diff options
author | scuri <scuri> | 2009-08-20 12:35:06 +0000 |
---|---|---|
committer | scuri <scuri> | 2009-08-20 12:35:06 +0000 |
commit | 5d735255ddd3cb2f547abd3d03969af3fb7eb04e (patch) | |
tree | 8fb66510bc625bb1b08ccb41f1b83fb0f7cb8f19 /src/fftw3/rdft/rdft2-radix2.c | |
parent | 35733b87eed86e5228f12fa10c98a3d9d22a6073 (diff) |
*** empty log message ***
Diffstat (limited to 'src/fftw3/rdft/rdft2-radix2.c')
-rw-r--r-- | src/fftw3/rdft/rdft2-radix2.c | 479 |
1 files changed, 0 insertions, 479 deletions
diff --git a/src/fftw3/rdft/rdft2-radix2.c b/src/fftw3/rdft/rdft2-radix2.c deleted file mode 100644 index 280d642..0000000 --- a/src/fftw3/rdft/rdft2-radix2.c +++ /dev/null @@ -1,479 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: rdft2-radix2.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ - -/* - Compute RDFT2 of even size via either a DFT or a vector RDFT of - size n/2. - - This file is meant as a temporary hack until we do the right thing. - - The right thing is: 1) get rid of reduction to DFT, and 2) implement - arbitrary even-radix reduction to RDFT. We currently reduce to DFT - so as to exploit the SIMD code. We currently do only radix-2 in - order to avoid generating yet another set of codelets. -*/ - -#include "rdft.h" -#include "dft.h" - -typedef struct { - int (*applicable) (const problem *p_, const planner *plnr); - void (*apply) (const plan *ego_, R *r, R *rio, R *iio); - problem *(*mkcld) (const problem_rdft2 *p); - opcnt ops; - const char *nam; -} madt; - -typedef struct { - solver super; - const madt *adt; -} S; - -typedef struct { - plan_dft super; - plan *cld; - twid *td; - int is, os, ivs, ovs; - int n, vl; - const S *slv; -} P; - -/* common applicability function of forward problems */ -static int applicable_f(const problem *p_, const planner *plnr) -{ - UNUSED(plnr); - if (RDFT2P(p_)) { - const problem_rdft2 *p = (const problem_rdft2 *) p_; - return (1 - && p->kind == R2HC - && p->vecsz->rnk <= 1 - && p->sz->rnk == 1 - && (p->sz->dims[0].n % 2) == 0 - ); - } - - return 0; -} - -static int applicable_f_dft(const problem *p_, const planner *plnr) -{ - UNUSED(plnr); - if (applicable_f(p_, plnr)) { - const problem_rdft2 *p = (const problem_rdft2 *) p_; - return(p->r != p->rio - || (p->iio == p->rio + p->sz->dims[0].is - && p->sz->dims[0].os == 2 * p->sz->dims[0].is)); - } - return 0; -} - -/* common applicability function of backward problems */ -static int applicable_b(const problem *p_, const planner *plnr) -{ - if (RDFT2P(p_)) { - const problem_rdft2 *p = (const problem_rdft2 *) p_; - return (1 - && p->kind == HC2R - && (p->r == p->rio || DESTROY_INPUTP(plnr)) - && p->vecsz->rnk <= 1 - && p->sz->rnk == 1 - && (p->sz->dims[0].n % 2) == 0 - ); - } - - return 0; -} - -static int applicable_b_dft(const problem *p_, const planner *plnr) -{ - UNUSED(plnr); - if (applicable_b(p_, plnr)) { - const problem_rdft2 *p = (const problem_rdft2 *) p_; - return(p->r != p->rio - || (p->iio == p->rio + p->sz->dims[0].os - && p->sz->dims[0].is == 2 * p->sz->dims[0].os)); - } - return 0; -} - -/* - * forward rdft2 via dft - */ -static void k_f_dft(R *rio, R *iio, const R *W, int n, int dist) -{ - int i; - R *pp = rio, *pm = rio + n * dist; - int im = iio - rio; - - /* i = 0 and i = n */ - { - E rop = pp[0], iop = pp[im]; - pp[0] = rop + iop; - pm[0] = rop - iop; - pp[im] = K(0.0); - pm[im] = K(0.0); - pp += dist; pm -= dist; - } - - /* middle elements */ - for (W += 2, i = 2; i < n; i += 2, W += 2) { - E rop = pp[0], iop = pp[im], rom = pm[0], iom = pm[im]; - E wr = W[0], wi = W[1]; - E re = rop + rom; - E ie = iop - iom; - E rd = rom - rop; - E id = iop + iom; - E tr = rd * wr - id * wi; - E ti = id * wr + rd * wi; - pp[0] = K(0.5) * (re + ti); - pp[im] = K(0.5) * (ie + tr); - pm[0] = K(0.5) * (re - ti); - pm[im] = K(0.5) * (tr - ie); - pp += dist; pm -= dist; - } - - /* i = n/2 when n is even */ - if (!(n & 1)) pp[im] = -pp[im]; -} - -static void apply_f_dft(const plan *ego_, R *r, R *rio, R *iio) -{ - const P *ego = (const P *) ego_; - - { - /* transform input as a vector of complex numbers */ - plan_dft *cld = (plan_dft *) ego->cld; - cld->apply((plan *) cld, r, r + ego->is, rio, iio); - } - - { - int i, vl = ego->vl, n2 = ego->n / 2; - int ovs = ego->ovs, os = ego->os; - const R *W = ego->td->W; - for (i = 0; i < vl; ++i, rio += ovs, iio += ovs) - k_f_dft(rio, iio, W, n2, os); - } -} - -static problem *mkcld_f_dft(const problem_rdft2 *p) -{ - const iodim *d = p->sz->dims; - return X(mkproblem_dft_d) ( - X(mktensor_1d)(d[0].n / 2, d[0].is * 2, d[0].os), - X(tensor_copy)(p->vecsz), - p->r, p->r + d[0].is, p->rio, p->iio); -} - -static const madt adt_f_dft = { - applicable_f_dft, apply_f_dft, mkcld_f_dft, {10, 8, 0, 0}, "r2hc2-dft" -}; - -/* - * forward rdft2 via rdft - */ -static void k_f_rdft(R *rio, R *iio, const R *W, int n, int dist) -{ - int i; - R *pp = rio, *pm = rio + n * dist; - int im = iio - rio; - - /* i = 0 and i = n */ - { - E rop = pp[0], iop = pp[im]; - pp[0] = rop + iop; - pm[0] = rop - iop; - pp[im] = K(0.0); - pm[im] = K(0.0); - pp += dist; pm -= dist; - } - - /* middle elements */ - for (W += 2, i = 2; i < n; i += 2, W += 2) { - E r0 = pp[0], r1 = pp[im], i0 = pm[0], i1 = pm[im]; - E wr = W[0], wi = W[1]; - E tr = r1 * wr + i1 * wi; - E ti = i1 * wr - r1 * wi; - pp[0] = r0 + tr; - pp[im] = i0 + ti; - pm[0] = r0 - tr; - pm[im] = ti - i0; - pp += dist; pm -= dist; - } - - /* i = n/2 when n is even */ - if (!(n & 1)) pp[im] = -pp[im]; -} - -static void apply_f_rdft(const plan *ego_, R *r, R *rio, R *iio) -{ - const P *ego = (const P *) ego_; - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, r, rio); - } - - { - int i, vl = ego->vl, n2 = ego->n / 2; - int ovs = ego->ovs, os = ego->os; - const R *W = ego->td->W; - for (i = 0; i < vl; ++i, rio += ovs, iio += ovs) - k_f_rdft(rio, iio, W, n2, os); - } -} - -static problem *mkcld_f_rdft(const problem_rdft2 *p) -{ - const iodim *d = p->sz->dims; - - tensor *radix = X(mktensor_1d)(2, d[0].is, p->iio - p->rio); - tensor *cld_vec = X(tensor_append)(radix, p->vecsz); - X(tensor_destroy)(radix); - - return X(mkproblem_rdft_1_d) ( - X(mktensor_1d)(d[0].n / 2, 2 * d[0].is, d[0].os), - cld_vec, p->r, p->rio, R2HC); -} - -static const madt adt_f_rdft = { - applicable_f, apply_f_rdft, mkcld_f_rdft, {6, 4, 0, 0}, "r2hc2-rdft" -}; - - -/* - * backward rdft2 via dft - */ -static void k_b_dft(R *rio, R *iio, const R *W, int n, int dist) -{ - int i; - R *pp = rio, *pm = rio + n * dist; - int im = iio - rio; - - /* i = 0 and i = n */ - { - E rop = pp[0], iop = pm[0]; - pp[0] = rop + iop; - pp[im] = rop - iop; - pp += dist; pm -= dist; - } - - /* middle elements */ - for (W += 2, i = 2; i < n; i += 2, W += 2) { - E a = pp[0], b = pp[im], c = pm[0], d = pm[im]; - E wr = W[0], wi = W[1]; - E re = a + c, ti = a - c, ie = b - d, tr = b + d; - E rd = tr * wr + ti * wi; - E id = ti * wr - tr * wi; - pp[0] = re - rd; - pp[im] = ie + id; - pm[0] = re + rd; - pm[im] = id - ie; - pp += dist; pm -= dist; - } - - /* i = n/2 when n is even */ - if (!(n & 1)) { pp[0] *= K(2.0); pp[im] *= -K(2.0); } -} - -static void apply_b_dft(const plan *ego_, R *r, R *rio, R *iio) -{ - const P *ego = (const P *) ego_; - { - int i, vl = ego->vl, n2 = ego->n / 2; - int ivs = ego->ivs, is = ego->is; - const R *W = ego->td->W; - R *rio1 = rio, *iio1 = iio; - for (i = 0; i < vl; ++i, rio1 += ivs, iio1 += ivs) - k_b_dft(rio1, iio1, W, n2, is); - } - - { - plan_dft *cld = (plan_dft *) ego->cld; - /* swap r/i because of backward transform */ - cld->apply((plan *) cld, iio, rio, r + ego->os, r); - } -} - -static problem *mkcld_b_dft(const problem_rdft2 *p) -{ - const iodim *d = p->sz->dims; - - return X(mkproblem_dft_d) ( - X(mktensor_1d)(d[0].n / 2, d[0].is, 2 * d[0].os), - X(tensor_copy)(p->vecsz), - p->iio, p->rio, p->r + d[0].os, p->r); -} - -static const madt adt_b_dft = { - applicable_b_dft, apply_b_dft, mkcld_b_dft, {10, 8, 0, 0}, "hc2r2-dft" -}; - -/* - * backward rdft2 via backward rdft - */ -static void k_b_rdft(R *rio, R *iio, const R *W, int n, int dist) -{ - int i; - R *pp = rio, *pm = rio + n * dist; - int im = iio - rio; - - /* i = 0 and i = n */ - { - E rop = pp[0], iop = pm[0]; - pp[0] = rop + iop; - pp[im] = rop - iop; - pp += dist; pm -= dist; - } - - /* middle elements */ - for (W += 2, i = 2; i < n; i += 2, W += 2) { - E a = pp[0], b = pp[im], c = pm[0], d = pm[im]; - E wr = W[0], wi = W[1]; - E r0 = a + c, r1 = a - c, i0 = b - d, i1 = b + d; - pp[0] = r0; - pm[0] = i0; - pp[im] = r1 * wr - i1 * wi; - pm[im] = i1 * wr + r1 * wi; - pp += dist; pm -= dist; - } - - /* i = n/2 when n is even */ - if (!(n & 1)) { pp[0] *= K(2.0); pp[im] *= -K(2.0); } -} - -static void apply_b_rdft(const plan *ego_, R *r, R *rio, R *iio) -{ - const P *ego = (const P *) ego_; - - { - int i, vl = ego->vl, n2 = ego->n / 2; - int ivs = ego->ivs, is = ego->is; - const R *W = ego->td->W; - R *rio1 = rio, *iio1 = iio; - for (i = 0; i < vl; ++i, rio1 += ivs, iio1 += ivs) - k_b_rdft(rio1, iio1, W, n2, is); - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, rio, r); - } -} - -static problem *mkcld_b_rdft(const problem_rdft2 *p) -{ - const iodim *d = p->sz->dims; - - tensor *radix = X(mktensor_1d)(2, p->iio - p->rio, d[0].os); - tensor *cld_vec = X(tensor_append)(radix, p->vecsz); - X(tensor_destroy)(radix); - - return X(mkproblem_rdft_1_d) ( - X(mktensor_1d)(d[0].n / 2, d[0].is, 2 * d[0].os), - cld_vec, p->rio, p->r, HC2R); -} - -static const madt adt_b_rdft = { - applicable_b, apply_b_rdft, mkcld_b_rdft, {6, 4, 0, 0}, "hc2r2-rdft" -}; - -/* - * common stuff - */ -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr twinstr[] = { {TW_FULL, 0, 2}, {TW_NEXT, 1, 0} }; - AWAKE(ego->cld, flg); - X(twiddle_awake)(flg, &ego->td, twinstr, ego->n, 2, (ego->n / 2 + 1) / 2); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal) (ego->cld); -} - -static void print(const plan *ego_, printer * p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%s-%d%v%(%p%))", ego->slv->adt->nam, - ego->n, ego->vl, ego->cld); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - const S *ego = (const S *) ego_; - P *pln; - const problem_rdft2 *p; - plan *cld; - const iodim *d; - - static const plan_adt padt = { - X(rdft2_solve), awake, print, destroy - }; - - if (!ego->adt->applicable(p_, plnr)) - return (plan *) 0; - - p = (const problem_rdft2 *) p_; - - cld = X(mkplan_d)(plnr, ego->adt->mkcld(p)); - if (!cld) return (plan *) 0; - - pln = MKPLAN_RDFT2(P, &padt, ego->adt->apply); - - d = p->sz->dims; - pln->n = d[0].n; - pln->os = d[0].os; - pln->is = d[0].is; - X(tensor_tornk1) (p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - pln->cld = cld; - pln->td = 0; - pln->slv = ego; - - /* approximately */ - X(ops_madd)(pln->vl * ((pln->n/2 + 1) / 2), &ego->adt->ops, - &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -static solver *mksolver(const madt *adt) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - slv->adt = adt; - return &(slv->super); -} - -void X(rdft2_radix2_register)(planner *p) -{ - unsigned i; - static const madt *const adts[] = { - &adt_f_dft, &adt_f_rdft, - &adt_b_dft, &adt_b_rdft - }; - - for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) - REGISTER_SOLVER(p, mksolver(adts[i])); -} |