diff options
Diffstat (limited to 'src/sim')
-rw-r--r-- | src/sim/sim_primitives.c | 281 |
1 files changed, 205 insertions, 76 deletions
diff --git a/src/sim/sim_primitives.c b/src/sim/sim_primitives.c index fc0c96c..9f6f969 100644 --- a/src/sim/sim_primitives.c +++ b/src/sim/sim_primitives.c @@ -119,25 +119,33 @@ static void sFixAngles(cdCanvas* canvas, double *angle1, double *angle2) { if (canvas->invert_yaxis) { - double temp = 360 - *angle1; // TO CHECK - *angle1 = 360 - *angle2; - *angle2 = temp; + double t; - *angle1 *= CD_DEG2RAD; - *angle2 *= CD_DEG2RAD; - } - else - { - *angle1 *= CD_DEG2RAD; - *angle2 *= CD_DEG2RAD; + /* computation is done as if the angles are counterclockwise, + and yaxis is NOT inverted. */ + + /* if yaxis is inverted then must orient clockwise */ + /* change angle orientation */ + *angle1 = 360 - *angle1; + *angle2 = 360 - *angle2; + + /* swap, so the start angle is the smaller */ + t = *angle1; + *angle1 = *angle2; + *angle2 = t; } + + /* convert to radians */ + *angle1 *= CD_DEG2RAD; + *angle2 *= CD_DEG2RAD; } -static cdPoint* sPolyAddArc(cdCanvas* canvas, cdPoint* poly, int *n, int xc, int yc, int width, int height, double angle1, double angle2) +static cdPoint* sPolyAddArc(cdCanvas* canvas, cdPoint* poly, int *n, int xc, int yc, int width, int height, double angle1, double angle2, cdPoint* current) { double c, s, sx, sy, x, y, prev_x, prev_y; double da; - int i, K, k, yc2 = 2*yc, p = 0, new_n; + int i, K, k, p, new_n; +// yc2 = 2*yc, /* number of segments of equivalent poligonal for a full ellipse */ K = cdSimCalcEllipseNumSegments(canvas, xc, yc, width, height); @@ -149,7 +157,7 @@ static cdPoint* sPolyAddArc(cdCanvas* canvas, cdPoint* poly, int *n, int xc, int if (K < 1) K = 1; new_n = *n + K+1; /* add room for K+1 samples */ - poly = (cdPoint*)realloc(poly, sizeof(cdPoint)*new_n); + poly = (cdPoint*)realloc(poly, sizeof(cdPoint)*(new_n+2)); /* add room also for points at start and end */ if (!poly) return NULL; i = *n; @@ -166,11 +174,18 @@ static cdPoint* sPolyAddArc(cdCanvas* canvas, cdPoint* poly, int *n, int xc, int prev_x = x; prev_y = y; + if (current) + { + poly[i] = *current; + i++; + new_n++; /* no need to reallocate */ + } + poly[i].x = _cdRound(x)+xc; poly[i].y = _cdRound(y)+yc; - if (canvas->invert_yaxis) /* must invert because of the angle orientation */ - poly[i].y = yc2 - poly[i].y; +// if (canvas->invert_yaxis) /* must invert because of the angle orientation */ +// poly[i].y = yc2 - poly[i].y; p = i+1; for (k = 1; k < K+1; k++) @@ -181,8 +196,8 @@ static cdPoint* sPolyAddArc(cdCanvas* canvas, cdPoint* poly, int *n, int xc, int poly[p].x = _cdRound(x)+xc; poly[p].y = _cdRound(y)+yc; - if (canvas->invert_yaxis) /* must invert because of the angle orientation */ - poly[p].y = yc2 - poly[p].y; +// if (canvas->invert_yaxis) /* must invert because of the angle orientation */ +// poly[p].y = yc2 - poly[p].y; if (poly[p-1].x != poly[p].x || poly[p-1].y != poly[p].y) @@ -196,7 +211,7 @@ static cdPoint* sPolyAddArc(cdCanvas* canvas, cdPoint* poly, int *n, int xc, int return poly; } -static cdfPoint* sfPolyAddArc(cdCanvas* canvas, cdfPoint* poly, int *n, double xc, double yc, double width, double height, double angle1, double angle2) +static cdfPoint* sfPolyAddArc(cdCanvas* canvas, cdfPoint* poly, int *n, double xc, double yc, double width, double height, double angle1, double angle2, cdfPoint* current) { double c, s, sx, sy, x, y, prev_x, prev_y, da; int i, k, p, new_n; @@ -211,7 +226,7 @@ static cdfPoint* sfPolyAddArc(cdCanvas* canvas, cdfPoint* poly, int *n, double x if (K < 1) K = 1; new_n = *n + K+1; /* add room for K+1 samples */ - poly = (cdfPoint*)realloc(poly, sizeof(cdfPoint)*new_n); + poly = (cdfPoint*)realloc(poly, sizeof(cdfPoint)*(new_n+2)); /* add room also for points at start and end */ if (!poly) return NULL; i = *n; @@ -226,11 +241,18 @@ static cdfPoint* sfPolyAddArc(cdCanvas* canvas, cdfPoint* poly, int *n, double x y = (height/2.0f)*sin(angle1); prev_x = x; prev_y = y; + + if (current) + { + poly[i] = *current; + i++; + new_n++; /* no need to reallocate */ + } + poly[i].x = x+xc; poly[i].y = y+yc; p = i+1; - for (k = 1; k < K+1; k++) /* K+1 points */ { x = c*prev_x + sx*prev_y; @@ -263,7 +285,7 @@ void cdSimArc(cdCtxCanvas* ctxcanvas, int xc, int yc, int width, int height, dou return; } - poly = sPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2); + poly = sPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2, NULL); if (poly) { @@ -279,7 +301,7 @@ void cdfSimArc(cdCtxCanvas *ctxcanvas, double xc, double yc, double width, doubl int n; cdfPoint* poly = NULL; - poly = sfPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2); + poly = sfPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2, NULL); if (poly) { @@ -294,14 +316,12 @@ static void sElipse(cdCtxCanvas* ctxcanvas, int xc, int yc, int width, int heigh int n; cdPoint* poly = NULL; - poly = sPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2); + poly = sPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2, NULL); if (poly[n-1].x != poly[0].x || poly[n-1].y != poly[0].y) { - n++; - poly = (cdPoint*)realloc(poly, sizeof(cdPoint)*n); - if (!poly) return; + n++; /* no need to reallocate */ if (sector) /* cdSector */ { @@ -331,14 +351,12 @@ static void sfElipse(cdCtxCanvas* ctxcanvas, double xc, double yc, double width, int n; cdfPoint* poly = NULL; - poly = sfPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2); + poly = sfPolyAddArc(canvas, poly, &n, xc, yc, width, height, angle1, angle2, NULL); if (poly[n-1].x != poly[0].x || poly[n-1].y != poly[0].y) { - n++; - poly = (cdfPoint*)realloc(poly, sizeof(cdfPoint)*n); - if (!poly) return; + n++; /* no need to reallocate */ if (sector) /* cdSector */ { @@ -561,14 +579,17 @@ static cdPoint* sPolyAddBezier(cdCanvas* canvas, cdPoint* poly, int *n, cdPoint return poly; } -static cdfPoint* sPolyFAddBezier(cdCanvas* canvas, cdfPoint* poly, int *n, cdPoint start, const cdPoint* points) +static cdfPoint* sPolyFAddBezier(cdCanvas* canvas, cdfPoint* poly, int *n, cdfPoint start, const cdPoint* points) { int k, K, new_n, i; cdfPoint pt; - cdfPoint bezier_control[4]; + cdfPoint bezier_control[4], bezier[3]; - sBezierForm(start, points, bezier_control); - K = sBezierNumSegments(canvas, start, points); + bezier[0].x = points[0].x; bezier[1].x = points[1].x; bezier[2].x = points[2].x; + bezier[0].y = points[0].y; bezier[1].y = points[1].y; bezier[2].y = points[2].y; + + sfBezierForm(start, bezier, bezier_control); + K = sfBezierNumSegments(canvas, start, bezier); new_n = *n + K+1; /* add room for K+1 samples */ poly = realloc(poly, sizeof(cdfPoint)*new_n); @@ -622,12 +643,16 @@ static cdfPoint* sfPolyAddBezier(cdCanvas* canvas, cdfPoint* poly, int *n, cdfPo static void sPolyFBezier(cdCanvas* canvas, const cdPoint* points, int n) { int i = 0, poly_n = 0; - cdfPoint* fpoly = NULL; + cdfPoint* fpoly = NULL, start; + + start.x = points[0].x; + start.y = points[0].y; n--; /* first n is 4 */ while (n >= 3) { - fpoly = sPolyFAddBezier(canvas, fpoly, &poly_n, points[i], points+i+1); + fpoly = sPolyFAddBezier(canvas, fpoly, &poly_n, start, points+i+1); + start = fpoly[poly_n-1]; n -= 3; i += 3; } @@ -765,28 +790,132 @@ void cdfSimPolyPath(cdCanvas* canvas, const cdfPoint* poly, int n) yc = poly[i].y, w = poly[i+1].x, h = poly[i+1].y, - a1 = poly[i+2].x/1000.0, - a2 = poly[i+2].y/1000.0; + a1 = poly[i+2].x, + a2 = poly[i+2].y; if (current_set) - { - cdfPoint start_angle; + path_poly = sfPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2, ¤t); + else + path_poly = sfPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2, NULL); + + current = path_poly[path_poly_n-1]; + current_set = 1; + + i += 3; + } + break; + case CD_PATH_CURVETO: + if (i+3 > n) break; + if (!current_set) + { + current.x = poly[i].x; + current.y = poly[i].y; + } + path_poly = sfPolyAddBezier(canvas, path_poly, &path_poly_n, current, poly+i); + current = path_poly[path_poly_n-1]; + current_set = 1; + i += 3; + break; + case CD_PATH_CLOSE: + if (path_poly[path_poly_n-1].x != path_poly[0].x || + path_poly[path_poly_n-1].y != path_poly[0].y) + { + path_poly_n++; + path_poly = (cdfPoint*)realloc(path_poly, sizeof(cdfPoint)*path_poly_n); + if (!path_poly) return; + + /* add initial point */ + path_poly[path_poly_n-1].x = path_poly[0].x; + path_poly[path_poly_n-1].y = path_poly[0].y; + } + break; + case CD_PATH_FILL: + if (poly) + canvas->cxFPoly(canvas->ctxcanvas, CD_FILL, path_poly, path_poly_n); + break; + case CD_PATH_STROKE: + if (poly) + canvas->cxFPoly(canvas->ctxcanvas, CD_OPEN_LINES, path_poly, path_poly_n); + break; + case CD_PATH_FILLSTROKE: + if (poly) + { + canvas->cxFPoly(canvas->ctxcanvas, CD_FILL, path_poly, path_poly_n); + canvas->cxFPoly(canvas->ctxcanvas, CD_OPEN_LINES, path_poly, path_poly_n); + } + break; + case CD_PATH_CLIP: + if (poly) + canvas->cxFPoly(canvas->ctxcanvas, CD_CLIP, path_poly, path_poly_n); + break; + } + } - if (canvas->invert_yaxis) - { - start_angle.x = xc + cdRound(w * cos(CD_DEG2RAD * a1) / 2.0); - start_angle.y = yc - cdRound(h * sin(CD_DEG2RAD * a1) / 2.0); - } - else - { - start_angle.x = xc + cdRound(w * cos(CD_DEG2RAD * a2) / 2.0); - start_angle.y = yc + cdRound(h * sin(CD_DEG2RAD * a2) / 2.0); - } + if (path_poly) + free(path_poly); +} - path_poly = sfPolyAddLine(path_poly, &path_poly_n, current, start_angle); - } +static void sSimPolyFPath(cdCanvas* canvas, const cdPoint* poly, int n) +{ + int p, i, current_set = 0, path_poly_n; + cdfPoint current, pt; + cdfPoint* path_poly; - path_poly = sfPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2); + current.x = 0; + current.y = 0; + current_set = 0; + + /* starts a new path */ + path_poly = NULL; + path_poly_n = 0; + + i = 0; + for (p=0; p<canvas->path_n; p++) + { + switch(canvas->path[p]) + { + case CD_PATH_NEW: + if (path_poly) + free(path_poly); + path_poly = NULL; + path_poly_n = 0; + current_set = 0; + break; + case CD_PATH_MOVETO: + if (i+1 > n) break; + current.x = poly[i].x; + current.y = poly[i].y; + current_set = 1; + i++; + break; + case CD_PATH_LINETO: + if (i+1 > n) break; + pt.x = poly[i].x; + pt.y = poly[i].y; + path_poly = sfPolyAddLine(path_poly, &path_poly_n, current, pt); + current.x = poly[i].x; + current.y = poly[i].y; + current_set = 1; + i++; + break; + case CD_PATH_ARC: + { + double xc, yc, w, h; + double a1, a2; + + if (i+3 > n) break; + + xc = poly[i].x, + yc = poly[i].y, + w = poly[i+1].x, + h = poly[i+1].y, + a1 = poly[i+2].x/1000.0, + a2 = poly[i+2].y/1000.0; + + if (current_set) + path_poly = sfPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2, ¤t); + else + path_poly = sfPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2, NULL); current = path_poly[path_poly_n-1]; current_set = 1; @@ -801,9 +930,8 @@ void cdfSimPolyPath(cdCanvas* canvas, const cdfPoint* poly, int n) current.x = poly[i].x; current.y = poly[i].y; } - path_poly = sfPolyAddBezier(canvas, path_poly, &path_poly_n, current, poly+i); - current.x = poly[i+2].x; - current.y = poly[i+2].y; + path_poly = sPolyFAddBezier(canvas, path_poly, &path_poly_n, current, poly+i); + current = path_poly[path_poly_n-1]; current_set = 1; i += 3; break; @@ -852,6 +980,23 @@ void cdSimPolyPath(cdCanvas* canvas, const cdPoint* poly, int n) cdPoint current; cdPoint* path_poly; + if (canvas->line_width == 1 && canvas->cxFPoly) + { + int has_curve = 0; + for (p=0; p<canvas->path_n; p++) + { + if (canvas->path[p] == CD_PATH_ARC || + canvas->path[p] == CD_PATH_CURVETO) + has_curve = 1; + if (canvas->path[p] == CD_PATH_STROKE && + has_curve == 1) + { + sSimPolyFPath(canvas, poly, n); + return; + } + } + } + current.x = 0; current.y = 0; current_set = 0; @@ -900,24 +1045,9 @@ void cdSimPolyPath(cdCanvas* canvas, const cdPoint* poly, int n) a2 = poly[i+2].y/1000.0; if (current_set) - { - cdPoint start_angle; - - if (canvas->invert_yaxis) - { - start_angle.x = xc + cdRound(w * cos(CD_DEG2RAD * a1) / 2.0); - start_angle.y = yc - cdRound(h * sin(CD_DEG2RAD * a1) / 2.0); - } - else - { - start_angle.x = xc + cdRound(w * cos(CD_DEG2RAD * a2) / 2.0); - start_angle.y = yc + cdRound(h * sin(CD_DEG2RAD * a2) / 2.0); - } - - path_poly = sPolyAddLine(path_poly, &path_poly_n, current, start_angle); - } - - path_poly = sPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2); + path_poly = sPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2, ¤t); + else + path_poly = sPolyAddArc(canvas, path_poly, &path_poly_n, xc, yc, w, h, a1, a2, NULL); current = path_poly[path_poly_n-1]; current_set = 1; @@ -933,8 +1063,7 @@ void cdSimPolyPath(cdCanvas* canvas, const cdPoint* poly, int n) current.y = poly[i].y; } path_poly = sPolyAddBezier(canvas, path_poly, &path_poly_n, current, poly+i); - current.x = poly[i+2].x; - current.y = poly[i+2].y; + current = path_poly[path_poly_n-1]; current_set = 1; i += 3; break; |