/* text.c -- text handling commands for readline. */ /* Copyright (C) 1987-2002 Free Software Foundation, Inc. This file is part of the GNU Readline Library, a library for reading lines of text with interactive input and history editing. The GNU Readline Library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Readline Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. The GNU General Public License is often shipped with GNU software, and is generally kept in a file called COPYING or LICENSE. If you do not have a copy of the license, write to the Free Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. */ #define READLINE_LIBRARY #include "config.h" #if defined (HAVE_UNISTD_H) # include #endif /* HAVE_UNISTD_H */ #if defined (HAVE_STDLIB_H) # include #else # include "ansi_stdlib.h" #endif /* HAVE_STDLIB_H */ #if defined (HAVE_LOCALE_H) # include #endif #include /* System-specific feature definitions and include files. */ #include "rldefs.h" #include "rlmbutil.h" #if defined (__EMX__) # define INCL_DOSPROCESS # include #endif /* __EMX__ */ /* Some standard library routines. */ #include "readline.h" #include "history.h" #include "rlprivate.h" #include "rlshell.h" #include "xmalloc.h" /* Forward declarations. */ static int rl_change_case PARAMS((int, int)); static int _rl_char_search PARAMS((int, int, int)); /* **************************************************************** */ /* */ /* Insert and Delete */ /* */ /* **************************************************************** */ /* Insert a string of text into the line at point. This is the only way that you should do insertion. _rl_insert_char () calls this function. Returns the number of characters inserted. */ int rl_insert_text (string) const char *string; { register int i, l; l = (string && *string) ? strlen (string) : 0; if (l == 0) return 0; if (rl_end + l >= rl_line_buffer_len) rl_extend_line_buffer (rl_end + l); for (i = rl_end; i >= rl_point; i--) rl_line_buffer[i + l] = rl_line_buffer[i]; strncpy (rl_line_buffer + rl_point, string, l); /* Remember how to undo this if we aren't undoing something. */ if (_rl_doing_an_undo == 0) { /* If possible and desirable, concatenate the undos. */ if ((l == 1) && rl_undo_list && (rl_undo_list->what == UNDO_INSERT) && (rl_undo_list->end == rl_point) && (rl_undo_list->end - rl_undo_list->start < 20)) rl_undo_list->end++; else rl_add_undo (UNDO_INSERT, rl_point, rl_point + l, (char *)NULL); } rl_point += l; rl_end += l; rl_line_buffer[rl_end] = '\0'; return l; } /* Delete the string between FROM and TO. FROM is inclusive, TO is not. Returns the number of characters deleted. */ int rl_delete_text (from, to) int from, to; { register char *text; register int diff, i; /* Fix it if the caller is confused. */ if (from > to) SWAP (from, to); /* fix boundaries */ if (to > rl_end) { to = rl_end; if (from > to) from = to; } if (from < 0) from = 0; text = rl_copy_text (from, to); /* Some versions of strncpy() can't handle overlapping arguments. */ diff = to - from; for (i = from; i < rl_end - diff; i++) rl_line_buffer[i] = rl_line_buffer[i + diff]; /* Remember how to undo this delete. */ if (_rl_doing_an_undo == 0) rl_add_undo (UNDO_DELETE, from, to, text); else free (text); rl_end -= diff; rl_line_buffer[rl_end] = '\0'; return (diff); } /* Fix up point so that it is within the line boundaries after killing text. If FIX_MARK_TOO is non-zero, the mark is forced within line boundaries also. */ #define _RL_FIX_POINT(x) \ do { \ if (x > rl_end) \ x = rl_end; \ else if (x < 0) \ x = 0; \ } while (0) void _rl_fix_point (fix_mark_too) int fix_mark_too; { _RL_FIX_POINT (rl_point); if (fix_mark_too) _RL_FIX_POINT (rl_mark); } #undef _RL_FIX_POINT int _rl_replace_text (text, start, end) const char *text; int start, end; { int n; rl_begin_undo_group (); rl_delete_text (start, end + 1); rl_point = start; n = rl_insert_text (text); rl_end_undo_group (); return n; } /* Replace the current line buffer contents with TEXT. If CLEAR_UNDO is non-zero, we free the current undo list. */ void rl_replace_line (text, clear_undo) const char *text; int clear_undo; { int len; len = strlen (text); if (len >= rl_line_buffer_len) rl_extend_line_buffer (len); strcpy (rl_line_buffer, text); rl_end = len; if (clear_undo) rl_free_undo_list (); _rl_fix_point (1); } /* **************************************************************** */ /* */ /* Readline character functions */ /* */ /* **************************************************************** */ /* This is not a gap editor, just a stupid line input routine. No hair is involved in writing any of the functions, and none should be. */ /* Note that: rl_end is the place in the string that we would place '\0'; i.e., it is always safe to place '\0' there. rl_point is the place in the string where the cursor is. Sometimes this is the same as rl_end. Any command that is called interactively receives two arguments. The first is a count: the numeric arg pased to this command. The second is the key which invoked this command. */ /* **************************************************************** */ /* */ /* Movement Commands */ /* */ /* **************************************************************** */ /* Note that if you `optimize' the display for these functions, you cannot use said functions in other functions which do not do optimizing display. I.e., you will have to update the data base for rl_redisplay, and you might as well let rl_redisplay do that job. */ /* Move forward COUNT bytes. */ int rl_forward_byte (count, key) int count, key; { if (count < 0) return (rl_backward_byte (-count, key)); if (count > 0) { int end = rl_point + count; #if defined (VI_MODE) int lend = rl_end > 0 ? rl_end - (rl_editing_mode == vi_mode) : rl_end; #else int lend = rl_end; #endif if (end > lend) { rl_point = lend; rl_ding (); } else rl_point = end; } if (rl_end < 0) rl_end = 0; return 0; } #if defined (HANDLE_MULTIBYTE) /* Move forward COUNT characters. */ int rl_forward_char (count, key) int count, key; { int point; if (MB_CUR_MAX == 1 || rl_byte_oriented) return (rl_forward_byte (count, key)); if (count < 0) return (rl_backward_char (-count, key)); if (count > 0) { point = _rl_find_next_mbchar (rl_line_buffer, rl_point, count, MB_FIND_NONZERO); #if defined (VI_MODE) if (rl_end <= point && rl_editing_mode == vi_mode) point = _rl_find_prev_mbchar (rl_line_buffer, rl_end, MB_FIND_NONZERO); #endif if (rl_point == point) rl_ding (); rl_point = point; if (rl_end < 0) rl_end = 0; } return 0; } #else /* !HANDLE_MULTIBYTE */ int rl_forward_char (count, key) int count, key; { return (rl_forward_byte (count, key)); } #endif /* !HANDLE_MULTIBYTE */ /* Backwards compatibility. */ int rl_forward (count, key) int count, key; { return (rl_forward_char (count, key)); } /* Move backward COUNT bytes. */ int rl_backward_byte (count, key) int count, key; { if (count < 0) return (rl_forward_byte (-count, key)); if (count > 0) { if (rl_point < count) { rl_point = 0; rl_ding (); } else rl_point -= count; } if (rl_point < 0) rl_point = 0; return 0; } #if defined (HANDLE_MULTIBYTE) /* Move backward COUNT characters. */ int rl_backward_char (count, key) int count, key; { int point; if (MB_CUR_MAX == 1 || rl_byte_oriented) return (rl_backward_byte (count, key)); if (count < 0) return (rl_forward_char (-count, key)); if (count > 0) { point = rl_point; while (count > 0 && point > 0) { point = _rl_find_prev_mbchar (rl_line_buffer, point, MB_FIND_NONZERO); count--; } if (count > 0) { rl_point = 0; rl_ding (); } else rl_point = point; } return 0; } #else int rl_backward_char (count, key) int count, key; { return (rl_backward_byte (count, key)); } #endif /* Backwards compatibility. */ int rl_backward (count, key) int count, key; { return (rl_backward_char (count, key)); } /* Move to the beginning of the line. */ int rl_beg_of_line (count, key) int count, key; { rl_point = 0; return 0; } /* Move to the end of the line. */ int rl_end_of_line (count, key) int count, key; { rl_point = rl_end; return 0; } /* XXX - these might need changes for multibyte characters */ /* Move forward a word. We do what Emacs does. */ int rl_forward_word (count, key) int count, key; { int c; if (count < 0) return (rl_backward_word (-count, key)); while (count) { if (rl_point == rl_end) return 0; /* If we are not in a word, move forward until we are in one. Then, move forward until we hit a non-alphabetic character. */ c = rl_line_buffer[rl_point]; if (rl_alphabetic (c) == 0) { while (++rl_point < rl_end) { c = rl_line_buffer[rl_point]; if (rl_alphabetic (c)) break; } } if (rl_point == rl_end) return 0; while (++rl_point < rl_end) { c = rl_line_buffer[rl_point]; if (rl_alphabetic (c) == 0) break; } --count; } return 0; } /* Move backward a word. We do what Emacs does. */ int rl_backward_word (count, key) int count, key; { int c; if (count < 0) return (rl_forward_word (-count, key)); while (count) { if (!rl_point) return 0; /* Like rl_forward_word (), except that we look at the characters just before point. */ c = rl_line_buffer[rl_point - 1]; if (rl_alphabetic (c) == 0) { while (--rl_point) { c = rl_line_buffer[rl_point - 1]; if (rl_alphabetic (c)) break; } } while (rl_point) { c = rl_line_buffer[rl_point - 1]; if (rl_alphabetic (c) == 0) break; else --rl_point; } --count; } return 0; } /* Clear the current line. Numeric argument to C-l does this. */ int rl_refresh_line (ignore1, ignore2) int ignore1, ignore2; { int curr_line; curr_line = _rl_current_display_line (); _rl_move_vert (curr_line); _rl_move_cursor_relative (0, rl_line_buffer); /* XXX is this right */ _rl_clear_to_eol (0); /* arg of 0 means to not use spaces */ rl_forced_update_display (); rl_display_fixed = 1; return 0; } /* C-l typed to a line without quoting clears the screen, and then reprints the prompt and the current input line. Given a numeric arg, redraw only the current line. */ int rl_clear_screen (count, key) int count, key; { if (rl_explicit_arg) { rl_refresh_line (count, key); return 0; } _rl_clear_screen (); /* calls termcap function to clear screen */ rl_forced_update_display (); rl_display_fixed = 1; return 0; } int rl_arrow_keys (count, c) int count, c; { int ch; RL_SETSTATE(RL_STATE_MOREINPUT); ch = rl_read_key (); RL_UNSETSTATE(RL_STATE_MOREINPUT); switch (_rl_to_upper (ch)) { case 'A': rl_get_previous_history (count, ch); break; case 'B': rl_get_next_history (count, ch); break; case 'C': if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_forward_char (count, ch); else rl_forward_byte (count, ch); break; case 'D': if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_backward_char (count, ch); else rl_backward_byte (count, ch); break; default: rl_ding (); } return 0; } /* **************************************************************** */ /* */ /* Text commands */ /* */ /* **************************************************************** */ #ifdef HANDLE_MULTIBYTE static char pending_bytes[MB_LEN_MAX]; static int pending_bytes_length = 0; static mbstate_t ps = {0}; #endif /* Insert the character C at the current location, moving point forward. If C introduces a multibyte sequence, we read the whole sequence and then insert the multibyte char into the line buffer. */ int _rl_insert_char (count, c) int count, c; { register int i; char *string; #ifdef HANDLE_MULTIBYTE int string_size; char incoming[MB_LEN_MAX + 1]; int incoming_length = 0; mbstate_t ps_back; static int stored_count = 0; #endif if (count <= 0) return 0; #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX == 1 || rl_byte_oriented) { incoming[0] = c; incoming[1] = '\0'; incoming_length = 1; } else { wchar_t wc; size_t ret; if (stored_count <= 0) stored_count = count; else count = stored_count; ps_back = ps; pending_bytes[pending_bytes_length++] = c; ret = mbrtowc (&wc, pending_bytes, pending_bytes_length, &ps); if (ret == (size_t)-2) { /* Bytes too short to compose character, try to wait for next byte. Restore the state of the byte sequence, because in this case the effect of mbstate is undefined. */ ps = ps_back; return 1; } else if (ret == (size_t)-1) { /* Invalid byte sequence for the current locale. Treat first byte as a single character. */ incoming[0] = pending_bytes[0]; incoming[1] = '\0'; incoming_length = 1; pending_bytes_length--; memmove (pending_bytes, pending_bytes + 1, pending_bytes_length); /* Clear the state of the byte sequence, because in this case the effect of mbstate is undefined. */ memset (&ps, 0, sizeof (mbstate_t)); } else if (ret == (size_t)0) { incoming[0] = '\0'; incoming_length = 0; pending_bytes_length--; /* Clear the state of the byte sequence, because in this case the effect of mbstate is undefined. */ memset (&ps, 0, sizeof (mbstate_t)); } else { /* We successfully read a single multibyte character. */ memcpy (incoming, pending_bytes, pending_bytes_length); incoming[pending_bytes_length] = '\0'; incoming_length = pending_bytes_length; pending_bytes_length = 0; } } #endif /* HANDLE_MULTIBYTE */ /* If we can optimize, then do it. But don't let people crash readline because of extra large arguments. */ if (count > 1 && count <= 1024) { #if defined (HANDLE_MULTIBYTE) string_size = count * incoming_length; string = (char *)xmalloc (1 + string_size); i = 0; while (i < string_size) { strncpy (string + i, incoming, incoming_length); i += incoming_length; } incoming_length = 0; stored_count = 0; #else /* !HANDLE_MULTIBYTE */ string = (char *)xmalloc (1 + count); for (i = 0; i < count; i++) string[i] = c; #endif /* !HANDLE_MULTIBYTE */ string[i] = '\0'; rl_insert_text (string); free (string); return 0; } if (count > 1024) { int decreaser; #if defined (HANDLE_MULTIBYTE) string_size = incoming_length * 1024; string = (char *)xmalloc (1 + string_size); i = 0; while (i < string_size) { strncpy (string + i, incoming, incoming_length); i += incoming_length; } while (count) { decreaser = (count > 1024) ? 1024 : count; string[decreaser*incoming_length] = '\0'; rl_insert_text (string); count -= decreaser; } free (string); incoming_length = 0; stored_count = 0; #else /* !HANDLE_MULTIBYTE */ char str[1024+1]; for (i = 0; i < 1024; i++) str[i] = c; while (count) { decreaser = (count > 1024 ? 1024 : count); str[decreaser] = '\0'; rl_insert_text (str); count -= decreaser; } #endif /* !HANDLE_MULTIBYTE */ return 0; } #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX == 1 || rl_byte_oriented) { #endif /* We are inserting a single character. If there is pending input, then make a string of all of the pending characters that are bound to rl_insert, and insert them all. */ if (_rl_any_typein ()) _rl_insert_typein (c); else { /* Inserting a single character. */ char str[2]; str[1] = '\0'; str[0] = c; rl_insert_text (str); } #if defined (HANDLE_MULTIBYTE) } else { rl_insert_text (incoming); stored_count = 0; } #endif return 0; } /* Overwrite the character at point (or next COUNT characters) with C. If C introduces a multibyte character sequence, read the entire sequence before starting the overwrite loop. */ int _rl_overwrite_char (count, c) int count, c; { int i; #if defined (HANDLE_MULTIBYTE) char mbkey[MB_LEN_MAX]; int k; /* Read an entire multibyte character sequence to insert COUNT times. */ if (count > 0 && MB_CUR_MAX > 1 && rl_byte_oriented == 0) k = _rl_read_mbstring (c, mbkey, MB_LEN_MAX); #endif for (i = 0; i < count; i++) { rl_begin_undo_group (); if (rl_point < rl_end) rl_delete (1, c); #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_insert_text (mbkey); else #endif _rl_insert_char (1, c); rl_end_undo_group (); } return 0; } int rl_insert (count, c) int count, c; { return (rl_insert_mode == RL_IM_INSERT ? _rl_insert_char (count, c) : _rl_overwrite_char (count, c)); } /* Insert the next typed character verbatim. */ int rl_quoted_insert (count, key) int count, key; { int c; #if defined (HANDLE_SIGNALS) _rl_disable_tty_signals (); #endif RL_SETSTATE(RL_STATE_MOREINPUT); c = rl_read_key (); RL_UNSETSTATE(RL_STATE_MOREINPUT); #if defined (HANDLE_SIGNALS) _rl_restore_tty_signals (); #endif return (_rl_insert_char (count, c)); } /* Insert a tab character. */ int rl_tab_insert (count, key) int count, key; { return (_rl_insert_char (count, '\t')); } /* What to do when a NEWLINE is pressed. We accept the whole line. KEY is the key that invoked this command. I guess it could have meaning in the future. */ int rl_newline (count, key) int count, key; { rl_done = 1; if (_rl_history_preserve_point) _rl_history_saved_point = (rl_point == rl_end) ? -1 : rl_point; RL_SETSTATE(RL_STATE_DONE); #if defined (VI_MODE) if (rl_editing_mode == vi_mode) { _rl_vi_done_inserting (); _rl_vi_reset_last (); } #endif /* VI_MODE */ /* If we've been asked to erase empty lines, suppress the final update, since _rl_update_final calls rl_crlf(). */ if (rl_erase_empty_line && rl_point == 0 && rl_end == 0) return 0; if (readline_echoing_p) _rl_update_final (); return 0; } /* What to do for some uppercase characters, like meta characters, and some characters appearing in emacs_ctlx_keymap. This function is just a stub, you bind keys to it and the code in _rl_dispatch () is special cased. */ int rl_do_lowercase_version (ignore1, ignore2) int ignore1, ignore2; { return 0; } /* This is different from what vi does, so the code's not shared. Emacs rubout in overwrite mode has one oddity: it replaces a control character that's displayed as two characters (^X) with two spaces. */ int _rl_overwrite_rubout (count, key) int count, key; { int opoint; int i, l; if (rl_point == 0) { rl_ding (); return 1; } opoint = rl_point; /* L == number of spaces to insert */ for (i = l = 0; i < count; i++) { rl_backward_char (1, key); l += rl_character_len (rl_line_buffer[rl_point], rl_point); /* not exactly right */ } rl_begin_undo_group (); if (count > 1 || rl_explicit_arg) rl_kill_text (opoint, rl_point); else rl_delete_text (opoint, rl_point); /* Emacs puts point at the beginning of the sequence of spaces. */ opoint = rl_point; _rl_insert_char (l, ' '); rl_point = opoint; rl_end_undo_group (); return 0; } /* Rubout the character behind point. */ int rl_rubout (count, key) int count, key; { if (count < 0) return (rl_delete (-count, key)); if (!rl_point) { rl_ding (); return -1; } if (rl_insert_mode == RL_IM_OVERWRITE) return (_rl_overwrite_rubout (count, key)); return (_rl_rubout_char (count, key)); } int _rl_rubout_char (count, key) int count, key; { int orig_point; unsigned char c; /* Duplicated code because this is called from other parts of the library. */ if (count < 0) return (rl_delete (-count, key)); if (rl_point == 0) { rl_ding (); return -1; } if (count > 1 || rl_explicit_arg) { orig_point = rl_point; #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_backward_char (count, key); else #endif rl_backward_byte (count, key); rl_kill_text (orig_point, rl_point); } else { #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX == 1 || rl_byte_oriented) { #endif c = rl_line_buffer[--rl_point]; rl_delete_text (rl_point, rl_point + 1); #if defined (HANDLE_MULTIBYTE) } else { int orig_point; orig_point = rl_point; rl_point = _rl_find_prev_mbchar (rl_line_buffer, rl_point, MB_FIND_NONZERO); c = rl_line_buffer[rl_point]; rl_delete_text (rl_point, orig_point); } #endif /* HANDLE_MULTIBYTE */ /* I don't think that the hack for end of line is needed for multibyte chars. */ #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX == 1 || rl_byte_oriented) #endif if (rl_point == rl_end && ISPRINT (c) && _rl_last_c_pos) { int l; l = rl_character_len (c, rl_point); _rl_erase_at_end_of_line (l); } } return 0; } /* Delete the character under the cursor. Given a numeric argument, kill that many characters instead. */ int rl_delete (count, key) int count, key; { int r; if (count < 0) return (_rl_rubout_char (-count, key)); if (rl_point == rl_end) { rl_ding (); return -1; } if (count > 1 || rl_explicit_arg) { int orig_point = rl_point; #if defined (HANDLE_MULTIBYTE) if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_forward_char (count, key); else #endif rl_forward_byte (count, key); r = rl_kill_text (orig_point, rl_point); rl_point = orig_point; return r; } else { int new_point; if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) new_point = _rl_find_next_mbchar (rl_line_buffer, rl_point, 1, MB_FIND_NONZERO); else new_point = rl_point + 1; return (rl_delete_text (rl_point, new_point)); } } /* Delete the character under the cursor, unless the insertion point is at the end of the line, in which case the character behind the cursor is deleted. COUNT is obeyed and may be used to delete forward or backward that many characters. */ int rl_rubout_or_delete (count, key) int count, key; { if (rl_end != 0 && rl_point == rl_end) return (_rl_rubout_char (count, key)); else return (rl_delete (count, key)); } /* Delete all spaces and tabs around point. */ int rl_delete_horizontal_space (count, ignore) int count, ignore; { int start = rl_point; while (rl_point && whitespace (rl_line_buffer[rl_point - 1])) rl_point--; start = rl_point; while (rl_point < rl_end && whitespace (rl_line_buffer[rl_point])) rl_point++; if (start != rl_point) { rl_delete_text (start, rl_point); rl_point = start; } return 0; } /* Like the tcsh editing function delete-char-or-list. The eof character is caught before this is invoked, so this really does the same thing as delete-char-or-list-or-eof, as long as it's bound to the eof character. */ int rl_delete_or_show_completions (count, key) int count, key; { if (rl_end != 0 && rl_point == rl_end) return (rl_possible_completions (count, key)); else return (rl_delete (count, key)); } #ifndef RL_COMMENT_BEGIN_DEFAULT #define RL_COMMENT_BEGIN_DEFAULT "#" #endif /* Turn the current line into a comment in shell history. A K*rn shell style function. */ int rl_insert_comment (count, key) int count, key; { char *rl_comment_text; int rl_comment_len; rl_beg_of_line (1, key); rl_comment_text = _rl_comment_begin ? _rl_comment_begin : RL_COMMENT_BEGIN_DEFAULT; if (rl_explicit_arg == 0) rl_insert_text (rl_comment_text); else { rl_comment_len = strlen (rl_comment_text); if (STREQN (rl_comment_text, rl_line_buffer, rl_comment_len)) rl_delete_text (rl_point, rl_point + rl_comment_len); else rl_insert_text (rl_comment_text); } (*rl_redisplay_function) (); rl_newline (1, '\n'); return (0); } /* **************************************************************** */ /* */ /* Changing Case */ /* */ /* **************************************************************** */ /* The three kinds of things that we know how to do. */ #define UpCase 1 #define DownCase 2 #define CapCase 3 /* Uppercase the word at point. */ int rl_upcase_word (count, key) int count, key; { return (rl_change_case (count, UpCase)); } /* Lowercase the word at point. */ int rl_downcase_word (count, key) int count, key; { return (rl_change_case (count, DownCase)); } /* Upcase the first letter, downcase the rest. */ int rl_capitalize_word (count, key) int count, key; { return (rl_change_case (count, CapCase)); } /* The meaty function. Change the case of COUNT words, performing OP on them. OP is one of UpCase, DownCase, or CapCase. If a negative argument is given, leave point where it started, otherwise, leave it where it moves to. */ static int rl_change_case (count, op) int count, op; { register int start, end; int inword, c; start = rl_point; rl_forward_word (count, 0); end = rl_point; if (count < 0) SWAP (start, end); /* We are going to modify some text, so let's prepare to undo it. */ rl_modifying (start, end); for (inword = 0; start < end; start++) { c = rl_line_buffer[start]; switch (op) { case UpCase: rl_line_buffer[start] = _rl_to_upper (c); break; case DownCase: rl_line_buffer[start] = _rl_to_lower (c); break; case CapCase: rl_line_buffer[start] = (inword == 0) ? _rl_to_upper (c) : _rl_to_lower (c); inword = rl_alphabetic (rl_line_buffer[start]); break; default: rl_ding (); return -1; } } rl_point = end; return 0; } /* **************************************************************** */ /* */ /* Transposition */ /* */ /* **************************************************************** */ /* Transpose the words at point. If point is at the end of the line, transpose the two words before point. */ int rl_transpose_words (count, key) int count, key; { char *word1, *word2; int w1_beg, w1_end, w2_beg, w2_end; int orig_point = rl_point; if (!count) return 0; /* Find the two words. */ rl_forward_word (count, key); w2_end = rl_point; rl_backward_word (1, key); w2_beg = rl_point; rl_backward_word (count, key); w1_beg = rl_point; rl_forward_word (1, key); w1_end = rl_point; /* Do some check to make sure that there really are two words. */ if ((w1_beg == w2_beg) || (w2_beg < w1_end)) { rl_ding (); rl_point = orig_point; return -1; } /* Get the text of the words. */ word1 = rl_copy_text (w1_beg, w1_end); word2 = rl_copy_text (w2_beg, w2_end); /* We are about to do many insertions and deletions. Remember them as one operation. */ rl_begin_undo_group (); /* Do the stuff at word2 first, so that we don't have to worry about word1 moving. */ rl_point = w2_beg; rl_delete_text (w2_beg, w2_end); rl_insert_text (word1); rl_point = w1_beg; rl_delete_text (w1_beg, w1_end); rl_insert_text (word2); /* This is exactly correct since the text before this point has not changed in length. */ rl_point = w2_end; /* I think that does it. */ rl_end_undo_group (); free (word1); free (word2); return 0; } /* Transpose the characters at point. If point is at the end of the line, then transpose the characters before point. */ int rl_transpose_chars (count, key) int count, key; { #if defined (HANDLE_MULTIBYTE) char *dummy; int i, prev_point; #else char dummy[2]; #endif int char_length; if (count == 0) return 0; if (!rl_point || rl_end < 2) { rl_ding (); return -1; } rl_begin_undo_group (); if (rl_point == rl_end) { if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_point = _rl_find_prev_mbchar (rl_line_buffer, rl_point, MB_FIND_NONZERO); else --rl_point; count = 1; } #if defined (HANDLE_MULTIBYTE) prev_point = rl_point; if (MB_CUR_MAX > 1 && rl_byte_oriented == 0) rl_point = _rl_find_prev_mbchar (rl_line_buffer, rl_point, MB_FIND_NONZERO); else #endif rl_point--; #if defined (HANDLE_MULTIBYTE) char_length = prev_point - rl_point; dummy = (char *)xmalloc (char_length + 1); for (i = 0; i < char_length; i++) dummy[i] = rl_line_buffer[rl_point + i]; dummy[i] = '\0'; #else dummy[0] = rl_line_buffer[rl_point]; dummy[char_length = 1] = '\0'; #endif rl_delete_text (rl_point, rl_point + char_length); rl_point = _rl_find_next_mbchar (rl_line_buffer, rl_point, count, MB_FIND_NONZERO); _rl_fix_point (0); rl_insert_text (dummy); rl_end_undo_group (); #if defined (HANDLE_MULTIBYTE) free (dummy); #endif return 0; } /* **************************************************************** */ /* */ /* Character Searching */ /* */ /* **************************************************************** */ int #if defined (HANDLE_MULTIBYTE) _rl_char_search_internal (count, dir, smbchar, len) int count, dir; char *smbchar; int len; #else _rl_char_search_internal (count, dir, schar) int count, dir, schar; #endif { int pos, inc; #if defined (HANDLE_MULTIBYTE) int prepos; #endif pos = rl_point; inc = (dir < 0) ? -1 : 1; while (count) { if ((dir < 0 && pos <= 0) || (dir > 0 && pos >= rl_end)) { rl_ding (); return -1; } #if defined (HANDLE_MULTIBYTE) pos = (inc > 0) ? _rl_find_next_mbchar (rl_line_buffer, pos, 1, MB_FIND_ANY) : _rl_find_prev_mbchar (rl_line_buffer, pos, MB_FIND_ANY); #else pos += inc; #endif do { #if defined (HANDLE_MULTIBYTE) if (_rl_is_mbchar_matched (rl_line_buffer, pos, rl_end, smbchar, len)) #else if (rl_line_buffer[pos] == schar) #endif { count--; if (dir < 0) rl_point = (dir == BTO) ? _rl_find_next_mbchar (rl_line_buffer, pos, 1, MB_FIND_ANY) : pos; else rl_point = (dir == FTO) ? _rl_find_prev_mbchar (rl_line_buffer, pos, MB_FIND_ANY) : pos; break; } #if defined (HANDLE_MULTIBYTE) prepos = pos; #endif } #if defined (HANDLE_MULTIBYTE) while ((dir < 0) ? (pos = _rl_find_prev_mbchar (rl_line_buffer, pos, MB_FIND_ANY)) != prepos : (pos = _rl_find_next_mbchar (rl_line_buffer, pos, 1, MB_FIND_ANY)) != prepos); #else while ((dir < 0) ? pos-- : ++pos < rl_end); #endif } return (0); } /* Search COUNT times for a character read from the current input stream. FDIR is the direction to search if COUNT is non-negative; otherwise the search goes in BDIR. So much is dependent on HANDLE_MULTIBYTE that there are two separate versions of this function. */ #if defined (HANDLE_MULTIBYTE) static int _rl_char_search (count, fdir, bdir) int count, fdir, bdir; { char mbchar[MB_LEN_MAX]; int mb_len; mb_len = _rl_read_mbchar (mbchar, MB_LEN_MAX); if (count < 0) return (_rl_char_search_internal (-count, bdir, mbchar, mb_len)); else return (_rl_char_search_internal (count, fdir, mbchar, mb_len)); } #else /* !HANDLE_MULTIBYTE */ static int _rl_char_search (count, fdir, bdir) int count, fdir, bdir; { int c; RL_SETSTATE(RL_STATE_MOREINPUT); c = rl_read_key (); RL_UNSETSTATE(RL_STATE_MOREINPUT); if (count < 0) return (_rl_char_search_internal (-count, bdir, c)); else return (_rl_char_search_internal (count, fdir, c)); } #endif /* !HANDLE_MULTIBYTE */ int rl_char_search (count, key) int count, key; { return (_rl_char_search (count, FFIND, BFIND)); } int rl_backward_char_search (count, key) int count, key; { return (_rl_char_search (count, BFIND, FFIND)); } /* **************************************************************** */ /* */ /* The Mark and the Region. */ /* */ /* **************************************************************** */ /* Set the mark at POSITION. */ int _rl_set_mark_at_pos (position) int position; { if (position > rl_end) return -1; rl_mark = position; return 0; } /* A bindable command to set the mark. */ int rl_set_mark (count, key) int count, key; { return (_rl_set_mark_at_pos (rl_explicit_arg ? count : rl_point)); } /* Exchange the position of mark and point. */ int rl_exchange_point_and_mark (count, key) int count, key; { if (rl_mark > rl_end) rl_mark = -1; if (rl_mark == -1) { rl_ding (); return -1; } else SWAP (rl_point, rl_mark); return 0; }