diff options
author | scuri <scuri> | 2008-10-17 06:10:15 +0000 |
---|---|---|
committer | scuri <scuri> | 2008-10-17 06:10:15 +0000 |
commit | 5a422aba704c375a307a902bafe658342e209906 (patch) | |
tree | 5005011e086bb863d8fb587ad3319bbec59b2447 /src/fftw3/kernel/transpose.c |
First commit - moving from LuaForge to SourceForge
Diffstat (limited to 'src/fftw3/kernel/transpose.c')
-rw-r--r-- | src/fftw3/kernel/transpose.c | 430 |
1 files changed, 430 insertions, 0 deletions
diff --git a/src/fftw3/kernel/transpose.c b/src/fftw3/kernel/transpose.c new file mode 100644 index 0000000..fb489bd --- /dev/null +++ b/src/fftw3/kernel/transpose.c @@ -0,0 +1,430 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* transposes of unit-stride arrays, including arrays of N-tuples and + non-square matrices, using cache-oblivious recursive algorithms */ + +#include "ifftw.h" +#include <string.h> /* memcpy */ + +#define CUTOFF 8 /* size below which we do a naive transpose */ + +/*************************************************************************/ +/* some utilities for the solvers */ + +static int Ntuple_transposable(const iodim *a, const iodim *b, + int vl, int s, R *ri, R *ii) +{ + return(2 == s && (ii == ri + 1 || ri == ii + 1) + && + ((a->is == b->os && a->is == (vl*2) + && a->os == b->n * (vl*2) && b->is == a->n * (vl*2)) + || + (a->os == b->is && a->os == (vl*2) + && a->is == b->n * (vl*2) && b->os == a->n * (vl*2)))); +} + + +/* our solvers' transpose routines work for square matrices of arbitrary + stride, or for non-square matrices of a given vl*vl2 corresponding + to the N of the Ntuple with vl2 == s. */ +int X(transposable)(const iodim *a, const iodim *b, + int vl, int s, R *ri, R *ii) +{ + return ((a->n == b->n && a->os == b->is && a->is == b->os) + || Ntuple_transposable(a, b, vl, s, ri, ii)); +} + +static int gcd(int a, int b) +{ + int r; + do { + r = a % b; + a = b; + b = r; + } while (r != 0); + + return a; +} + +/* all of the solvers need to extract n, m, d, n/d, and m/d from the + two iodims, so we put it here to save code space */ +void X(transpose_dims)(const iodim *a, const iodim *b, + int *n, int *m, int *d, int *nd, int *md) +{ + int n0, m0, d0; + /* matrix should be n x m, row-major */ + if (a->is < b->is) { + *n = n0 = b->n; + *m = m0 = a->n; + } + else { + *n = n0 = a->n; + *m = m0 = b->n; + } + *d = d0 = gcd(n0, m0); + *nd = n0 / d0; + *md = m0 / d0; +} + +/* use the simple square transpose in the solver for square matrices + that aren't too big or which have the wrong stride */ +int X(transpose_simplep)(const iodim *a, const iodim *b, int vl, int s, + R *ri, R *ii) +{ + return (a->n == b->n && + (a->n*(vl*2) < CUTOFF + || !Ntuple_transposable(a, b, vl, s, ri, ii))); +} + +/* use the slow general transpose if the buffer would be more than 1/8 + the whole transpose and the transpose is fairly big. + (FIXME: use the CONSERVE_MEMORY flag?) */ +int X(transpose_slowp)(const iodim *a, const iodim *b, int N) +{ + int d = gcd(a->n, b->n); + return (d < 8 && (a->n * b->n * N) / d > 65536); +} + +/*************************************************************************/ +/* Out-of-place transposes: */ + +/* Transpose A (n x m) to B (m x n), where A and B are stored + as n x fda and m x fda arrays, respectively, operating on N-tuples: */ +static void rec_transpose_Ntuple(R *A, R *B, int n, int m, int fda, int fdb, + int N) +{ + if (n == 1 || m == 1 || (n + m) * N < CUTOFF*2) { + int i, j, k; + for (i = 0; i < n; ++i) { + for (j = 0; j < m; ++j) { + for (k = 0; k < N; ++k) { /* FIXME: unroll */ + B[(j*fdb + i) * N + k] = A[(i*fda + j) * N + k]; + } + } + } + } + else if (n > m) { + int n2 = n / 2; + rec_transpose_Ntuple(A, B, n2, m, fda, fdb, N); + rec_transpose_Ntuple(A + n2*N*fda, B + n2*N, n - n2, m, fda, fdb, N); + } + else { + int m2 = m / 2; + rec_transpose_Ntuple(A, B, n, m2, fda, fdb, N); + rec_transpose_Ntuple(A + m2*N, B + m2*N*fdb, n, m - m2, fda, fdb, N); + } +} + +/*************************************************************************/ +/* In-place transposes of square matrices of N-tuples: */ + +/* Transpose both A and B, where A is n x m and B is m x n, storing + the transpose of A in B and the transpose of B in A. A and B + are actually stored as n x fda and m x fda arrays. */ +static void rec_transpose_swap_Ntuple(R *A, R *B, int n, int m, int fda, int N) +{ + if (n == 1 || m == 1 || (n + m) * N <= CUTOFF*2) { + switch (N) { + case 1: { + int i, j; + for (i = 0; i < n; ++i) { + for (j = 0; j < m; ++j) { + R a = A[(i*fda + j)]; + A[(i*fda + j)] = B[(j*fda + i)]; + B[(j*fda + i)] = a; + } + } + break; + } + case 2: { + int i, j; + for (i = 0; i < n; ++i) { + for (j = 0; j < m; ++j) { + R a0 = A[(i*fda + j) * 2 + 0]; + R a1 = A[(i*fda + j) * 2 + 1]; + A[(i*fda + j) * 2 + 0] = B[(j*fda + i) * 2 + 0]; + A[(i*fda + j) * 2 + 1] = B[(j*fda + i) * 2 + 1]; + B[(j*fda + i) * 2 + 0] = a0; + B[(j*fda + i) * 2 + 1] = a1; + } + } + break; + } + default: { + int i, j, k; + for (i = 0; i < n; ++i) { + for (j = 0; j < m; ++j) { + for (k = 0; k < N; ++k) { + R a = A[(i*fda + j) * N + k]; + A[(i*fda + j) * N + k] = + B[(j*fda + i) * N + k]; + B[(j*fda + i) * N + k] = a; + } + } + } + } + } + } else if (n > m) { + int n2 = n / 2; + rec_transpose_swap_Ntuple(A, B, n2, m, fda, N); + rec_transpose_swap_Ntuple(A + n2*N*fda, B + n2*N, n - n2, m, fda, N); + } + else { + int m2 = m / 2; + rec_transpose_swap_Ntuple(A, B, n, m2, fda, N); + rec_transpose_swap_Ntuple(A + m2*N, B + m2*N*fda, n, m - m2, fda, N); + } +} + +/* Transpose A, an n x n matrix (stored as n x fda), in-place. */ +static void rec_transpose_sq_ip_Ntuple(R *A, int n, int fda, int N) +{ + if (n == 1) + return; + else if (n*N <= CUTOFF) { + switch (N) { + case 1: { + int i, j; + for (i = 0; i < n; ++i) { + for (j = i + 1; j < n; ++j) { + R a = A[(i*fda + j)]; + A[(i*fda + j)] = A[(j*fda + i)]; + A[(j*fda + i)] = a; + } + } + break; + } + case 2: { + int i, j; + for (i = 0; i < n; ++i) { + for (j = i + 1; j < n; ++j) { + R a0 = A[(i*fda + j) * 2 + 0]; + R a1 = A[(i*fda + j) * 2 + 1]; + A[(i*fda + j) * 2 + 0] = A[(j*fda + i) * 2 + 0]; + A[(i*fda + j) * 2 + 1] = A[(j*fda + i) * 2 + 1]; + A[(j*fda + i) * 2 + 0] = a0; + A[(j*fda + i) * 2 + 1] = a1; + } + } + break; + } + default: { + int i, j, k; + for (i = 0; i < n; ++i) { + for (j = i + 1; j < n; ++j) { + for (k = 0; k < N; ++k) { + R a = A[(i*fda + j) * N + k]; + A[(i*fda + j) * N + k] = + A[(j*fda + i) * N + k]; + A[(j*fda + i) * N + k] = a; + } + } + } + } + } + } else { + int n2 = n / 2; + rec_transpose_sq_ip_Ntuple(A, n2, fda, N); + rec_transpose_sq_ip_Ntuple((A + n2*N) + n2*N*fda, n - n2, fda, N); + rec_transpose_swap_Ntuple(A + n2*N, A + n2*N*fda, n2, n - n2, fda,N); + } +} + +/*************************************************************************/ +/* In-place transposes of non-square matrices: */ + +/* Transpose the matrix A in-place, where A is an (n*d) x (m*d) matrix + of N-tuples and buf contains at least n*m*d*N elements. In + general, to transpose a p x q matrix, you should call this routine + with d = gcd(p, q), n = p/d, and m = q/d. */ +void X(transpose)(R *A, int n, int m, int d, int N, R *buf) +{ + A(n > 0 && m > 0 && N > 0 && d > 0); + if (d == 1) { + rec_transpose_Ntuple(A, buf, n,m, m,n, N); + memcpy(A, buf, m*n*N*sizeof(R)); + } + else if (n*m == 1) { + rec_transpose_sq_ip_Ntuple(A, d, d, N); + } + else { + int i, num_el = n*m*d*N; + + /* treat as (d x n) x (d' x m) matrix. (d' = d) */ + + /* First, transpose d x (n x d') x m to d x (d' x n) x m, + using the buf matrix. This consists of d transposes + of contiguous n x d' matrices of m-tuples. */ + if (n > 1) { + for (i = 0; i < d; ++i) { + rec_transpose_Ntuple(A + i*num_el, buf, + n,d, d,n, m*N); + memcpy(A + i*num_el, buf, num_el*sizeof(R)); + } + } + + /* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which + is a square in-place transpose of n*m-tuples: */ + rec_transpose_sq_ip_Ntuple(A, d, d, n*m*N); + + /* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)), + using the buf matrix. This consists of d' transposes + of contiguous d*n x m matrices. */ + if (m > 1) { + for (i = 0; i < d; ++i) { + rec_transpose_Ntuple(A + i*num_el, buf, + d*n,m, m,d*n, N); + memcpy(A + i*num_el, buf, num_el*sizeof(R)); + } + } + } +} + +/*************************************************************************/ +/* In-place transpose routine from TOMS. This routine is much slower + than the cache-oblivious algorithm above, but is has the advantage + of requiring less buffer space for the case of gcd(nx,ny) small. */ + +/* + * TOMS Transpose. Revised version of algorithm 380. + * + * These routines do in-place transposes of arrays. + * + * [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software, + * vol. 3, no. 1, 104-110 (1977) ] + * + * C version by Steven G. Johnson. February 1997. + */ + +/* + * "a" is a 1D array of length ny*nx*N which constains the nx x ny + * matrix of N-tuples to be transposed. "a" is stored in row-major + * order (last index varies fastest). move is a 1D array of length + * move_size used to store information to speed up the process. The + * value move_size=(ny+nx)/2 is recommended. buf should be an array + * of length 2*N. + * + */ + +void X(transpose_slow)(R *a, int nx, int ny, int N, + char *move, int move_size, R *buf) +{ + int i, j, im, mn; + R *b, *c, *d; + int ncount; + int k; + + /* check arguments and initialize: */ + A(ny > 0 && nx > 0 && N > 0 && move_size > 0); + + b = buf; + + if (ny == nx) { + /* + * if matrix is square, exchange elements a(i,j) and a(j,i): + */ + for (i = 0; i < nx; ++i) + for (j = i + 1; j < nx; ++j) { + memcpy(b, &a[N * (i + j * nx)], N * sizeof(R)); + memcpy(&a[N * (i + j * nx)], &a[N * (j + i * nx)], N * sizeof(R)); + memcpy(&a[N * (j + i * nx)], b, N * sizeof(R)); + } + return; + } + c = buf + N; + ncount = 2; /* always at least 2 fixed points */ + k = (mn = ny * nx) - 1; + + for (i = 0; i < move_size; ++i) + move[i] = 0; + + if (ny >= 3 && nx >= 3) + ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */ + + i = 1; + im = ny; + + while (1) { + int i1, i2, i1c, i2c; + int kmi; + + /** Rearrange the elements of a loop + and its companion loop: **/ + + i1 = i; + kmi = k - i; + memcpy(b, &a[N * i1], N * sizeof(R)); + i1c = kmi; + memcpy(c, &a[N * i1c], N * sizeof(R)); + + while (1) { + i2 = ny * i1 - k * (i1 / nx); + i2c = k - i2; + if (i1 < move_size) + move[i1] = 1; + if (i1c < move_size) + move[i1c] = 1; + ncount += 2; + if (i2 == i) + break; + if (i2 == kmi) { + d = b; + b = c; + c = d; + break; + } + memcpy(&a[N * i1], &a[N * i2], + N * sizeof(R)); + memcpy(&a[N * i1c], &a[N * i2c], + N * sizeof(R)); + i1 = i2; + i1c = i2c; + } + memcpy(&a[N * i1], b, N * sizeof(R)); + memcpy(&a[N * i1c], c, N * sizeof(R)); + + if (ncount >= mn) + break; /* we've moved all elements */ + + /** Search for loops to rearrange: **/ + + while (1) { + int max = k - i; + ++i; + A(i <= max); + im += ny; + if (im > k) + im -= k; + i2 = im; + if (i == i2) + continue; + if (i >= move_size) { + while (i2 > i && i2 < max) { + i1 = i2; + i2 = ny * i1 - k * (i1 / nx); + } + if (i2 == i) + break; + } else if (!move[i]) + break; + } + } +} |