1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
#include <stdio.h>
#include <math.h>
#include <cd.h>
#include "list.h"
#include "types.h"
#include "intcgm.h"
#include "intcgm6.h"
#include "ellipse.h"
#ifndef PI
#define PI 3.14159265358979323846
#endif
#define ANGMIN 0.00001
/* Adjust the circle parametrization for the elipsis parametrization */
double cgm_AdjArc ( double arc, double w, double h )
{
double value;
if ((fabs(w*sin(arc))<1e-99) && (fabs(h*cos(arc))<1e-99))
value = 0.0;
else
value = atan2(w*sin(arc), h*cos(arc));
if ( arc > PI ) value += 2*PI;
if ( arc < -PI ) value -= 2*PI;
return value;
}
/* Desenha um arco de Elipse */
void cgm_ElpArc ( double xc, double yc, double w, double h, double r, double a1,
double a2, int n, int tipo )
{
/* Onde:
(xc,yc) Centro
(w,h) Largura e altura (diametro na direcao dos eixos principais)
r Inclinacao dos eixos principais com relacao x e y
a1,a2 Angulos incial e final do arco [-360,+360]
Note-se que o sentido e' dado pela diferenca a2-a1,
ou seja, 30 a 330 e' trigonometrico
30 a -30 e' horario
n Numero de segmentos da poligonal equivalente
(64 parece ser um bom numero)
tipo 0=aberto 1=fechado(torta) 2=fechado(corda) */
double da, c, s, sx, sy, ang, xant, yant;
double px, py, tx, ty, txant, tyant, dx, dy;
int i, inicio;
/* Reduz de diametro a raio */
w = w/2;
h = h/2;
/* Transforma graus em radianos e ajusta a os angulos da parametrizacao */
a1 = cgm_AdjArc(a1,w,h);
a2 = cgm_AdjArc(a2,w,h);
if ( a2>a1 )
ang = a2 - a1;
else
ang = 2*PI - ( a1 - a2 );
/* Gera os pontos do arco centrado na origem com os eixos em x e y */
da = ang/n;
c = cos(da);
s = sin(da);
sx = -w*s/h;
sy = h*s/w;
if ( tipo==1 || tipo==2 )
{
long int cor;
cor = cgm_getcolor ( intcgm_fill_att.color );
cdCanvasSetForeground (intcgm_canvas, cor );
cdCanvasBegin(intcgm_canvas, cgm_setintstyle(intcgm_fill_att.int_style) );
}
else
{
long int cor;
int size = (int)floor(intcgm_line_att.width+.5);
cdCanvasLineStyle (intcgm_canvas, intcgm_line_att.type );
cdCanvasLineWidth (intcgm_canvas, size>0? size: 1 );
cor = cgm_getcolor ( intcgm_line_att.color );
cdCanvasSetForeground (intcgm_canvas, cor );
}
dx = (fabs(r)>ANGMIN) ? sin(r) : 0;
dy = (fabs(r)>ANGMIN) ? cos(r) : 1;
xant = w*cos(a1);
yant = h*sin(a1);
txant = xc+dy*xant-dx*yant; /* Inclina (se for o caso) e translada */
tyant = yc+dx*xant+dy*yant; /* Inclina (se for o caso) e translada */
if ( tipo==1 )
{
cdCanvasVertex (intcgm_canvas, cgm_vdcx2canvas(xc), cgm_vdcy2canvas(yc) );
cdCanvasVertex (intcgm_canvas, cgm_vdcx2canvas(txant), cgm_vdcy2canvas(tyant) );
inicio = 2;
}
else if ( tipo==2 )
{
cdCanvasVertex (intcgm_canvas, cgm_vdcx2canvas(txant), cgm_vdcy2canvas(tyant) );
inicio = 1;
}
for ( i=inicio; i<=(n+inicio-1); i++ )
{
px = c*xant+sx*yant;
py = sy*xant+c*yant;
tx = xc+dy*px-dx*py; /* Inclina (se for o caso) e translada */
ty = yc+dx*px+dy*py; /* Inclina (se for o caso) e translada */
if ( tipo==0 )
cdCanvasLine (intcgm_canvas, cgm_vdcx2canvas(txant), cgm_vdcy2canvas(tyant), cgm_vdcx2canvas(tx), cgm_vdcy2canvas(ty) );
else
cdCanvasVertex (intcgm_canvas, cgm_vdcx2canvas(tx), cgm_vdcy2canvas(ty) );
xant = px;
yant = py;
txant = tx;
tyant = ty;
}
/* Desenha */
if ( tipo==1 || tipo==2 ) cdCanvasEnd(intcgm_canvas);
}
|