949, MITRE, + July 1985. + + + + + + + + + + + + + + +Postel & Reynolds [Page 68] + + + +RFC 959 October 1985 +File Transfer Protocol + + +REFERENCES + + [1] Feinler, Elizabeth, "Internet Protocol Transition Workbook", + Network Information Center, SRI International, March 1982. + + [2] Postel, Jon, "Transmission Control Protocol - DARPA Internet + Program Protocol Specification", RFC 793, DARPA, September 1981. + + [3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol + Specification", RFC 854, ISI, May 1983. + + [4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", RFC 943, + ISI, April 1985. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +Postel & Reynolds [Page 69] + diff --git a/include/Exceptions.h b/include/Exceptions.h index ebe8462..042059c 100644 --- a/include/Exceptions.h +++ b/include/Exceptions.h @@ -17,7 +17,7 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ -/* $Id: Exceptions.h,v 1.42 2005-06-20 22:43:35 pixel Exp $ */ +/* $Id: Exceptions.h,v 1.43 2006-10-28 16:42:19 pixel Exp $ */ #ifndef __EXCEPTIONS_H__ #define __EXCEPTIONS_H__ @@ -68,6 +68,7 @@ class Base { } static int pipe(int * p, int flag = 0); static pid_t fork(); + static pid_t wait(int *); //! This wrapper will call the xexit function. static void exit(int); static void printm(int level, const ugly_string &, ...); @@ -106,6 +107,7 @@ void * xrealloc(void *, size_t); int xdup(int) throw (GeneralException); int xpipe(int *, int = 0) throw (GeneralException); pid_t xfork() throw (GeneralException); +pid_t xwait(int *) throw (GeneralException); //! This will simply throw the Exit exception. void xexit(int) throw (GeneralException); void xexception(const String &) throw (GeneralException); diff --git a/include/Task.h b/include/Task.h index 5ac4a26..8831830 100644 --- a/include/Task.h +++ b/include/Task.h @@ -9,16 +9,27 @@ #include #include -#define TASK_ON_HOLD 0 -#define TASK_DONE 1 -#define TASK_BURST 2 - -#define W4_STICKY 1 -#define W4_READING 2 -#define W4_WRITING 4 +#undef E_HANDLE class Task : public Base { public: + enum { + EVT_BURST = 0, + EVT_HANDLE, + EVT_PROCESS, + EVT_TIMEOUT, + EVT_TASK, + }; + enum { + TASK_ON_HOLD = 0, + TASK_DONE, + TASK_BURST, + }; + enum { + W4_STICKY = 1, + W4_READING = 2, + W4_WRITING = 4, + }; Task(); virtual ~Task(); virtual String GetName(); @@ -29,13 +40,14 @@ class Task : public Base { void WaitFor(Task *); void WaitFor(Handle *, int = 0); void WaitFor(pid_t); - void WaitFor(timeval, int = 0); + void WaitFor(const timeval &, int = 0); Task * WaitedBy(); void SetBurst(); void Stop(); void Restart(); bool IsStopped(); void RemoveFromWatches(); + Handle * BurstHandle; protected: virtual int Do() throw (GeneralException); diff --git a/include/TaskMan.h b/include/TaskMan.h index 5d7d034..7ceba4a 100644 --- a/include/TaskMan.h +++ b/include/TaskMan.h @@ -9,22 +9,17 @@ typedef int sigset_t; #include #include -#define E_BURST 0 -#define E_HANDLE 1 -#define E_PROCESS 2 -#define E_TIMEOUT 3 -#define E_TASK 4 - class TaskMan : public Base { public: static void AddTask(Task *); static std::vector::iterator FindTask(Task *) throw (GeneralException); static void RemoveFromWatches(Task *); + static void RemoveTimeout(Task *); static void Init() throw (GeneralException); static void MainLoop() throw (GeneralException); static void WaitFor(Handle *, Task *, int = 0); static void WaitFor(pid_t, Task *, int = 0); - static void WaitFor(timeval, Task *, int = 0); + static void WaitFor(const timeval &, Task *, int = 0); static int GotChild(pid_t, int); static void Stop(); static int Event(); @@ -35,10 +30,10 @@ class TaskMan : public Base { class w4ha_t { public: - w4ha_t(Handle * aha, int aflags, Task * aT) : ha(aha), flags(aflags), dirthy(true), T(aT) { } + w4ha_t(Handle * aha, int aflags, Task * aT) : ha(aha), flags(aflags), dirty(true), T(aT) { } Handle * ha; int flags; - bool dirthy; + bool dirty; Task * T; }; @@ -52,7 +47,7 @@ class TaskMan : public Base { class w4to_t { public: - w4to_t(timeval ato, int aflags, Task * aT) : to(ato), flags(aflags), T(aT) { } + w4to_t(const timeval & ato, int aflags, Task * aT) : to(ato), flags(aflags), T(aT) { } timeval to; int flags; Task * T; @@ -73,6 +68,9 @@ class TaskMan : public Base { static Handle * ehandle; static int eprocess, estatus; static sigset_t sigchildset; + static int got_sigchild; + static bool CheckDead(Task *); + static void SigChild(); }; #endif diff --git a/lib/Exceptions.cc b/lib/Exceptions.cc index f8dae62..096ba46 100644 --- a/lib/Exceptions.cc +++ b/lib/Exceptions.cc @@ -17,7 +17,7 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ -/* $Id: Exceptions.cc,v 1.39 2005-02-24 11:30:05 pixel Exp $ */ +/* $Id: Exceptions.cc,v 1.40 2006-10-28 16:42:19 pixel Exp $ */ #include #include @@ -208,6 +208,16 @@ pid_t xfork() throw (GeneralException) { } #endif +#ifdef HAVE_WAIT +pid_t xwait(int * s) throw (GeneralException) { + return wait(s); +} +#else +pid_t xwait(int *) throw (GeneralException) { + throw GeneralException(_("Function wait() not supported by this system.\n")); +} +#endif + void xexit(int status) throw (GeneralException) { throw Exit(status); } @@ -265,6 +275,10 @@ pid_t Base::fork() { return xfork(); } +pid_t Base::wait(int * s) { + return xwait(s); +} + void Base::exit(int status) { xexit(status); } diff --git a/lib/Task.cc b/lib/Task.cc index 4d161ea..999881e 100644 --- a/lib/Task.cc +++ b/lib/Task.cc @@ -10,7 +10,7 @@ #include "BString.h" #include "gettext.h" -Task::Task() : current(0), state(TASK_ON_HOLD), stopped(false), suspended(false), wbta(0) { +Task::Task() : current(0), state(TASK_ON_HOLD), stopped(false), suspended(false), wbta(0), BurstHandle(0) { TaskMan::AddTask(this); } @@ -83,7 +83,7 @@ void Task::WaitFor(pid_t p) { TaskMan::WaitFor(p, this); } -void Task::WaitFor(timeval t, int flags) { +void Task::WaitFor(const timeval & t, int flags) { TaskMan::WaitFor(t, this, flags); } diff --git a/lib/TaskMan.cc b/lib/TaskMan.cc index 84def6c..a1aa4b1 100644 --- a/lib/TaskMan.cc +++ b/lib/TaskMan.cc @@ -23,6 +23,7 @@ std::vector TaskMan::w4to; bool TaskMan::stopped = false; int TaskMan::number = 0; +int TaskMan::got_sigchild = 0; bool TaskMan::inited = false; int TaskMan::event, TaskMan::eprocess, TaskMan::estatus; @@ -31,32 +32,36 @@ Handle * TaskMan::ehandle; sigset_t TaskMan::sigchildset; -static int got_sigchild = 0; - #ifndef _WIN32 void taskman_sigchild(int sig) { + TaskMan::SigChild(); + signal(SIGCHLD, taskman_sigchild); +} + +void taskman_sigpipe(int sig) { + signal(sig, taskman_sigpipe); +} +void taskman_sighup(int sig) { + signal(sig, taskman_sighup); +} +#endif + +void TaskMan::SigChild() { int status; pid_t pid; pid = wait(&status); - if (TaskMan::GotChild(pid, status)) { + if (GotChild(pid, status)) { got_sigchild++; } else { - TaskMan::WaitFor(pid, 0, status); + WaitFor(pid, 0, status); } // cerr << "Got SIGCHILD, pid = " << pid << " and status = " << status << endl; - signal(SIGCHLD, taskman_sigchild); } -void taskman_sighole(int sig) { - signal(sig, taskman_sighole); -} -#endif - +// Windows implementations of poll and gettimeofday. #ifdef _WIN32 - - #define POLLIN 1 /* Set if data to read. */ #define POLLPRI 2 /* Set if urgent data to read. */ #define POLLOUT 4 /* Set if writing data wouldn't block. */ @@ -78,7 +83,7 @@ struct pollfd { short revents; }; -int poll (struct pollfd *fds, unsigned int nfds, int timeout) { +static int poll (struct pollfd *fds, unsigned int nfds, int timeout) { fd_set read_fds, write_fds, except_fds; struct timeval tv = { timeout / 1000, (timeout % 1000) * 1000 }; int max_fd = 0, retval, changedfds; @@ -136,8 +141,68 @@ int poll (struct pollfd *fds, unsigned int nfds, int timeout) { return retval; } +#define EPOCHFILETIME (116444736000000000i64) + +// special version without timezone support... +static int gettimeofday(struct timeval *tv, struct timezone *tz) +{ + FILETIME ft; + LARGE_INTEGER li; + __int64 t; + + if (tv) + { + GetSystemTimeAsFileTime(&ft); + li.LowPart = ft.dwLowDateTime; + li.HighPart = ft.dwHighDateTime; + t = li.QuadPart; /* In 100-nanosecond intervals */ + t -= EPOCHFILETIME; /* Offset to the Epoch time */ + t /= 10; /* In microseconds */ + tv->tv_sec = (long)(t / 1000000); + tv->tv_usec = (long)(t % 1000000); + } + + return 0; +} #endif +// Static class to handle operations on the timeval structure. +class TimeOps : public Base { + public: + static timeval Add(const timeval & t1, const timeval & t2) { + struct timeval r; + + r.tv_usec = t1.tv_usec + t2.tv_usec; + r.tv_sec = t1.tv_sec + t2.tv_sec; + + if (r.tv_usec >= 1000000) { + r.tv_usec %= 1000000; + r.tv_sec++; + } + + return r; + } + static long Diff(const timeval & t1, const timeval & t2) { + return (t2.tv_sec - t1.tv_sec) * 1000 + (t2.tv_usec - t1.tv_usec) / 1000; + } + static bool IsLE(const timeval & t1, const timeval & t2) { + return (t1.tv_sec <= t2.tv_sec) || ((t1.tv_sec == t2.tv_sec) && (t1.tv_usec <= t2.tv_usec)); + } + static long ToMS(const timeval & t) { + return t.tv_usec / 1000 + t.tv_sec * 1000; + } + static void Sleep(const timeval & t) { + Sleep(ToMS(t)); + } + static void Sleep(Uint32 t) { +#ifdef _WIN32 + ::Sleep(t); +#else + usleep(t * 1000); +#endif + } +}; + int TaskMan::GotChild(pid_t pid, int status) { int r = 0; unsigned int i; @@ -161,7 +226,7 @@ void TaskMan::Init() throw (GeneralException) { #ifndef _WIN32 signal(SIGCHLD, taskman_sigchild); signal(SIGPIPE, taskman_sighole); - signal(SIGHUP, taskman_sighole); + signal(SIGHUP, taskman_sighup); sigemptyset(&sigchildset); sigaddset(&sigchildset, SIGCHLD); @@ -176,26 +241,32 @@ void TaskMan::Stop() { stopped = true; } +// Accessor of the current processed event. int TaskMan::Event() { return event; } +// Accessor of the current task triggering the EVT_TASK event. Task * TaskMan::Etask() { return etask; } +// Accessor of the current handle triggering the EVT_HANDLE event. Handle * TaskMan::Ehandle() { return ehandle; } +// accessor of the current pid_t triggering the EVT_PROCESS event. int TaskMan::Eprocess() { return eprocess; } +// Accessor of the status of the processus triggering the EVT_PROCESS event. int TaskMan::Estatus() { return estatus; } +// Should be only called by the constructor of a Task() void TaskMan::AddTask(Task * t) { if (!inited) { Init(); @@ -224,6 +295,7 @@ std::vector::iterator TaskMan::FindTask(Task * t) throw (GeneralExceptio throw TaskNotFound(); } +// Should only be called by the destructor of a task. void TaskMan::RemoveFromWatches(Task * t) { if (!w4ha.empty()) { for (std::vector::iterator p = w4ha.begin(); p != w4ha.end(); p++) { @@ -259,10 +331,22 @@ void TaskMan::RemoveFromWatches(Task * t) { (*p)->RemoveFromWatches(); TaskList.erase(p); number--; - p--; + p = TaskList.begin(); } else if ((*p) == t) { TaskList.erase(p); number--; + p = TaskList.begin(); + } + } + } +} + +// Possibility to cancel a timeout. +void TaskMan::RemoveTimeout(Task * t) { + if (!w4to.empty()) { + for (std::vector::iterator p = w4to.begin(); p != w4to.end(); p++) { + if (p->T == t) { + w4to.erase(p); p--; } } @@ -291,10 +375,13 @@ void TaskMan::WaitFor(pid_t pid, Task * t, int status) { w4pr[w4pr.size() - 1].status = status; } -void TaskMan::WaitFor(timeval t, Task * T, int flags) { - w4to.push_back(w4to_t(t, flags, T)); +void TaskMan::WaitFor(const timeval & t, Task * T, int flags) { + struct timeval tod; + gettimeofday(&tod, 0); + w4to.push_back(w4to_t(TimeOps::Add(tod, t), flags, T)); } +// The big ugly mainloop. void TaskMan::MainLoop() throw (GeneralException) { struct pollfd * ufsd; unsigned int nfds; @@ -311,6 +398,10 @@ void TaskMan::MainLoop() throw (GeneralException) { } if (stopped) return; + + // We should have a small fuse here, and check if there is no 'dead' task, + // that is, a task which doesn't have anything to wait for, but which is + // not a zombie. // cerr << "-=- TaskMan: begin main loop with " << number << " task to manage.\n"; if (!TaskList.empty()) { @@ -326,7 +417,7 @@ void TaskMan::MainLoop() throw (GeneralException) { while (!no_burst) { no_burst = 1; /* First, we will check for any burning task and run 'em */ - event = E_BURST; + event = Task::EVT_BURST; if (!TaskList.empty()) { for (TaskList_t::iterator p = TaskList.begin(); p != TaskList.end(); p++) { Task * t = *p; @@ -335,84 +426,118 @@ void TaskMan::MainLoop() throw (GeneralException) { continue; } - if (t->GetState() == TASK_BURST) { + if (t->GetState() == Task::TASK_BURST) { // cerr << "-=- TaskMan: running burning task " << t->GetName() << endl; + if (t->BurstHandle) { + // This task got the burst status from + // a non-watchable handle. Let's fake the handle event. + event = Task::EVT_HANDLE; + ehandle = t->BurstHandle; + } t->Run(); + if (t->BurstHandle) { + event = Task::EVT_BURST; + t->BurstHandle = 0; + } /* if the task added some new tasks, we have to rerun the loop */ no_burst = 0; break; } - if (t->GetState() == TASK_DONE) { - TaskList.erase(p); - number--; - p = TaskList.begin(); - Zombies.push_back(t); - } + // Additionnally, if the task died, let's put it in the zombies list. + // This check is done on the whole TaskList at each loop. + if (CheckDead(t)) + p = TaskList.begin(); } } } - /* Let's compute the nearest timeout, and eventually, launch the outdated timeouts. */ + /* Let's compute the nearest timeout, and run a round trip for expired timeouts. */ int timeout = -1; - event = E_TIMEOUT; - - if (!w4to.empty()) { - time_t curtime = time(NULL); + event = Task::EVT_TIMEOUT; + bool got_timeout = true, ran_on_timeout = false; + + while (!w4to.empty() && got_timeout) { + got_timeout = false; + struct timeval current; + gettimeofday(¤t, 0); + timeout = -1; for (std::vector::iterator p = w4to.begin(); p != w4to.end(); p++) { - int cur_to; - cur_to = (p->to.tv_sec - curtime) * 1000 + p->to.tv_usec; - if (cur_to < 0) { - - } + if (TimeOps::IsLE(p->to, current)) { + // This timeout expired; run the task. + w4to_t w4 = *p; + w4to.erase(p); + w4.T->Run(); + ran_on_timeout = true; + got_timeout = true; + CheckDead(w4.T); + break; + } else { + // Otherwise, let's keep track of the smallest timeout value. + long diff = TimeOps::Diff(current, p->to); + if ((timeout == -1) || (timeout > diff)) { + timeout = diff; + } + } } } - /* Now is time to check all the handle and enter into a wait state. */ - - event = E_HANDLE; // cerr << "-=- TaskMan: processing handle-waiting tasks.\n"; + if ((w4ha.size() == 0) && !ran_on_timeout && (timeout != -1) && (Zombies.size() == 0)) { + // In order to avoid the engine to run full speed without anything real to do, + // let's eat the timeout here. + TimeOps::Sleep(timeout); + } + + /* Now is time to check all the handle and enter into a wait state. */ + + event = Task::EVT_HANDLE; nfds = w4ha.size(); no_burst = 1; - - if (nfds != 0) { + + if (nfds != 0) { int r; std::vector::iterator p; struct pollfd * q; ufsd = (struct pollfd *) malloc(nfds * sizeof(struct pollfd)); - if (!w4ha.empty()) { - for (q = ufsd, p = w4ha.begin(); p != w4ha.end(); p++, q++) { - p->dirthy = false; - if (p->T->IsStopped()) { - q->fd = 0; - q->events = 0; + // Let's build the pollfd structure. + for (q = ufsd, p = w4ha.begin(); p != w4ha.end(); p++, q++) { + p->dirty = false; + // A stopped task doesn't get cookies. + if (p->T->IsStopped()) { + q->fd = 0; + q->events = 0; + } else { + if (p->ha->CanWatch()) { + // If that handle can be watched, then let's fill in the pollfd structure. + q->fd = p->ha->GetHandle(); + q->events = (p->flags & Task::W4_READING ? POLLIN : 0) | (p->flags & Task::W4_WRITING ? POLLOUT : 0); } else { - if (p->ha->CanWatch()) { - q->fd = p->ha->GetHandle(); - q->events = (p->flags & W4_READING ? POLLIN : 0) | (p->flags & W4_WRITING ? POLLOUT : 0); - } else { - p->T->SetBurst(); - no_burst = 0; - p->dirthy = true; - q->fd = 0; - q->events = 0; - } + // Otherwise, let's put the task in burst mode, and set its status to dirty, + // considering it already processed for this handle loop. + // It'll be run immediately next cycle. + p->T->SetBurst(); + no_burst = 0; + p->dirty = true; + q->fd = 0; + q->events = 0; } - } - for (p = w4ha.begin(); p != w4ha.end(); p++) { - if (!p->T->IsStopped() && !p->ha->CanWatch() && !(p->flags & W4_STICKY)) { - w4ha.erase(p); - p = w4ha.begin(); - } - } + } } + // Now the list is done, let's clean up the w4ha list from the non watchable handles. + for (p = w4ha.begin(); p != w4ha.end(); p++) { + if (!p->T->IsStopped() && !p->ha->CanWatch() && !(p->flags & Task::W4_STICKY)) { + w4ha.erase(p); + p = w4ha.begin(); + } + } #ifndef _WIN32 sigprocmask(SIG_UNBLOCK, &sigchildset, 0); #endif - r = poll(ufsd, nfds, (no_burst) && !(Zombies.size()) && !(got_sigchild) ? -1: 0); + r = poll(ufsd, nfds, (no_burst) && !(Zombies.size()) && !(got_sigchild) ? timeout: 0); #ifndef _WIN32 sigprocmask(SIG_BLOCK, &sigchildset, 0); #endif @@ -422,10 +547,8 @@ void TaskMan::MainLoop() throw (GeneralException) { } } else if (r == 0) { // timeout. - // **FIXME** -#ifndef _WIN32 -#warning FIXME -#endif + // We shouldn't do anything here, since the next loop should catch + // the expired timeouts. } else { int fd; struct pollfd * q; @@ -450,13 +573,13 @@ void TaskMan::MainLoop() throw (GeneralException) { if (!w4ha.empty()) { for (std::vector::iterator p = w4ha.begin(); p != w4ha.end(); p = touched ? w4ha.begin() : p + 1) { touched = false; - if ((p->ha->GetHandle() == fd) && (!p->T->IsStopped()) && (p->T->GetState() != TASK_DONE) && (!p->dirthy)) { + if ((p->ha->GetHandle() == fd) && (!p->T->IsStopped()) && (p->T->GetState() != Task::TASK_DONE) && (!p->dirty)) { // We've got one, launch it. // cerr << "-=- TaskMan: launching task " << p->T->GetName() << " for handle " << p->ha->GetHandle() << endl; w4ha_t w4 = *p; - p->dirthy = true; + p->dirty = true; - if (!(p->flags & W4_STICKY)) { + if (!(p->flags & Task::W4_STICKY)) { w4ha.erase(p); } @@ -464,18 +587,7 @@ void TaskMan::MainLoop() throw (GeneralException) { ehandle = p->ha; w4.T->Run(); - - if (w4.T->GetState() == TASK_DONE) { - // This task died, remove it. - try { - std::vector::iterator q = FindTask(w4.T); - TaskList.erase(q); - number--; - Zombies.push_back(w4.T); - } - catch (TaskNotFound) { - } - } + CheckDead(w4.T); } } } @@ -490,7 +602,7 @@ void TaskMan::MainLoop() throw (GeneralException) { int no_zombies; no_zombies = 0; - event = E_TASK; + event = Task::EVT_TASK; // cerr << "-=- TaskMan: processing zombies loop.\n"; while (!no_zombies) { @@ -507,14 +619,8 @@ void TaskMan::MainLoop() throw (GeneralException) { // cerr << "-=- TaskMan: running task " << o->GetName() << " for task " << t->GetName() << endl; etask = t; o->Run(); - - if (o->GetState() == TASK_DONE) { - TaskList_t::iterator f = FindTask(o); - TaskList.erase(f); - number--; - Zombies.push_back(o); - no_zombies = 0; - } + if (CheckDead(o)) + no_zombies = 0; } else { delete t; } @@ -522,9 +628,9 @@ void TaskMan::MainLoop() throw (GeneralException) { } } - /* To end up the loop, let's recall task waiting for processes */ + /* To end up the loop, let's recall tasks waiting for processes */ - event = E_PROCESS; + event = Task::EVT_PROCESS; // cerr << "-=- TaskMan: processing child-waiting tasks.\n"; if (got_sigchild) { @@ -549,3 +655,14 @@ void TaskMan::MainLoop() throw (GeneralException) { } } } + +bool TaskMan::CheckDead(Task * t) { + if (t->GetState() == Task::TASK_DONE) { + TaskList_t::iterator f = FindTask(t); + TaskList.erase(f); + number--; + Zombies.push_back(t); + return true; + } + return false; +} -- cgit v1.2.3