diff options
author | scuri <scuri> | 2008-10-17 06:10:15 +0000 |
---|---|---|
committer | scuri <scuri> | 2008-10-17 06:10:15 +0000 |
commit | 5a422aba704c375a307a902bafe658342e209906 (patch) | |
tree | 5005011e086bb863d8fb587ad3319bbec59b2447 /src/fftw3/dft/codelets/standard/t2_64.c |
First commit - moving from LuaForge to SourceForge
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t2_64.c')
-rw-r--r-- | src/fftw3/dft/codelets/standard/t2_64.c | 1906 |
1 files changed, 1906 insertions, 0 deletions
diff --git a/src/fftw3/dft/codelets/standard/t2_64.c b/src/fftw3/dft/codelets/standard/t2_64.c new file mode 100644 index 0000000..6fc7efd --- /dev/null +++ b/src/fftw3/dft/codelets/standard/t2_64.c @@ -0,0 +1,1906 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sat Jul 5 21:30:32 EDT 2003 */ + +#include "codelet-dft.h" + +/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 64 -name t2_64 -include t.h */ + +/* + * This function contains 1154 FP additions, 660 FP multiplications, + * (or, 880 additions, 386 multiplications, 274 fused multiply/add), + * 382 stack variables, and 256 memory accesses + */ +/* + * Generator Id's : + * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ + */ + +#include "t.h" + +static const R *t2_64(R *ri, R *ii, const R *W, stride ios, int m, int dist) +{ + DK(KP290284677, +0.290284677254462367636192375817395274691476278); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP471396736, +0.471396736825997648556387625905254377657460319); + DK(KP098017140, +0.098017140329560601994195563888641845861136673); + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP634393284, +0.634393284163645498215171613225493370675687095); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + int i; + for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 10) { + E T1, Ti1, Tp, Tt, TH, TL, T6a, T6c, T4J, T4H, T1g, T91, T7W, T7m, T2O; + E T4j, T7P, T4P, T8y, T2w, T8t, T2Z, T8e, T48, T1z, T7s, T1I, T7t, T8p, Ten; + E T1Y, T7D, T2t, T7O, T7L, Te6, T3N, T8E, T7A, Te0, T4C, TeA, T8S, T9v, T65; + E Tfi, T9J, Taq, T6K, Tf6, Ta2, Ta5, T73, Tfc, Tad, Tag, T3z, T83, T3u, T82; + E T81, T84, T15, T9K, T68, T7j, T43, T9w, T4F, T8G, T5l, TeL, T9k, T9n, T6o; + E Tf2, T9Q, T9R, T6z, Tf3, T9T, T9W, To, Ts, T4o, T8u, T4U, T92, T5a, TeT; + E T8V, T8Y, T5G, TeG, T97, T9e, T27, T7X, T2T, T7E, T7b, Tai, T6T, Ta3, Tf7; + E Ta8, T7Q, T2H, T2c, T76, Tah, T7F, T4d, T8z, TG, TK, T69, T6b, T3b, T87; + E T5u, T9l, TeM, T9q, T88, T89, T3o, T86, T5P, T9f, TeH, T9a, T34, T8f, T1r; + E T7n, T3S, T8F, T4G, T4I; + T1 = ri[0]; + Ti1 = ii[0]; + Tp = ri[WS(ios, 32)]; + Tt = ii[WS(ios, 32)]; + TH = ri[WS(ios, 16)]; + TL = ii[WS(ios, 16)]; + T6a = ri[WS(ios, 47)]; + T6c = ii[WS(ios, 47)]; + T4J = ii[WS(ios, 49)]; + T4H = ri[WS(ios, 49)]; + { + E T12, T14, T1b, T1f, T1q, T1m, T1w, T1y, T1D, T1H, T1S, T1M, T1N, T1W, T2M; + E T2g, T2b, T29, T26, T22, T2i, T2E, T2G, T2v, T2u, T2r, T2n, T2N, T3a, T38; + E T3l, T3n, T3r, T3t, T33, T31, T2Y, T2W, T4g, T2S, T2Q, T3w, T3y, T3E, T3G; + E T3P, T3J, T3L, T3R, T4a, T4c, T47, T46, T42, T40, T4i, T6P, T6R, T6M, T6L; + E T6I, T6G, T6W, T6Y, T74, T75, T5I, T78, T7a, T6x, T6v, T6s, T6q, T6h, T6m; + E T6k, T6g, T5N, T5L, T5Z, T63, T66, T67, T5H, T54, T4D, T4A, T4y, T4n, T4l; + E T4E, T4X, T4Z, T4T, T4R, T4O, T4N, T58, T5s, T5q, T5x, T5z, T5C, T5E, T5n; + E T5m, T5j, T5h, T5d, T5e, Ta, Ty, Tf, Tw, T2, Tj, T3, Tc, T1E, T1B; + E T1F, T1A, T1R, T3x, T2m, T3K, T61, T1V, T60, T3I, T51, T52, T2V, T56, T5X; + E T3v, T55, T2X, T2q, T5W, T4w, T6E, Ta0, T8Q, Tac, T72, Tb, Tg, Th, T3e; + E T3f, T3h, T1a, T2x, T2B, TU, TV, TY, T1e, T2y, T2A, TC, TD, T1u, Tk; + E Tl, Tm, T39, T3U, T3W, T37, T3T, T3X, TQ, TR, TZ, T3c, T3d, T3i, Tx; + E Tz, T1t, TN, TX, T2f, T5V, Tao, T2h, T3D, T4f, T4h, T3F, T3q, T3s; + T12 = ri[WS(ios, 48)]; + T14 = ii[WS(ios, 48)]; + T1b = ri[WS(ios, 8)]; + T1f = ii[WS(ios, 8)]; + T1q = ii[WS(ios, 40)]; + T1m = ri[WS(ios, 40)]; + T1w = ri[WS(ios, 56)]; + T1y = ii[WS(ios, 56)]; + T1D = ri[WS(ios, 24)]; + T1H = ii[WS(ios, 24)]; + T1S = ri[WS(ios, 36)]; + T1M = ri[WS(ios, 4)]; + T1N = ii[WS(ios, 4)]; + T1W = ii[WS(ios, 36)]; + T2M = ri[WS(ios, 2)]; + T2g = ri[WS(ios, 60)]; + T2b = ii[WS(ios, 52)]; + T29 = ri[WS(ios, 52)]; + T26 = ii[WS(ios, 20)]; + T22 = ri[WS(ios, 20)]; + T2i = ii[WS(ios, 60)]; + T2E = ri[WS(ios, 44)]; + T2G = ii[WS(ios, 44)]; + T2v = ii[WS(ios, 12)]; + T2u = ri[WS(ios, 12)]; + T2r = ii[WS(ios, 28)]; + T2n = ri[WS(ios, 28)]; + T2N = ii[WS(ios, 2)]; + T3a = ii[WS(ios, 10)]; + T38 = ri[WS(ios, 10)]; + T3l = ri[WS(ios, 42)]; + T3n = ii[WS(ios, 42)]; + T3r = ri[WS(ios, 58)]; + T3t = ii[WS(ios, 58)]; + T33 = ii[WS(ios, 50)]; + T31 = ri[WS(ios, 50)]; + T2Y = ii[WS(ios, 18)]; + T2W = ri[WS(ios, 18)]; + T4g = ri[WS(ios, 54)]; + T2S = ii[WS(ios, 34)]; + T2Q = ri[WS(ios, 34)]; + T3w = ri[WS(ios, 26)]; + T3y = ii[WS(ios, 26)]; + T3E = ri[WS(ios, 62)]; + T3G = ii[WS(ios, 62)]; + T3P = ri[WS(ios, 14)]; + T3J = ri[WS(ios, 30)]; + T3L = ii[WS(ios, 30)]; + T3R = ii[WS(ios, 14)]; + T4a = ri[WS(ios, 38)]; + T4c = ii[WS(ios, 38)]; + T47 = ii[WS(ios, 6)]; + T46 = ri[WS(ios, 6)]; + T42 = ii[WS(ios, 46)]; + T40 = ri[WS(ios, 46)]; + T4i = ii[WS(ios, 54)]; + T6P = ri[WS(ios, 51)]; + T6R = ii[WS(ios, 51)]; + T6M = ii[WS(ios, 19)]; + T6L = ri[WS(ios, 19)]; + T6I = ii[WS(ios, 35)]; + T6G = ri[WS(ios, 35)]; + T6W = ri[WS(ios, 59)]; + T6Y = ii[WS(ios, 59)]; + T74 = ri[WS(ios, 11)]; + T75 = ii[WS(ios, 11)]; + T5I = ii[WS(ios, 13)]; + T78 = ri[WS(ios, 43)]; + T7a = ii[WS(ios, 43)]; + T6x = ii[WS(ios, 23)]; + T6v = ri[WS(ios, 23)]; + T6s = ii[WS(ios, 55)]; + T6q = ri[WS(ios, 55)]; + T6h = ii[WS(ios, 7)]; + T6m = ii[WS(ios, 39)]; + T6k = ri[WS(ios, 39)]; + T6g = ri[WS(ios, 7)]; + T5N = ii[WS(ios, 45)]; + T5L = ri[WS(ios, 45)]; + T5Z = ri[WS(ios, 31)]; + T63 = ii[WS(ios, 31)]; + T66 = ri[WS(ios, 15)]; + T67 = ii[WS(ios, 15)]; + T5H = ri[WS(ios, 13)]; + T54 = ri[WS(ios, 25)]; + T4D = ri[WS(ios, 17)]; + T4A = ii[WS(ios, 33)]; + T4y = ri[WS(ios, 33)]; + T4n = ii[WS(ios, 22)]; + T4l = ri[WS(ios, 22)]; + T4E = ii[WS(ios, 17)]; + T4X = ri[WS(ios, 57)]; + T4Z = ii[WS(ios, 57)]; + T4T = ii[WS(ios, 41)]; + T4R = ri[WS(ios, 41)]; + T4O = ii[WS(ios, 9)]; + T4N = ri[WS(ios, 9)]; + T58 = ii[WS(ios, 25)]; + T5s = ii[WS(ios, 53)]; + T5q = ri[WS(ios, 53)]; + T5x = ri[WS(ios, 61)]; + T5z = ii[WS(ios, 61)]; + T5C = ri[WS(ios, 29)]; + T5E = ii[WS(ios, 29)]; + T5n = ii[WS(ios, 21)]; + T5m = ri[WS(ios, 21)]; + T5j = ii[WS(ios, 37)]; + T5h = ri[WS(ios, 37)]; + T5d = ri[WS(ios, 5)]; + T5e = ii[WS(ios, 5)]; + { + E T4u, T4v, T5T, T5U, T6C, T6D, T70, T71, T4, T7, T5, T8, TO, TP, T1U; + E T2p, T18, T2k, T2l, T2o, TT, TS, T19, T1c, T1T, T1P, T1Q, T1d; + T4u = ri[WS(ios, 1)]; + T4v = ii[WS(ios, 1)]; + T5T = ri[WS(ios, 63)]; + T5U = ii[WS(ios, 63)]; + T6C = ri[WS(ios, 3)]; + T6D = ii[WS(ios, 3)]; + T70 = ri[WS(ios, 27)]; + T71 = ii[WS(ios, 27)]; + { + E T6, Te, T9, Td; + T4 = W[2]; + T7 = W[3]; + T5 = W[0]; + T8 = W[1]; + T6 = T4 * T5; + Te = T7 * T5; + T9 = T7 * T8; + Td = T4 * T8; + Ta = T6 - T9; + Ty = Td - Te; + Tf = Td + Te; + Tw = T6 + T9; + T2 = W[6]; + Tj = W[7]; + T3 = W[4]; + Tc = W[5]; + TO = T3 * T4; + TP = Tc * T7; + T1U = Tj * T3; + T2p = Tj * T5; + T18 = T3 * T5; + T2k = T2 * T5; + T2l = Tj * T8; + T2o = T2 * T8; + TT = Tc * T4; + TS = T3 * T7; + T19 = Tc * T8; + T1c = T3 * T8; + T1E = T2 * T7; + T1T = T2 * Tc; + T1B = Tj * T7; + T1F = Tj * T4; + T1P = T2 * T3; + T1Q = Tj * Tc; + T1A = T2 * T4; + T1d = Tc * T5; + } + T1R = T1P - T1Q; + T3x = T2o - T2p; + T2m = T2k - T2l; + T3K = T1E + T1F; + T61 = Tj * Ta; + T1V = T1T + T1U; + T60 = T2 * Tf; + T3I = T1A - T1B; + T51 = T2 * Tw; + T52 = Tj * Ty; + T2V = T1P + T1Q; + T56 = Tj * Tw; + T5X = Tj * Tf; + T3v = T2k + T2l; + T55 = T2 * Ty; + T2X = T1T - T1U; + T2q = T2o + T2p; + T5W = T2 * Ta; + T4w = FMA(T5, T4u, T8 * T4v); + T6E = FMA(T4, T6C, T7 * T6D); + Ta0 = FNMS(T7, T6C, T4 * T6D); + T8Q = FNMS(T8, T4u, T5 * T4v); + Tac = FNMS(Tj, T70, T2 * T71); + T72 = FMA(T2, T70, Tj * T71); + Tb = T3 * Ta; + Tg = Tc * Tf; + Th = Tb + Tg; + T3e = TS - TT; + T3f = Tj * T3e; + T3h = T2 * T3e; + T1a = T18 + T19; + T2x = T2 * T1a; + T2B = Tj * T1a; + TU = TS + TT; + TV = Tj * TU; + TY = T2 * TU; + T1e = T1c - T1d; + T2y = Tj * T1e; + T2A = T2 * T1e; + TC = T3 * Ty; + TD = Tc * Tw; + T1u = TC + TD; + Tk = T3 * Tf; + Tl = Tc * Ta; + Tm = Tk - Tl; + T39 = T1c + T1d; + T3U = Tj * T39; + T3W = T2 * T39; + T37 = T18 - T19; + T3T = T2 * T37; + T3X = Tj * T37; + TQ = TO - TP; + TR = T2 * TQ; + TZ = Tj * TQ; + T3c = TO + TP; + T3d = T2 * T3c; + T3i = Tj * T3c; + Tx = T3 * Tw; + Tz = Tc * Ty; + T1t = Tx - Tz; + TN = W[8]; + TX = W[9]; + T2f = FMA(TN, T4, TX * T7); + T5V = FMA(TN, T5T, TX * T5U); + Tao = FNMS(TX, T5T, TN * T5U); + T2h = FNMS(TX, T4, TN * T7); + T3D = FMA(TN, T5, TX * T8); + T4f = FMA(TN, T3, TX * Tc); + T4h = FNMS(TX, T3, TN * Tc); + T3F = FNMS(TX, T5, TN * T8); + } + T1g = FNMS(T1e, T1f, T1a * T1b); + T91 = FNMS(Tc, T4N, T3 * T4O); + T7W = FMA(Ty, T2M, Tw * T2N); + T7m = FMA(T1e, T1b, T1a * T1f); + T2O = FNMS(Ty, T2N, Tw * T2M); + T4j = FNMS(T4h, T4i, T4f * T4g); + T7P = FNMS(TU, T2u, TQ * T2v); + T4P = FMA(T3, T4N, Tc * T4O); + T8y = FMA(T3e, T46, T3c * T47); + T2w = FMA(TQ, T2u, TU * T2v); + { + E T1v, T1x, T1O, T1X; + T8t = FMA(T4h, T4g, T4f * T4i); + T2Z = FNMS(T2X, T2Y, T2V * T2W); + T8e = FMA(T2X, T2W, T2V * T2Y); + T48 = FNMS(T3e, T47, T3c * T46); + T1v = FMA(TN, T1t, TX * T1u); + T1x = FNMS(TX, T1t, TN * T1u); + T1z = FNMS(T1x, T1y, T1v * T1w); + T7s = FMA(T1x, T1w, T1v * T1y); + { + E T1C, T1G, T8n, T8o; + T1C = T1A + T1B; + T1G = T1E - T1F; + T1I = FNMS(T1G, T1H, T1C * T1D); + T7t = FMA(T1G, T1D, T1C * T1H); + T8n = FMA(T3F, T3E, T3D * T3G); + T8o = FNMS(T3K, T3J, T3I * T3L); + T8p = T8n - T8o; + Ten = T8n + T8o; + } + T1O = FMA(Ta, T1M, Tf * T1N); + T1X = FMA(T1R, T1S, T1V * T1W); + T1Y = T1O + T1X; + T7D = T1O - T1X; + { + E T2j, T2s, T7J, T7K; + T2j = FNMS(T2h, T2i, T2f * T2g); + T2s = FMA(T2m, T2n, T2q * T2r); + T2t = T2j + T2s; + T7O = T2j - T2s; + T7J = FMA(T2h, T2g, T2f * T2i); + T7K = FNMS(T2q, T2n, T2m * T2r); + T7L = T7J - T7K; + Te6 = T7J + T7K; + } + } + { + E T3H, T3M, T7y, T7z; + T3H = FNMS(T3F, T3G, T3D * T3E); + T3M = FMA(T3I, T3J, T3K * T3L); + T3N = T3H + T3M; + T8E = T3H - T3M; + T7y = FNMS(Tf, T1M, Ta * T1N); + T7z = FNMS(T1V, T1S, T1R * T1W); + T7A = T7y - T7z; + Te0 = T7y + T7z; + } + { + E T4B, T8R, T4x, T4z; + T4x = T3d + T3f; + T4z = T3h - T3i; + T4B = FNMS(T4z, T4A, T4x * T4y); + T8R = FMA(T4z, T4y, T4x * T4A); + T4C = T4w + T4B; + TeA = T8Q + T8R; + T8S = T8Q - T8R; + T9v = T4w - T4B; + } + { + E T64, Tap, T5Y, T62; + T5Y = T5W - T5X; + T62 = T60 + T61; + T64 = FMA(T5Y, T5Z, T62 * T63); + Tap = FNMS(T62, T5Z, T5Y * T63); + T65 = T5V + T64; + Tfi = Tao + Tap; + T9J = T5V - T64; + Taq = Tao - Tap; + } + { + E T6J, Ta1, T6F, T6H; + T6F = T2x + T2y; + T6H = T2A - T2B; + T6J = FNMS(T6H, T6I, T6F * T6G); + Ta1 = FMA(T6H, T6G, T6F * T6I); + T6K = T6E + T6J; + Tf6 = Ta0 + Ta1; + Ta2 = Ta0 - Ta1; + Ta5 = T6E - T6J; + } + { + E T6Z, Tab, T6V, T6X; + T6V = FMA(TN, Ta, TX * Tf); + T6X = FNMS(TX, Ta, TN * Tf); + T6Z = FNMS(T6X, T6Y, T6V * T6W); + Tab = FMA(T6X, T6W, T6V * T6Y); + T73 = T6Z + T72; + Tfc = Tab + Tac; + Tad = Tab - Tac; + Tag = T6Z - T72; + } + T3z = FNMS(T3x, T3y, T3v * T3w); + T83 = FMA(T3x, T3w, T3v * T3y); + T3q = FNMS(TX, Tm, TN * Th); + T3s = FMA(TN, Tm, TX * Th); + T3u = FMA(T3q, T3r, T3s * T3t); + T82 = FNMS(T3s, T3r, T3q * T3t); + T81 = T3u - T3z; + T84 = T82 - T83; + { + E TW, T10, T11, T13; + TW = TR + TV; + T10 = TY - TZ; + T11 = FNMS(TX, T10, TN * TW); + T13 = FMA(TN, T10, TX * TW); + T15 = FMA(T11, T12, T13 * T14); + T9K = FMA(T10, T66, TW * T67); + T68 = FNMS(T10, T67, TW * T66); + T7j = FNMS(T13, T12, T11 * T14); + } + { + E T3V, T3Y, T3Z, T41; + T3V = T3T + T3U; + T3Y = T3W - T3X; + T3Z = FNMS(TX, T3Y, TN * T3V); + T41 = FMA(TN, T3Y, TX * T3V); + T43 = FMA(T3Z, T40, T41 * T42); + T9w = FMA(T3Y, T4D, T3V * T4E); + T4F = FNMS(T3Y, T4E, T3V * T4D); + T8G = FNMS(T41, T40, T3Z * T42); + } + { + E T5f, T9i, T5k, T9j, T5g, T5i; + T5f = FNMS(Tm, T5e, Th * T5d); + T9i = FMA(Tm, T5d, Th * T5e); + T5g = T3T - T3U; + T5i = T3W + T3X; + T5k = FMA(T5g, T5h, T5i * T5j); + T9j = FNMS(T5i, T5h, T5g * T5j); + T5l = T5f + T5k; + TeL = T9i + T9j; + T9k = T9i - T9j; + T9n = T5f - T5k; + } + { + E T6i, T9O, T6n, T9P, T6j, T6l; + T6i = FMA(T1t, T6g, T1u * T6h); + T9O = FNMS(T1u, T6g, T1t * T6h); + T6j = TR - TV; + T6l = TY + TZ; + T6n = FMA(T6j, T6k, T6l * T6m); + T9P = FNMS(T6l, T6k, T6j * T6m); + T6o = T6i + T6n; + Tf2 = T9O + T9P; + T9Q = T9O - T9P; + T9R = T6i - T6n; + } + { + E T6t, T9U, T6y, T9V; + { + E T6p, T6r, T6u, T6w; + T6p = FNMS(TX, T1e, TN * T1a); + T6r = FMA(TN, T1e, TX * T1a); + T6t = FMA(T6p, T6q, T6r * T6s); + T9U = FNMS(T6r, T6q, T6p * T6s); + T6u = T5W + T5X; + T6w = T60 - T61; + T6y = FNMS(T6w, T6x, T6u * T6v); + T9V = FMA(T6w, T6v, T6u * T6x); + } + T6z = T6t + T6y; + Tf3 = T9U + T9V; + T9T = T6t - T6y; + T9W = T9U - T9V; + } + { + E Ti, Tn, T4k, Tq, Tr, T4m, T4Q, T4S; + Ti = T2 * Th; + Tn = Tj * Tm; + T4k = Ti - Tn; + Tq = T2 * Tm; + Tr = Tj * Th; + T4m = Tq + Tr; + To = Ti + Tn; + Ts = Tq - Tr; + T4o = FMA(T4k, T4l, T4m * T4n); + T8u = FNMS(T4m, T4l, T4k * T4n); + T4Q = FMA(TN, T4k, TX * T4m); + T4S = FNMS(TX, T4k, TN * T4m); + T4U = FNMS(T4S, T4T, T4Q * T4R); + T92 = FMA(T4S, T4R, T4Q * T4T); + } + { + E T50, T8W, T59, T8X; + { + E T4W, T4Y, T53, T57; + T4W = FNMS(TX, T3e, TN * T3c); + T4Y = FMA(TN, T3e, TX * T3c); + T50 = FMA(T4W, T4X, T4Y * T4Z); + T8W = FNMS(T4Y, T4X, T4W * T4Z); + T53 = T51 - T52; + T57 = T55 + T56; + T59 = FMA(T53, T54, T57 * T58); + T8X = FNMS(T57, T54, T53 * T58); + } + T5a = T50 + T59; + TeT = T8W + T8X; + T8V = T50 - T59; + T8Y = T8W - T8X; + } + { + E T5A, T9c, T5F, T9d; + { + E T5w, T5y, T5B, T5D; + T5w = FNMS(TX, Ty, TN * Tw); + T5y = FMA(TN, Ty, TX * Tw); + T5A = FMA(T5w, T5x, T5y * T5z); + T9c = FNMS(T5y, T5x, T5w * T5z); + T5B = T51 + T52; + T5D = T55 - T56; + T5F = FNMS(T5D, T5E, T5B * T5C); + T9d = FMA(T5D, T5C, T5B * T5E); + } + T5G = T5A + T5F; + TeG = T9c + T9d; + T97 = T5A - T5F; + T9e = T9c - T9d; + } + { + E T21, T2P, T25, T2R, T77, T79; + { + E T1Z, T20, T23, T24; + T1Z = T2 * T1t; + T20 = Tj * T1u; + T21 = T1Z + T20; + T2P = T1Z - T20; + T23 = T2 * T1u; + T24 = Tj * T1t; + T25 = T23 - T24; + T2R = T23 + T24; + } + T27 = FNMS(T25, T26, T21 * T22); + T7X = FNMS(T2R, T2Q, T2P * T2S); + T2T = FMA(T2P, T2Q, T2R * T2S); + T7E = FMA(T25, T22, T21 * T26); + T77 = FNMS(TX, T25, TN * T21); + T79 = FMA(TN, T25, TX * T21); + T7b = FMA(T77, T78, T79 * T7a); + Tai = FNMS(T79, T78, T77 * T7a); + } + { + E T6S, Ta7, T2D, Ta6, T2F, T6N; + { + E T6O, T6Q, T2z, T2C; + T6O = FMA(TN, TQ, TX * TU); + T6Q = FNMS(TX, TQ, TN * TU); + T6S = FNMS(T6Q, T6R, T6O * T6P); + Ta7 = FMA(T6Q, T6P, T6O * T6R); + T2z = T2x - T2y; + T2C = T2A + T2B; + T2D = FMA(TN, T2z, TX * T2C); + Ta6 = FNMS(T2C, T6L, T2z * T6M); + T2F = FNMS(TX, T2z, TN * T2C); + T6N = FMA(T2z, T6L, T2C * T6M); + } + T6T = T6N + T6S; + Ta3 = T6N - T6S; + Tf7 = Ta6 + Ta7; + Ta8 = Ta6 - Ta7; + T7Q = FMA(T2F, T2E, T2D * T2G); + T2H = FNMS(T2F, T2G, T2D * T2E); + } + { + E TA, TE, TB, TF, TJ, TI, T2a, T28, T49, T4b; + TA = Tx + Tz; + TE = TC - TD; + TB = T2 * TA; + TF = Tj * TE; + TJ = Tj * TA; + TI = T2 * TE; + T2a = FMA(TN, TE, TX * TA); + T28 = FNMS(TX, TE, TN * TA); + T2c = FMA(T28, T29, T2a * T2b); + T76 = FNMS(TE, T75, TA * T74); + Tah = FMA(TE, T74, TA * T75); + T7F = FNMS(T2a, T29, T28 * T2b); + T49 = TB + TF; + T4b = TI - TJ; + T4d = FNMS(T4b, T4c, T49 * T4a); + T8z = FMA(T4b, T4a, T49 * T4c); + TG = TB - TF; + TK = TI + TJ; + T69 = FMA(TN, TG, TX * TK); + T6b = FNMS(TX, TG, TN * TK); + } + { + E T5t, T9p, T3k, T9o, T3m, T5o; + T3b = FMA(T37, T38, T39 * T3a); + T87 = FNMS(T39, T38, T37 * T3a); + { + E T5p, T5r, T3g, T3j; + T5p = FMA(TN, T37, TX * T39); + T5r = FNMS(TX, T37, TN * T39); + T5t = FNMS(T5r, T5s, T5p * T5q); + T9p = FMA(T5r, T5q, T5p * T5s); + T3g = T3d - T3f; + T3j = T3h + T3i; + T3k = FMA(TN, T3g, TX * T3j); + T9o = FNMS(T3j, T5m, T3g * T5n); + T3m = FNMS(TX, T3g, TN * T3j); + T5o = FMA(T3g, T5m, T3j * T5n); + } + T5u = T5o + T5t; + T9l = T5o - T5t; + TeM = T9o + T9p; + T9q = T9o - T9p; + T88 = FMA(T3m, T3l, T3k * T3n); + T89 = T87 - T88; + T3o = FNMS(T3m, T3n, T3k * T3l); + T86 = T3b - T3o; + } + { + E T5O, T99, T1i, T1n, T1o, T1k, T30, T5J, T98, T32; + { + E T5K, T5M, T1h, T1j; + T5K = FNMS(TX, T2X, TN * T2V); + T5M = FMA(TN, T2X, TX * T2V); + T5O = FMA(T5K, T5L, T5M * T5N); + T99 = FNMS(T5M, T5L, T5K * T5N); + T1h = Tb - Tg; + T1j = Tk + Tl; + T1i = T2 * T1h; + T1n = T2 * T1j; + T1o = Tj * T1h; + T1k = Tj * T1j; + T30 = FMA(TN, T1h, TX * T1j); + T5J = FMA(T1h, T5H, T1j * T5I); + T98 = FNMS(T1j, T5H, T1h * T5I); + T32 = FNMS(TX, T1h, TN * T1j); + } + T5P = T5J + T5O; + T9f = T5J - T5O; + TeH = T98 + T99; + T9a = T98 - T99; + T34 = FNMS(T32, T33, T30 * T31); + T8f = FMA(T32, T31, T30 * T33); + { + E T1l, T1p, T3O, T3Q; + T1l = T1i - T1k; + T1p = T1n + T1o; + T1r = FMA(T1l, T1m, T1p * T1q); + T7n = FNMS(T1p, T1m, T1l * T1q); + T3O = T1i + T1k; + T3Q = T1n - T1o; + T3S = FNMS(T3Q, T3R, T3O * T3P); + T8F = FMA(T3Q, T3P, T3O * T3R); + T4G = FNMS(TX, T3Q, TN * T3O); + T4I = FMA(TN, T3Q, TX * T3O); + } + } + } + { + E T5R, TgT, TgY, ThE, T9t, Tbe, T9G, Tbb, Tcl, Tdq, Tcs, Tdn, TeP, Tg4, TeY; + E Tg1, T7e, Th4, ThJ, Th9, Tfp, Tg8, Tfg, Tgb, T2K, TgC, Tih, ThX, TfQ, TiL; + E Tea, Tiv, Tam, Tbl, TcL, Tdu, Taz, Tbi, TcE, Tdx, T7U, Tjv, Tdc, Tjh, Tb0; + E TjL, TbU, TiZ, T8D, Tb5, Tc8, Tdi, T8M, Tb6, Tc5, Tdh, T4r, Thz, Tex, Tfz; + E TfX, Tgl, TgN, Thj, T8m, TaI, Tdg, TdG, Tb4, Tbu, Tc2, TcU, T3C, Thy, Tem; + E Tfy, TfU, Tgk, TgI, Thi, T6B, Th1, Tfm, Tga, Th8, ThI, T9Z, Tbh, Taw, Tbk; + E TcI, Tdw, Tf5, Tg7, Tcx, Tdt, T5c, TgV, TeV, Tg0, TgS, ThD, TeE, Tg3, T96; + E Tbd, Tce, Tdp, Tcp, Tdm, T9D, Tba, T1L, Tgz, Ti4, Tii, Tiy, TiM, TdZ, TfN; + E T7x, TaX, Tj4, Tji, Tjy, TjM, TbN, Td9; + { + E T5v, T5Q, TgW, TgX; + T5v = T5l + T5u; + T5Q = T5G + T5P; + T5R = T5v + T5Q; + TgT = T5Q - T5v; + TgW = TeL + TeM; + TgX = TeG + TeH; + TgY = TgW - TgX; + ThE = TgW + TgX; + } + { + E T9h, T9F, T9s, T9E; + { + E T9b, T9g, T9m, T9r; + T9b = T97 - T9a; + T9g = T9e + T9f; + T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); + T9F = FMA(KP382683432, T9g, KP923879532 * T9b); + T9m = T9k + T9l; + T9r = T9n - T9q; + T9s = FMA(KP923879532, T9m, KP382683432 * T9r); + T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); + } + T9t = T9h - T9s; + Tbe = T9E + T9F; + T9G = T9E - T9F; + Tbb = T9s + T9h; + } + { + E Tch, Tcr, Tck, Tcq; + { + E Tcf, Tcg, Tci, Tcj; + Tcf = T97 + T9a; + Tcg = T9e - T9f; + Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); + Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); + Tci = T9k - T9l; + Tcj = T9n + T9q; + Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); + Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); + } + Tcl = Tch - Tck; + Tdq = Tcq + Tcr; + Tcs = Tcq - Tcr; + Tdn = Tck + Tch; + } + { + E TeJ, TeX, TeO, TeW; + { + E TeF, TeI, TeK, TeN; + TeF = T5G - T5P; + TeI = TeG - TeH; + TeJ = TeF - TeI; + TeX = TeF + TeI; + TeK = T5l - T5u; + TeN = TeL - TeM; + TeO = TeK + TeN; + TeW = TeN - TeK; + } + TeP = KP707106781 * (TeJ - TeO); + Tg4 = KP707106781 * (TeW + TeX); + TeY = KP707106781 * (TeW - TeX); + Tg1 = KP707106781 * (TeO + TeJ); + } + { + E T6U, Th2, T7d, Tfb, Tfe, Th3, Tfa, Tfo, Tfn, Tff; + T6U = T6K + T6T; + Th2 = Tf6 + Tf7; + { + E T7c, Tfd, Tf8, Tf9; + T7c = T76 + T7b; + T7d = T73 + T7c; + Tfb = T73 - T7c; + Tfd = Tah + Tai; + Tfe = Tfc - Tfd; + Th3 = Tfc + Tfd; + Tf8 = Tf6 - Tf7; + Tf9 = T6K - T6T; + Tfa = Tf8 - Tf9; + Tfo = Tf9 + Tf8; + } + T7e = T6U + T7d; + Th4 = Th2 - Th3; + ThJ = Th2 + Th3; + Th9 = T7d - T6U; + Tfn = Tfb - Tfe; + Tfp = KP707106781 * (Tfn - Tfo); + Tg8 = KP707106781 * (Tfo + Tfn); + Tff = Tfb + Tfe; + Tfg = KP707106781 * (Tfa - Tff); + Tgb = KP707106781 * (Tfa + Tff); + } + { + E T2e, Te3, Te8, TgB, T2J, Te5, Te2, TgA; + { + E T2d, Te7, T2I, Te1; + T2d = T27 + T2c; + T2e = T1Y + T2d; + Te3 = T1Y - T2d; + Te7 = T7P + T7Q; + Te8 = Te6 - Te7; + TgB = Te6 + Te7; + T2I = T2w + T2H; + T2J = T2t + T2I; + Te5 = T2t - T2I; + Te1 = T7E + T7F; + Te2 = Te0 - Te1; + TgA = Te0 + Te1; + } + T2K = T2e + T2J; + TgC = TgA - TgB; + Tih = T2J - T2e; + ThX = TgA + TgB; + { + E TfO, TfP, Te4, Te9; + TfO = Te3 + Te2; + TfP = Te5 - Te8; + TfQ = KP707106781 * (TfO + TfP); + TiL = KP707106781 * (TfP - TfO); + Te4 = Te2 - Te3; + Te9 = Te5 + Te8; + Tea = KP707106781 * (Te4 - Te9); + Tiv = KP707106781 * (Te4 + Te9); + } + } + { + E Taf, TcB, Tak, TcC, Taa, Tay, TcA, TcK, Tae, Taj; + Tae = T76 - T7b; + Taf = Tad + Tae; + TcB = Tad - Tae; + Taj = Tah - Tai; + Tak = Tag - Taj; + TcC = Tag + Taj; + { + E Ta4, Ta9, Tcy, Tcz; + Ta4 = Ta2 + Ta3; + Ta9 = Ta5 - Ta8; + Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); + Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); + Tcy = Ta2 - Ta3; + Tcz = Ta5 + Ta8; + TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); + TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); + } + { + E Tal, TcJ, Tax, TcD; + Tal = FMA(KP382683432, Taf, KP923879532 * Tak); + Tam = Taa - Tal; + Tbl = Taa + Tal; + TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); + TcL = TcJ - TcK; + Tdu = TcK + TcJ; + Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); + Taz = Tax - Tay; + Tbi = Tay + Tax; + TcD = FMA(KP923879532, TcB, KP382683432 * TcC); + TcE = TcA - TcD; + Tdx = TcA + TcD; + } + } + { + E T7C, TbO, T7S, TbS, T7H, TbP, T7N, TbR; + { + E T7B, T7R, T7G, T7M; + T7B = T27 - T2c; + T7C = T7A + T7B; + TbO = T7A - T7B; + T7R = T7P - T7Q; + T7S = T7O - T7R; + TbS = T7O + T7R; + T7G = T7E - T7F; + T7H = T7D - T7G; + TbP = T7D + T7G; + T7M = T2w - T2H; + T7N = T7L + T7M; + TbR = T7L - T7M; + } + { + E T7I, T7T, Tda, Tdb; + T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); + T7T = FMA(KP382683432, T7N, KP923879532 * T7S); + T7U = T7I - T7T; + Tjv = T7I + T7T; + Tda = FMA(KP382683432, TbO, KP923879532 * TbP); + Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); + Tdc = Tda + Tdb; + Tjh = Tdb - Tda; + } + { + E TaY, TaZ, TbQ, TbT; + TaY = FMA(KP923879532, T7C, KP382683432 * T7H); + TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); + Tb0 = TaY + TaZ; + TjL = TaZ - TaY; + TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); + TbT = FMA(KP923879532, TbR, KP382683432 * TbS); + TbU = TbQ - TbT; + TiZ = TbQ + TbT; + } + } + { + E T8r, Tc6, T8I, Tc3, T8w, T8K, T8B, T8J, T8q, T8H; + T8q = T3S - T43; + T8r = T8p + T8q; + Tc6 = T8p - T8q; + T8H = T8F - T8G; + T8I = T8E - T8H; + Tc3 = T8E + T8H; + { + E T8s, T8v, T8x, T8A; + T8s = T4j - T4o; + T8v = T8t - T8u; + T8w = T8s - T8v; + T8K = T8s + T8v; + T8x = T48 - T4d; + T8A = T8y - T8z; + T8B = T8x + T8A; + T8J = T8A - T8x; + } + { + E T8C, Tc7, T8L, Tc4; + T8C = KP707106781 * (T8w - T8B); + T8D = T8r - T8C; + Tb5 = T8r + T8C; + Tc7 = KP707106781 * (T8J + T8K); + Tc8 = Tc6 - Tc7; + Tdi = Tc6 + Tc7; + T8L = KP707106781 * (T8J - T8K); + T8M = T8I - T8L; + Tb6 = T8I + T8L; + Tc4 = KP707106781 * (T8B + T8w); + Tc5 = Tc3 - Tc4; + Tdh = Tc3 + Tc4; + } + } + { + E T45, Tes, Tep, TgK, T4q, Teq, Tev, TgL, T44, Teo, Ter, Tew; + T44 = T3S + T43; + T45 = T3N + T44; + Tes = T3N - T44; + Teo = T8F + T8G; + Tep = Ten - Teo; + TgK = Ten + Teo; + { + E T4e, T4p, Tet, Teu; + T4e = T48 + T4d; + T4p = T4j + T4o; + T4q = T4e + T4p; + Teq = T4p - T4e; + Tet = T8y + T8z; + Teu = T8t + T8u; + Tev = Tet - Teu; + TgL = Tet + Teu; + } + T4r = T45 + T4q; + Thz = TgK + TgL; + Ter = Tep - Teq; + Tew = Tes - Tev; + Tex = FMA(KP382683432, Ter, KP923879532 * Tew); + Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); + { + E TfV, TfW, TgJ, TgM; + TfV = Tep + Teq; + TfW = Tes + Tev; + TfX = FMA(KP923879532, TfV, KP382683432 * TfW); + Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); + TgJ = T45 - T4q; + TgM = TgK - TgL; + TgN = TgJ + TgM; + Thj = TgJ - TgM; + } + } + { + E T80, TbW, T8k, TbX, T8b, Tc0, T8h, TbZ; + { + E T7Y, T7Z, T8i, T8j; + T7Y = T7W - T7X; + T7Z = T2Z - T34; + T80 = T7Y + T7Z; + TbW = T7Y - T7Z; + T8i = T89 - T86; + T8j = T81 + T84; + T8k = KP707106781 * (T8i - T8j); + TbX = KP707106781 * (T8i + T8j); + } + { + E T85, T8a, T8d, T8g; + T85 = T81 - T84; + T8a = T86 + T89; + T8b = KP707106781 * (T85 - T8a); + Tc0 = KP707106781 * (T8a + T85); + T8d = T2O - T2T; + T8g = T8e - T8f; + T8h = T8d - T8g; + TbZ = T8d + T8g; + } + { + E T8c, T8l, Tde, Tdf; + T8c = T80 - T8b; + T8l = T8h - T8k; + T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); + TaI = FMA(KP980785280, T8c, KP195090322 * T8l); + Tde = TbW + TbX; + Tdf = TbZ + Tc0; + Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); + TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); + } + { + E Tb2, Tb3, TbY, Tc1; + Tb2 = T80 + T8b; + Tb3 = T8h + T8k; + Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); + Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); + TbY = TbW - TbX; + Tc1 = TbZ - Tc0; + Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); + TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); + } + } + { + E T36, Teh, Tek, TgF, T3B, Tef, Tee, TgE, Teg, Tel; + { + E T2U, T35, Tei, Tej; + T2U = T2O + T2T; + T35 = T2Z + T34; + T36 = T2U + T35; + Teh = T2U - T35; + Tei = T87 + T88; + Tej = T82 + T83; + Tek = Tei - Tej; + TgF = Tei + Tej; + } + { + E T3p, T3A, Tec, Ted; + T3p = T3b + T3o; + T3A = T3u + T3z; + T3B = T3p + T3A; + Tef = T3A - T3p; + Tec = T7W + T7X; + Ted = T8e + T8f; + Tee = Tec - Ted; + TgE = Tec + Ted; + } + T3C = T36 + T3B; + Thy = TgE + TgF; + Teg = Tee - Tef; + Tel = Teh - Tek; + Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); + Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); + { + E TfS, TfT, TgG, TgH; + TfS = Tee + Tef; + TfT = Teh + Tek; + TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); + Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); + TgG = TgE - TgF; + TgH = T36 - T3B; + TgI = TgG - TgH; + Thi = TgH + TgG; + } + } + { + E T6A, Tfl, Th7, Tf4, T6e, Tar, T9Y, TcH, Tav, Tcw, T9M, Tfj; + T6A = T6o + T6z; + Tfl = T6z - T6o; + Th7 = Tf2 + Tf3; + Tf4 = Tf2 - Tf3; + { + E T6d, T9S, T9X, Tat, Tau, T9L; + T6d = FNMS(T6b, T6c, T69 * T6a); + T6e = T68 + T6d; + Tar = T68 - T6d; + T9S = T9Q - T9R; + T9X = T9T + T9W; + T9Y = KP707106781 * (T9S - T9X); + TcH = KP707106781 * (T9S + T9X); + Tat = T9T - T9W; + Tau = T9R + T9Q; + Tav = KP707106781 * (Tat - Tau); + Tcw = KP707106781 * (Tau + Tat); + T9L = FMA(T6b, T6a, T69 * T6c); + T9M = T9K - T9L; + Tfj = T9K + T9L; + } + { + E T6f, Tfk, Th6, T9N; + T6f = T65 + T6e; + T6B = T6f + T6A; + Th1 = T6f - T6A; + Tfk = Tfi - Tfj; + Tfm = Tfk - Tfl; + Tga = Tfk + Tfl; + Th6 = Tfi + Tfj; + Th8 = Th6 - Th7; + ThI = Th6 + Th7; + T9N = T9J - T9M; + T9Z = T9N - T9Y; + Tbh = T9N + T9Y; + } + { + E Tas, TcG, Tf1, Tcv; + Tas = Taq + Tar; + Taw = Tas - Tav; + Tbk = Tas + Tav; + TcG = Taq - Tar; + TcI = TcG - TcH; + Tdw = TcG + TcH; + Tf1 = T65 - T6e; + Tf5 = Tf1 - Tf4; + Tg7 = Tf1 + Tf4; + Tcv = T9J + T9M; + Tcx = Tcv - Tcw; + Tdt = Tcv + Tcw; + } + } + { + E T8Z, T9B, T5b, TeD, TeU, TgR, T94, T9A, T4L, T8T, T9y, TeB, T4V; + T8Z = T8V - T8Y; + T9B = T8V + T8Y; + T4V = T4P + T4U; + T5b = T4V + T5a; + TeD = T5a - T4V; + { + E TeS, T90, T93, T4K, T9x; + TeS = T91 + T92; + TeU = TeS - TeT; + TgR = TeS + TeT; + T90 = T4P - T4U; + T93 = T91 - T92; + T94 = T90 + T93; + T9A = T93 - T90; + T4K = FMA(T4G, T4H, T4I * T4J); + T4L = T4F + T4K; + T8T = T4F - T4K; + T9x = FNMS(T4I, T4H, T4G * T4J); + T9y = T9w - T9x; + TeB = T9w + T9x; + } + { + E T4M, TeR, TgQ, TeC; + T4M = T4C + T4L; + T5c = T4M + T5b; + TgV = T4M - T5b; + TeR = T4C - T4L; + TeV = TeR - TeU; + Tg0 = TeR + TeU; + TgQ = TeA + TeB; + TgS = TgQ - TgR; + ThD = TgQ + TgR; + TeC = TeA - TeB; + TeE = TeC - TeD; + Tg3 = TeC + TeD; + } + { + E T8U, T95, Tcc, Tcd; + T8U = T8S + T8T; + T95 = KP707106781 * (T8Z - T94); + T96 = T8U - T95; + Tbd = T8U + T95; + Tcc = T8S - T8T; + Tcd = KP707106781 * (T9A + T9B); + Tce = Tcc - Tcd; + Tdp = Tcc + Tcd; + } + { + E Tcn, Tco, T9z, T9C; + Tcn = T9v + T9y; + Tco = KP707106781 * (T94 + T8Z); + Tcp = Tcn - Tco; + Tdm = Tcn + Tco; + T9z = T9v - T9y; + T9C = KP707106781 * (T9A - T9B); + T9D = T9z - T9C; + Tba = T9z + T9C; + } + } + { + E Tv, T7h, TdY, ThY, Ti2, Tj1, T16, Tj2, T1K, Tiw, T7q, TbK, T7v, TbL, T7k; + E ThZ, T7r, T7u, T7i; + { + E Tu, TdW, TdX, Ti0, TM; + Tu = FNMS(Ts, Tt, To * Tp); + Tv = T1 + Tu; + T7h = T1 - Tu; + TdW = T7m + T7n; + TdX = T7s + T7t; + TdY = TdW - TdX; + ThY = TdW + TdX; + Ti0 = FMA(Ts, Tp, To * Tt); + Ti2 = Ti0 + Ti1; + Tj1 = Ti1 - Ti0; + TM = FMA(TG, TH, TK * TL); + T16 = TM + T15; + Tj2 = TM - T15; + } + { + E T1s, T1J, T7o, T7p; + T1s = T1g + T1r; + T1J = T1z + T1I; + T1K = T1s + T1J; + Tiw = T1J - T1s; + T7o = T7m - T7n; + T7p = T1g - T1r; + T7q = T7o - T7p; + TbK = T7p + T7o; + } + T7r = T1z - T1I; + T7u = T7s - T7t; + T7v = T7r + T7u; + TbL = T7r - T7u; + T7i = FNMS(TK, TH, TG * TL); + T7k = T7i - T7j; + ThZ = T7i + T7j; + { + E T17, Ti3, Tix, TdV; + T17 = Tv + T16; + T1L = T17 + T1K; + Tgz = T17 - T1K; + Ti3 = ThZ + Ti2; + Ti4 = ThY + Ti3; + Tii = Ti3 - ThY; + Tix = Ti2 - ThZ; + Tiy = Tiw + Tix; + TiM = Tix - Tiw; + TdV = Tv - T16; + TdZ = TdV - TdY; + TfN = TdV + TdY; + } + { + E T7l, T7w, Tj0, Tj3; + T7l = T7h - T7k; + T7w = KP707106781 * (T7q - T7v); + T7x = T7l - T7w; + TaX = T7l + T7w; + Tj0 = KP707106781 * (T7q + T7v); + Tj3 = Tj1 - Tj2; + Tj4 = Tj0 + Tj3; + Tji = Tj3 - Tj0; + } + { + E Tjw, Tjx, TbJ, TbM; + Tjw = KP707106781 * (TbL - TbK); + Tjx = Tj2 + Tj1; + Tjy = Tjw + Tjx; + TjM = Tjx - Tjw; + TbJ = T7h + T7k; + TbM = KP707106781 * (TbK + TbL); + TbN = TbJ - TbM; + Td9 = TbJ + TbM; + } + } + { + E T4t, ThR, Ti6, Ti8, T7g, Ti7, ThU, ThV; + { + E T2L, T4s, ThW, Ti5; + T2L = T1L + T2K; + T4s = T3C + T4r; + T4t = T2L + T4s; + ThR = T2L - T4s; + ThW = Thy + Thz; + Ti5 = ThX + Ti4; + Ti6 = ThW + Ti5; + Ti8 = Ti5 - ThW; + } + { + E T5S, T7f, ThS, ThT; + T5S = T5c + T5R; + T7f = T6B + T7e; + T7g = T5S + T7f; + Ti7 = T7f - T5S; + ThS = ThD + ThE; + ThT = ThI + ThJ; + ThU = ThS - ThT; + ThV = ThS + ThT; + } + ri[WS(ios, 32)] = T4t - T7g; + ii[WS(ios, 32)] = Ti6 - ThV; + ri[0] = T4t + T7g; + ii[0] = ThV + Ti6; + ri[WS(ios, 48)] = ThR - ThU; + ii[WS(ios, 48)] = Ti8 - Ti7; + ri[WS(ios, 16)] = ThR + ThU; + ii[WS(ios, 16)] = Ti7 + Ti8; + } + { + E ThB, ThN, Tic, Tie, ThG, ThO, ThL, ThP; + { + E Thx, ThA, Tia, Tib; + Thx = T1L - T2K; + ThA = Thy - Thz; + ThB = Thx + ThA; + ThN = Thx - ThA; + Tia = T4r - T3C; + Tib = Ti4 - ThX; + Tic = Tia + Tib; + Tie = Tib - Tia; + } + { + E ThC, ThF, ThH, ThK; + ThC = T5c - T5R; + ThF = ThD - ThE; + ThG = ThC + ThF; + ThO = ThF - ThC; + ThH = T6B - T7e; + ThK = ThI - ThJ; + ThL = ThH - ThK; + ThP = ThH + ThK; + } + { + E ThM, Ti9, ThQ, Tid; + ThM = KP707106781 * (ThG + ThL); + ri[WS(ios, 40)] = ThB - ThM; + ri[WS(ios, 8)] = ThB + ThM; + Ti9 = KP707106781 * (ThO + ThP); + ii[WS(ios, 8)] = Ti9 + Tic; + ii[WS(ios, 40)] = Tic - Ti9; + ThQ = KP707106781 * (ThO - ThP); + ri[WS(ios, 56)] = ThN - ThQ; + ri[WS(ios, 24)] = ThN + ThQ; + Tid = KP707106781 * (ThL - ThG); + ii[WS(ios, 24)] = Tid + Tie; + ii[WS(ios, 56)] = Tie - Tid; + } + } + { + E TgP, Thd, Tiq, Tis, Th0, The, Thb, Thf; + { + E TgD, TgO, Tio, Tip; + TgD = Tgz - TgC; + TgO = KP707106781 * (TgI - TgN); + TgP = TgD + TgO; + Thd = TgD - TgO; + Tio = KP707106781 * (Thj - Thi); + Tip = Tii - Tih; + Tiq = Tio + Tip; + Tis = Tip - Tio; + } + { + E TgU, TgZ, Th5, Tha; + TgU = TgS - TgT; + TgZ = TgV - TgY; + Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); + The = FNMS(KP923879532, TgZ, KP382683432 * TgU); + Th5 = Th1 - Th4; + Tha = Th8 - Th9; + Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); + Thf = FMA(KP382683432, Tha, KP923879532 * Th5); + } + { + E Thc, Tin, Thg, Tir; + Thc = Th0 + Thb; + ri[WS(ios, 44)] = TgP - Thc; + ri[WS(ios, 12)] = TgP + Thc; + Tin = The + Thf; + ii[WS(ios, 12)] = Tin + Tiq; + ii[WS(ios, 44)] = Tiq - Tin; + Thg = The - Thf; + ri[WS(ios, 60)] = Thd - Thg; + ri[WS(ios, 28)] = Thd + Thg; + Tir = Thb - Th0; + ii[WS(ios, 28)] = Tir + Tis; + ii[WS(ios, 60)] = Tis - Tir; + } + } + { + E TfB, TfJ, TiO, TiQ, TfE, TfK, TfH, TfL; + { + E Tfx, TfA, TiK, TiN; + Tfx = TdZ + Tea; + TfA = Tfy + Tfz; + TfB = Tfx + TfA; + TfJ = Tfx - TfA; + TiK = Tem + Tex; + TiN = TiL + TiM; + TiO = TiK + TiN; + TiQ = TiN - TiK; + } + { + E TfC, TfD, TfF, TfG; + TfC = TeE + TeP; + TfD = TeV + TeY; + TfE = FMA(KP555570233, TfC, KP831469612 * TfD); + TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); + TfF = Tf5 + Tfg; + TfG = Tfm + Tfp; + TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); + TfL = FMA(KP831469612, TfG, KP555570233 * TfF); + } + { + E TfI, TiJ, TfM, TiP; + TfI = TfE + TfH; + ri[WS(ios, 38)] = TfB - TfI; + ri[WS(ios, 6)] = TfB + TfI; + TiJ = TfK + TfL; + ii[WS(ios, 6)] = TiJ + TiO; + ii[WS(ios, 38)] = TiO - TiJ; + TfM = TfK - TfL; + ri[WS(ios, 54)] = TfJ - TfM; + ri[WS(ios, 22)] = TfJ + TfM; + TiP = TfH - TfE; + ii[WS(ios, 22)] = TiP + TiQ; + ii[WS(ios, 54)] = TiQ - TiP; + } + } + { + E Thl, Tht, Tik, Tim, Tho, Thu, Thr, Thv; + { + E Thh, Thk, Tig, Tij; + Thh = Tgz + TgC; + Thk = KP707106781 * (Thi + Thj); + Thl = Thh + Thk; + Tht = Thh - Thk; + Tig = KP707106781 * (TgI + TgN); + Tij = Tih + Tii; + Tik = Tig + Tij; + Tim = Tij - Tig; + } + { + E Thm, Thn, Thp, Thq; + Thm = TgS + TgT; + Thn = TgV + TgY; + Tho = FMA(KP382683432, Thm, KP923879532 * Thn); + Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); + Thp = Th1 + Th4; + Thq = Th8 + Th9; + Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); + Thv = FMA(KP923879532, Thq, KP382683432 * Thp); + } + { + E Ths, Tif, Thw, Til; + Ths = Tho + Thr; + ri[WS(ios, 36)] = Thl - Ths; + ri[WS(ios, 4)] = Thl + Ths; + Tif = Thu + Thv; + ii[WS(ios, 4)] = Tif + Tik; + ii[WS(ios, 36)] = Tik - Tif; + Thw = Thu - Thv; + ri[WS(ios, 52)] = Tht - Thw; + ri[WS(ios, 20)] = Tht + Thw; + Til = Thr - Tho; + ii[WS(ios, 20)] = Til + Tim; + ii[WS(ios, 52)] = Tim - Til; + } + } + { + E Tez, Tft, TiU, TiW, Tf0, Tfu, Tfr, Tfv; + { + E Teb, Tey, TiS, TiT; + Teb = TdZ - Tea; + Tey = Tem - Tex; + Tez = Teb + Tey; + Tft = Teb - Tey; + TiS = Tfz - Tfy; + TiT = TiM - TiL; + TiU = TiS + TiT; + TiW = TiT - TiS; + } + { + E TeQ, TeZ, Tfh, Tfq; + TeQ = TeE - TeP; + TeZ = TeV - TeY; + Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); + Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); + Tfh = Tf5 - Tfg; + Tfq = Tfm - Tfp; + Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); + Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); + } + { + E Tfs, TiR, Tfw, TiV; + Tfs = Tf0 + Tfr; + ri[WS(ios, 46)] = Tez - Tfs; + ri[WS(ios, 14)] = Tez + Tfs; + TiR = Tfu + Tfv; + ii[WS(ios, 14)] = TiR + TiU; + ii[WS(ios, 46)] = TiU - TiR; + Tfw = Tfu - Tfv; + ri[WS(ios, 62)] = Tft - Tfw; + ri[WS(ios, 30)] = Tft + Tfw; + TiV = Tfr - Tf0; + ii[WS(ios, 30)] = TiV + TiW; + ii[WS(ios, 62)] = TiW - TiV; + } + } + { + E TfZ, Tgf, TiG, TiI, Tg6, Tgg, Tgd, Tgh; + { + E TfR, TfY, TiE, TiF; + TfR = TfN - TfQ; + TfY = TfU - TfX; + TfZ = TfR + TfY; + Tgf = TfR - TfY; + TiE = Tgl - Tgk; + TiF = Tiy - Tiv; + TiG = TiE + TiF; + TiI = TiF - TiE; + } + { + E Tg2, Tg5, Tg9, Tgc; + Tg2 = Tg0 - Tg1; + Tg5 = Tg3 - Tg4; + Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); + Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); + Tg9 = Tg7 - Tg8; + Tgc = Tga - Tgb; + Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); + Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); + } + { + E Tge, TiD, Tgi, TiH; + Tge = Tg6 + Tgd; + ri[WS(ios, 42)] = TfZ - Tge; + ri[WS(ios, 10)] = TfZ + Tge; + TiD = Tgg + Tgh; + ii[WS(ios, 10)] = TiD + TiG; + ii[WS(ios, 42)] = TiG - TiD; + Tgi = Tgg - Tgh; + ri[WS(ios, 58)] = Tgf - Tgi; + ri[WS(ios, 26)] = Tgf + Tgi; + TiH = Tgd - Tg6; + ii[WS(ios, 26)] = TiH + TiI; + ii[WS(ios, 58)] = TiI - TiH; + } + } + { + E Tgn, Tgv, TiA, TiC, Tgq, Tgw, Tgt, Tgx; + { + E Tgj, Tgm, Tiu, Tiz; + Tgj = TfN + TfQ; + Tgm = Tgk + Tgl; + Tgn = Tgj + Tgm; + Tgv = Tgj - Tgm; + Tiu = TfU + TfX; + Tiz = Tiv + Tiy; + TiA = Tiu + Tiz; + TiC = Tiz - Tiu; + } + { + E Tgo, Tgp, Tgr, Tgs; + Tgo = Tg0 + Tg1; + Tgp = Tg3 + Tg4; + Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); + Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); + Tgr = Tg7 + Tg8; + Tgs = Tga + Tgb; + Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); + Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); + } + { + E Tgu, Tit, Tgy, TiB; + Tgu = Tgq + Tgt; + ri[WS(ios, 34)] = Tgn - Tgu; + ri[WS(ios, 2)] = Tgn + Tgu; + Tit = Tgw + Tgx; + ii[WS(ios, 2)] = Tit + TiA; + ii[WS(ios, 34)] = TiA - Tit; + Tgy = Tgw - Tgx; + ri[WS(ios, 50)] = Tgv - Tgy; + ri[WS(ios, 18)] = Tgv + Tgy; + TiB = Tgt - Tgq; + ii[WS(ios, 18)] = TiB + TiC; + ii[WS(ios, 50)] = TiC - TiB; + } + } + { + E T7V, TjN, TjT, TaH, T8O, TjK, TaK, TjS, TaO, TaU, T9I, TaE, TaR, TaV, TaB; + E TaF, T8N; + T7V = T7x - T7U; + TjN = TjL + TjM; + TjT = TjM - TjL; + TaH = T7x + T7U; + T8N = FMA(KP195090322, T8D, KP980785280 * T8M); + T8O = T8m - T8N; + TjK = T8m + T8N; + { + E TaJ, TaM, TaN, T9u, T9H; + TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); + TaK = TaI + TaJ; + TjS = TaJ - TaI; + TaM = T96 + T9t; + TaN = T9D + T9G; + TaO = FMA(KP634393284, TaM, KP773010453 * TaN); + TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); + T9u = T96 - T9t; + T9H = T9D - T9G; + T9I = FMA(KP995184726, T9u, KP098017140 * T9H); + TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); + { + E TaP, TaQ, Tan, TaA; + TaP = T9Z + Tam; + TaQ = Taw + Taz; + TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); + TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); + Tan = T9Z - Tam; + TaA = Taw - Taz; + TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); + TaF = FMA(KP098017140, TaA, KP995184726 * Tan); + } + } + { + E T8P, TaC, TjR, TjU; + T8P = T7V + T8O; + TaC = T9I + TaB; + ri[WS(ios, 47)] = T8P - TaC; + ri[WS(ios, 15)] = T8P + TaC; + TjR = TaE + TaF; + TjU = TjS + TjT; + ii[WS(ios, 15)] = TjR + TjU; + ii[WS(ios, 47)] = TjU - TjR; + } + { + E TaD, TaG, TjV, TjW; + TaD = T7V - T8O; + TaG = TaE - TaF; + ri[WS(ios, 63)] = TaD - TaG; + ri[WS(ios, 31)] = TaD + TaG; + TjV = TaB - T9I; + TjW = TjT - TjS; + ii[WS(ios, 31)] = TjV + TjW; + ii[WS(ios, 63)] = TjW - TjV; + } + { + E TaL, TaS, TjJ, TjO; + TaL = TaH + TaK; + TaS = TaO + TaR; + ri[WS(ios, 39)] = TaL - TaS; + ri[WS(ios, 7)] = TaL + TaS; + TjJ = TaU + TaV; + TjO = TjK + TjN; + ii[WS(ios, 7)] = TjJ + TjO; + ii[WS(ios, 39)] = TjO - TjJ; + } + { + E TaT, TaW, TjP, TjQ; + TaT = TaH - TaK; + TaW = TaU - TaV; + ri[WS(ios, 55)] = TaT - TaW; + ri[WS(ios, 23)] = TaT + TaW; + TjP = TaR - TaO; + TjQ = TjN - TjK; + ii[WS(ios, 23)] = TjP + TjQ; + ii[WS(ios, 55)] = TjQ - TjP; + } + } + { + E TbV, Tjj, Tjp, TcT, Tca, Tjg, TcW, Tjo, Td0, Td6, Tcu, TcQ, Td3, Td7, TcN; + E TcR, Tc9; + TbV = TbN - TbU; + Tjj = Tjh + Tji; + Tjp = Tji - Tjh; + TcT = TbN + TbU; + Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); + Tca = Tc2 - Tc9; + Tjg = Tc2 + Tc9; + { + E TcV, TcY, TcZ, Tcm, Tct; + TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); + TcW = TcU + TcV; + Tjo = TcV - TcU; + TcY = Tce + Tcl; + TcZ = Tcp + Tcs; + Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); + Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); + Tcm = Tce - Tcl; + Tct = Tcp - Tcs; + Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); + TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); + { + E Td1, Td2, TcF, TcM; + Td1 = Tcx + TcE; + Td2 = TcI + TcL; + Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); + Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); + TcF = Tcx - TcE; + TcM = TcI - TcL; + TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); + TcR = FMA(KP290284677, TcM, KP956940335 * TcF); + } + } + { + E Tcb, TcO, Tjn, Tjq; + Tcb = TbV + Tca; + TcO = Tcu + TcN; + ri[WS(ios, 45)] = Tcb - TcO; + ri[WS(ios, 13)] = Tcb + TcO; + Tjn = TcQ + TcR; + Tjq = Tjo + Tjp; + ii[WS(ios, 13)] = Tjn + Tjq; + ii[WS(ios, 45)] = Tjq - Tjn; + } + { + E TcP, TcS, Tjr, Tjs; + TcP = TbV - Tca; + TcS = TcQ - TcR; + ri[WS(ios, 61)] = TcP - TcS; + ri[WS(ios, 29)] = TcP + TcS; + Tjr = TcN - Tcu; + Tjs = Tjp - Tjo; + ii[WS(ios, 29)] = Tjr + Tjs; + ii[WS(ios, 61)] = Tjs - Tjr; + } + { + E TcX, Td4, Tjf, Tjk; + TcX = TcT + TcW; + Td4 = Td0 + Td3; + ri[WS(ios, 37)] = TcX - Td4; + ri[WS(ios, 5)] = TcX + Td4; + Tjf = Td6 + Td7; + Tjk = Tjg + Tjj; + ii[WS(ios, 5)] = Tjf + Tjk; + ii[WS(ios, 37)] = Tjk - Tjf; + } + { + E Td5, Td8, Tjl, Tjm; + Td5 = TcT - TcW; + Td8 = Td6 - Td7; + ri[WS(ios, 53)] = Td5 - Td8; + ri[WS(ios, 21)] = Td5 + Td8; + Tjl = Td3 - Td0; + Tjm = Tjj - Tjg; + ii[WS(ios, 21)] = Tjl + Tjm; + ii[WS(ios, 53)] = Tjm - Tjl; + } + } + { + E Tb1, Tjz, TjF, Tbt, Tb8, Tju, Tbw, TjE, TbA, TbG, Tbg, Tbq, TbD, TbH, Tbn; + E Tbr, Tb7; + Tb1 = TaX - Tb0; + Tjz = Tjv + Tjy; + TjF = Tjy - Tjv; + Tbt = TaX + Tb0; + Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); + Tb8 = Tb4 - Tb7; + Tju = Tb4 + Tb7; + { + E Tbv, Tby, Tbz, Tbc, Tbf; + Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); + Tbw = Tbu + Tbv; + TjE = Tbv - Tbu; + Tby = Tba + Tbb; + Tbz = Tbd + Tbe; + TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); + TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); + Tbc = Tba - Tbb; + Tbf = Tbd - Tbe; + Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); + Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); + { + E TbB, TbC, Tbj, Tbm; + TbB = Tbh + Tbi; + TbC = Tbk + Tbl; + TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); + TbH = FMA(KP290284677, TbB, KP956940335 * TbC); + Tbj = Tbh - Tbi; + Tbm = Tbk - Tbl; + Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); + Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); + } + } + { + E Tb9, Tbo, TjD, TjG; + Tb9 = Tb1 + Tb8; + Tbo = Tbg + Tbn; + ri[WS(ios, 43)] = Tb9 - Tbo; + ri[WS(ios, 11)] = Tb9 + Tbo; + TjD = Tbq + Tbr; + TjG = TjE + TjF; + ii[WS(ios, 11)] = TjD + TjG; + ii[WS(ios, 43)] = TjG - TjD; + } + { + E Tbp, Tbs, TjH, TjI; + Tbp = Tb1 - Tb8; + Tbs = Tbq - Tbr; + ri[WS(ios, 59)] = Tbp - Tbs; + ri[WS(ios, 27)] = Tbp + Tbs; + TjH = Tbn - Tbg; + TjI = TjF - TjE; + ii[WS(ios, 27)] = TjH + TjI; + ii[WS(ios, 59)] = TjI - TjH; + } + { + E Tbx, TbE, Tjt, TjA; + Tbx = Tbt + Tbw; + TbE = TbA + TbD; + ri[WS(ios, 35)] = Tbx - TbE; + ri[WS(ios, 3)] = Tbx + TbE; + Tjt = TbG + TbH; + TjA = Tju + Tjz; + ii[WS(ios, 3)] = Tjt + TjA; + ii[WS(ios, 35)] = TjA - Tjt; + } + { + E TbF, TbI, TjB, TjC; + TbF = Tbt - Tbw; + TbI = TbG - TbH; + ri[WS(ios, 51)] = TbF - TbI; + ri[WS(ios, 19)] = TbF + TbI; + TjB = TbD - TbA; + TjC = Tjz - Tju; + ii[WS(ios, 19)] = TjB + TjC; + ii[WS(ios, 51)] = TjC - TjB; + } + } + { + E Tdd, Tj5, Tjb, TdF, Tdk, TiY, TdI, Tja, TdM, TdS, Tds, TdC, TdP, TdT, Tdz; + E TdD, Tdj; + Tdd = Td9 - Tdc; + Tj5 = TiZ + Tj4; + Tjb = Tj4 - TiZ; + TdF = Td9 + Tdc; + Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); + Tdk = Tdg - Tdj; + TiY = Tdg + Tdj; + { + E TdH, TdK, TdL, Tdo, Tdr; + TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); + TdI = TdG + TdH; + Tja = TdH - TdG; + TdK = Tdm + Tdn; + TdL = Tdp + Tdq; + TdM = FMA(KP995184726, TdK, KP098017140 * TdL); + TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); + Tdo = Tdm - Tdn; + Tdr = Tdp - Tdq; + Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); + TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); + { + E TdN, TdO, Tdv, Tdy; + TdN = Tdt + Tdu; + TdO = Tdw + Tdx; + TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); + TdT = FMA(KP098017140, TdN, KP995184726 * TdO); + Tdv = Tdt - Tdu; + Tdy = Tdw - Tdx; + Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); + TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); + } + } + { + E Tdl, TdA, Tj9, Tjc; + Tdl = Tdd + Tdk; + TdA = Tds + Tdz; + ri[WS(ios, 41)] = Tdl - TdA; + ri[WS(ios, 9)] = Tdl + TdA; + Tj9 = TdC + TdD; + Tjc = Tja + Tjb; + ii[WS(ios, 9)] = Tj9 + Tjc; + ii[WS(ios, 41)] = Tjc - Tj9; + } + { + E TdB, TdE, Tjd, Tje; + TdB = Tdd - Tdk; + TdE = TdC - TdD; + ri[WS(ios, 57)] = TdB - TdE; + ri[WS(ios, 25)] = TdB + TdE; + Tjd = Tdz - Tds; + Tje = Tjb - Tja; + ii[WS(ios, 25)] = Tjd + Tje; + ii[WS(ios, 57)] = Tje - Tjd; + } + { + E TdJ, TdQ, TiX, Tj6; + TdJ = TdF + TdI; + TdQ = TdM + TdP; + ri[WS(ios, 33)] = TdJ - TdQ; + ri[WS(ios, 1)] = TdJ + TdQ; + TiX = TdS + TdT; + Tj6 = TiY + Tj5; + ii[WS(ios, 1)] = TiX + Tj6; + ii[WS(ios, 33)] = Tj6 - TiX; + } + { + E TdR, TdU, Tj7, Tj8; + TdR = TdF - TdI; + TdU = TdS - TdT; + ri[WS(ios, 49)] = TdR - TdU; + ri[WS(ios, 17)] = TdR + TdU; + Tj7 = TdP - TdM; + Tj8 = Tj5 - TiY; + ii[WS(ios, 17)] = Tj7 + Tj8; + ii[WS(ios, 49)] = Tj8 - Tj7; + } + } + } + } + return W; +} + +static const tw_instr twinstr[] = { + {TW_COS, 0, 1}, + {TW_SIN, 0, 1}, + {TW_COS, 0, 3}, + {TW_SIN, 0, 3}, + {TW_COS, 0, 9}, + {TW_SIN, 0, 9}, + {TW_COS, 0, 27}, + {TW_SIN, 0, 27}, + {TW_COS, 0, 63}, + {TW_SIN, 0, 63}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 64, "t2_64", twinstr, {880, 386, 274, 0}, &GENUS, 0, 0, 0 }; + +void X(codelet_t2_64) (planner *p) { + X(kdft_dit_register) (p, t2_64, &desc); +} |