summaryrefslogtreecommitdiff
path: root/src/fftw3/dft/codelets/standard/t1_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t1_64.c')
-rw-r--r--src/fftw3/dft/codelets/standard/t1_64.c2001
1 files changed, 0 insertions, 2001 deletions
diff --git a/src/fftw3/dft/codelets/standard/t1_64.c b/src/fftw3/dft/codelets/standard/t1_64.c
deleted file mode 100644
index a03697b..0000000
--- a/src/fftw3/dft/codelets/standard/t1_64.c
+++ /dev/null
@@ -1,2001 +0,0 @@
-/*
- * Copyright (c) 2003 Matteo Frigo
- * Copyright (c) 2003 Massachusetts Institute of Technology
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- */
-
-/* This file was automatically generated --- DO NOT EDIT */
-/* Generated on Sat Jul 5 21:30:08 EDT 2003 */
-
-#include "codelet-dft.h"
-
-/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 64 -name t1_64 -include t.h */
-
-/*
- * This function contains 1038 FP additions, 500 FP multiplications,
- * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
- * 176 stack variables, and 256 memory accesses
- */
-/*
- * Generator Id's :
- * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- */
-
-#include "t.h"
-
-static const R *t1_64(R *ri, R *ii, const R *W, stride ios, int m, int dist)
-{
- DK(KP471396736, +0.471396736825997648556387625905254377657460319);
- DK(KP881921264, +0.881921264348355029712756863660388349508442621);
- DK(KP290284677, +0.290284677254462367636192375817395274691476278);
- DK(KP956940335, +0.956940335732208864935797886980269969482849206);
- DK(KP634393284, +0.634393284163645498215171613225493370675687095);
- DK(KP773010453, +0.773010453362736960810906609758469800971041293);
- DK(KP098017140, +0.098017140329560601994195563888641845861136673);
- DK(KP995184726, +0.995184726672196886244836953109479921575474869);
- DK(KP555570233, +0.555570233019602224742830813948532874374937191);
- DK(KP831469612, +0.831469612302545237078788377617905756738560812);
- DK(KP980785280, +0.980785280403230449126182236134239036973933731);
- DK(KP195090322, +0.195090322016128267848284868477022240927691618);
- DK(KP923879532, +0.923879532511286756128183189396788286822416626);
- DK(KP382683432, +0.382683432365089771728459984030398866761344562);
- DK(KP707106781, +0.707106781186547524400844362104849039284835938);
- int i;
- for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 126) {
- E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;
- E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;
- E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;
- E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;
- E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;
- E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;
- E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;
- E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;
- E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;
- {
- E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
- T1 = ri[0];
- TgR = ii[0];
- {
- E T3, T5, T2, T4;
- T3 = ri[WS(ios, 32)];
- T5 = ii[WS(ios, 32)];
- T2 = W[62];
- T4 = W[63];
- T6 = FMA(T2, T3, T4 * T5);
- TgQ = FNMS(T4, T3, T2 * T5);
- }
- {
- E T9, Tb, T8, Ta;
- T9 = ri[WS(ios, 16)];
- Tb = ii[WS(ios, 16)];
- T8 = W[30];
- Ta = W[31];
- Tc = FMA(T8, T9, Ta * Tb);
- T68 = FNMS(Ta, T9, T8 * Tb);
- }
- {
- E Te, Tg, Td, Tf;
- Te = ri[WS(ios, 48)];
- Tg = ii[WS(ios, 48)];
- Td = W[94];
- Tf = W[95];
- Th = FMA(Td, Te, Tf * Tg);
- T69 = FNMS(Tf, Te, Td * Tg);
- }
- {
- E T7, Ti, ThR, ThS;
- T7 = T1 + T6;
- Ti = Tc + Th;
- Tj = T7 + Ti;
- TcL = T7 - Ti;
- ThR = TgR - TgQ;
- ThS = Tc - Th;
- ThT = ThR - ThS;
- Tin = ThS + ThR;
- }
- {
- E T67, T6a, TgP, TgS;
- T67 = T1 - T6;
- T6a = T68 - T69;
- T6b = T67 - T6a;
- Taz = T67 + T6a;
- TgP = T68 + T69;
- TgS = TgQ + TgR;
- TgT = TgP + TgS;
- Thn = TgS - TgP;
- }
- }
- {
- E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;
- {
- E Tl, Tn, Tk, Tm;
- Tl = ri[WS(ios, 8)];
- Tn = ii[WS(ios, 8)];
- Tk = W[14];
- Tm = W[15];
- To = FMA(Tk, Tl, Tm * Tn);
- T6c = FNMS(Tm, Tl, Tk * Tn);
- }
- {
- E Tq, Ts, Tp, Tr;
- Tq = ri[WS(ios, 40)];
- Ts = ii[WS(ios, 40)];
- Tp = W[78];
- Tr = W[79];
- Tt = FMA(Tp, Tq, Tr * Ts);
- T6d = FNMS(Tr, Tq, Tp * Ts);
- }
- T6e = T6c - T6d;
- T6f = To - Tt;
- {
- E Tw, Ty, Tv, Tx;
- Tw = ri[WS(ios, 56)];
- Ty = ii[WS(ios, 56)];
- Tv = W[110];
- Tx = W[111];
- Tz = FMA(Tv, Tw, Tx * Ty);
- T6i = FNMS(Tx, Tw, Tv * Ty);
- }
- {
- E TB, TD, TA, TC;
- TB = ri[WS(ios, 24)];
- TD = ii[WS(ios, 24)];
- TA = W[46];
- TC = W[47];
- TE = FMA(TA, TB, TC * TD);
- T6j = FNMS(TC, TB, TA * TD);
- }
- T6h = Tz - TE;
- T6k = T6i - T6j;
- {
- E Tu, TF, TcM, TcN;
- Tu = To + Tt;
- TF = Tz + TE;
- TG = Tu + TF;
- Thm = TF - Tu;
- TcM = T6c + T6d;
- TcN = T6i + T6j;
- TcO = TcM - TcN;
- TgO = TcM + TcN;
- }
- {
- E T6g, T6l, TaA, TaB;
- T6g = T6e - T6f;
- T6l = T6h + T6k;
- T6m = KP707106781 * (T6g - T6l);
- ThQ = KP707106781 * (T6g + T6l);
- TaA = T6f + T6e;
- TaB = T6h - T6k;
- TaC = KP707106781 * (TaA + TaB);
- Tim = KP707106781 * (TaB - TaA);
- }
- }
- {
- E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;
- {
- E TM, T6o, TR, T6p;
- {
- E TJ, TL, TI, TK;
- TJ = ri[WS(ios, 4)];
- TL = ii[WS(ios, 4)];
- TI = W[6];
- TK = W[7];
- TM = FMA(TI, TJ, TK * TL);
- T6o = FNMS(TK, TJ, TI * TL);
- }
- {
- E TO, TQ, TN, TP;
- TO = ri[WS(ios, 36)];
- TQ = ii[WS(ios, 36)];
- TN = W[70];
- TP = W[71];
- TR = FMA(TN, TO, TP * TQ);
- T6p = FNMS(TP, TO, TN * TQ);
- }
- TS = TM + TR;
- TcQ = T6o + T6p;
- T6q = T6o - T6p;
- T6t = TM - TR;
- }
- {
- E TX, T6u, T12, T6v;
- {
- E TU, TW, TT, TV;
- TU = ri[WS(ios, 20)];
- TW = ii[WS(ios, 20)];
- TT = W[38];
- TV = W[39];
- TX = FMA(TT, TU, TV * TW);
- T6u = FNMS(TV, TU, TT * TW);
- }
- {
- E TZ, T11, TY, T10;
- TZ = ri[WS(ios, 52)];
- T11 = ii[WS(ios, 52)];
- TY = W[102];
- T10 = W[103];
- T12 = FMA(TY, TZ, T10 * T11);
- T6v = FNMS(T10, TZ, TY * T11);
- }
- T13 = TX + T12;
- TcR = T6u + T6v;
- T6r = TX - T12;
- T6w = T6u - T6v;
- }
- T14 = TS + T13;
- Tfq = TcQ + TcR;
- T6s = T6q + T6r;
- T6x = T6t - T6w;
- T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);
- T9O = FMA(KP923879532, T6s, KP382683432 * T6x);
- {
- E TaE, TaF, TcS, TcT;
- TaE = T6q - T6r;
- TaF = T6t + T6w;
- TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);
- Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);
- TcS = TcQ - TcR;
- TcT = TS - T13;
- TcU = TcS - TcT;
- TeE = TcT + TcS;
- }
- }
- {
- E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
- {
- E T19, T6z, T1e, T6A;
- {
- E T16, T18, T15, T17;
- T16 = ri[WS(ios, 60)];
- T18 = ii[WS(ios, 60)];
- T15 = W[118];
- T17 = W[119];
- T19 = FMA(T15, T16, T17 * T18);
- T6z = FNMS(T17, T16, T15 * T18);
- }
- {
- E T1b, T1d, T1a, T1c;
- T1b = ri[WS(ios, 28)];
- T1d = ii[WS(ios, 28)];
- T1a = W[54];
- T1c = W[55];
- T1e = FMA(T1a, T1b, T1c * T1d);
- T6A = FNMS(T1c, T1b, T1a * T1d);
- }
- T1f = T19 + T1e;
- TcW = T6z + T6A;
- T6B = T6z - T6A;
- T6E = T19 - T1e;
- }
- {
- E T1k, T6F, T1p, T6G;
- {
- E T1h, T1j, T1g, T1i;
- T1h = ri[WS(ios, 12)];
- T1j = ii[WS(ios, 12)];
- T1g = W[22];
- T1i = W[23];
- T1k = FMA(T1g, T1h, T1i * T1j);
- T6F = FNMS(T1i, T1h, T1g * T1j);
- }
- {
- E T1m, T1o, T1l, T1n;
- T1m = ri[WS(ios, 44)];
- T1o = ii[WS(ios, 44)];
- T1l = W[86];
- T1n = W[87];
- T1p = FMA(T1l, T1m, T1n * T1o);
- T6G = FNMS(T1n, T1m, T1l * T1o);
- }
- T1q = T1k + T1p;
- TcX = T6F + T6G;
- T6C = T1k - T1p;
- T6H = T6F - T6G;
- }
- T1r = T1f + T1q;
- Tfr = TcW + TcX;
- T6D = T6B + T6C;
- T6I = T6E - T6H;
- T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
- T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
- {
- E TaH, TaI, TcV, TcY;
- TaH = T6B - T6C;
- TaI = T6E + T6H;
- TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);
- Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);
- TcV = T1f - T1q;
- TcY = TcW - TcX;
- TcZ = TcV + TcY;
- TeF = TcV - TcY;
- }
- }
- {
- E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;
- E T6Z, T2c, Td9, T6R, T6U;
- {
- E T1v, T1x, T1u, T1w;
- T1v = ri[WS(ios, 2)];
- T1x = ii[WS(ios, 2)];
- T1u = W[2];
- T1w = W[3];
- T1y = FMA(T1u, T1v, T1w * T1x);
- T6M = FNMS(T1w, T1v, T1u * T1x);
- }
- {
- E T1A, T1C, T1z, T1B;
- T1A = ri[WS(ios, 34)];
- T1C = ii[WS(ios, 34)];
- T1z = W[66];
- T1B = W[67];
- T1D = FMA(T1z, T1A, T1B * T1C);
- T6N = FNMS(T1B, T1A, T1z * T1C);
- }
- T1E = T1y + T1D;
- Td2 = T6M + T6N;
- {
- E T1G, T1I, T1F, T1H;
- T1G = ri[WS(ios, 18)];
- T1I = ii[WS(ios, 18)];
- T1F = W[34];
- T1H = W[35];
- T1J = FMA(T1F, T1G, T1H * T1I);
- T74 = FNMS(T1H, T1G, T1F * T1I);
- }
- {
- E T1L, T1N, T1K, T1M;
- T1L = ri[WS(ios, 50)];
- T1N = ii[WS(ios, 50)];
- T1K = W[98];
- T1M = W[99];
- T1O = FMA(T1K, T1L, T1M * T1N);
- T75 = FNMS(T1M, T1L, T1K * T1N);
- }
- T1P = T1J + T1O;
- Td3 = T74 + T75;
- {
- E T1V, T6X, T20, T6Y;
- {
- E T1S, T1U, T1R, T1T;
- T1S = ri[WS(ios, 10)];
- T1U = ii[WS(ios, 10)];
- T1R = W[18];
- T1T = W[19];
- T1V = FMA(T1R, T1S, T1T * T1U);
- T6X = FNMS(T1T, T1S, T1R * T1U);
- }
- {
- E T1X, T1Z, T1W, T1Y;
- T1X = ri[WS(ios, 42)];
- T1Z = ii[WS(ios, 42)];
- T1W = W[82];
- T1Y = W[83];
- T20 = FMA(T1W, T1X, T1Y * T1Z);
- T6Y = FNMS(T1Y, T1X, T1W * T1Z);
- }
- T21 = T1V + T20;
- Td8 = T6X + T6Y;
- T6W = T1V - T20;
- T6Z = T6X - T6Y;
- }
- {
- E T26, T6S, T2b, T6T;
- {
- E T23, T25, T22, T24;
- T23 = ri[WS(ios, 58)];
- T25 = ii[WS(ios, 58)];
- T22 = W[114];
- T24 = W[115];
- T26 = FMA(T22, T23, T24 * T25);
- T6S = FNMS(T24, T23, T22 * T25);
- }
- {
- E T28, T2a, T27, T29;
- T28 = ri[WS(ios, 26)];
- T2a = ii[WS(ios, 26)];
- T27 = W[50];
- T29 = W[51];
- T2b = FMA(T27, T28, T29 * T2a);
- T6T = FNMS(T29, T28, T27 * T2a);
- }
- T2c = T26 + T2b;
- Td9 = T6S + T6T;
- T6R = T26 - T2b;
- T6U = T6S - T6T;
- }
- T1Q = T1E + T1P;
- T2d = T21 + T2c;
- Tfx = T1Q - T2d;
- Tfu = Td2 + Td3;
- Tfv = Td8 + Td9;
- Tfw = Tfu - Tfv;
- {
- E T6O, T6P, Td7, Tda;
- T6O = T6M - T6N;
- T6P = T1J - T1O;
- T6Q = T6O + T6P;
- TaM = T6O - T6P;
- Td7 = T1E - T1P;
- Tda = Td8 - Td9;
- Tdb = Td7 - Tda;
- TeJ = Td7 + Tda;
- }
- {
- E T6V, T70, T78, T79;
- T6V = T6R - T6U;
- T70 = T6W + T6Z;
- T71 = KP707106781 * (T6V - T70);
- TaQ = KP707106781 * (T70 + T6V);
- T78 = T6Z - T6W;
- T79 = T6R + T6U;
- T7a = KP707106781 * (T78 - T79);
- TaN = KP707106781 * (T78 + T79);
- }
- {
- E Td4, Td5, T73, T76;
- Td4 = Td2 - Td3;
- Td5 = T2c - T21;
- Td6 = Td4 - Td5;
- TeI = Td4 + Td5;
- T73 = T1y - T1D;
- T76 = T74 - T75;
- T77 = T73 - T76;
- TaP = T73 + T76;
- }
- }
- {
- E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;
- E T7q, T2X, Tdk, T7i, T7l;
- {
- E T2g, T2i, T2f, T2h;
- T2g = ri[WS(ios, 62)];
- T2i = ii[WS(ios, 62)];
- T2f = W[122];
- T2h = W[123];
- T2j = FMA(T2f, T2g, T2h * T2i);
- T7d = FNMS(T2h, T2g, T2f * T2i);
- }
- {
- E T2l, T2n, T2k, T2m;
- T2l = ri[WS(ios, 30)];
- T2n = ii[WS(ios, 30)];
- T2k = W[58];
- T2m = W[59];
- T2o = FMA(T2k, T2l, T2m * T2n);
- T7e = FNMS(T2m, T2l, T2k * T2n);
- }
- T2p = T2j + T2o;
- Tdd = T7d + T7e;
- {
- E T2r, T2t, T2q, T2s;
- T2r = ri[WS(ios, 14)];
- T2t = ii[WS(ios, 14)];
- T2q = W[26];
- T2s = W[27];
- T2u = FMA(T2q, T2r, T2s * T2t);
- T7v = FNMS(T2s, T2r, T2q * T2t);
- }
- {
- E T2w, T2y, T2v, T2x;
- T2w = ri[WS(ios, 46)];
- T2y = ii[WS(ios, 46)];
- T2v = W[90];
- T2x = W[91];
- T2z = FMA(T2v, T2w, T2x * T2y);
- T7w = FNMS(T2x, T2w, T2v * T2y);
- }
- T2A = T2u + T2z;
- Tde = T7v + T7w;
- {
- E T2G, T7o, T2L, T7p;
- {
- E T2D, T2F, T2C, T2E;
- T2D = ri[WS(ios, 6)];
- T2F = ii[WS(ios, 6)];
- T2C = W[10];
- T2E = W[11];
- T2G = FMA(T2C, T2D, T2E * T2F);
- T7o = FNMS(T2E, T2D, T2C * T2F);
- }
- {
- E T2I, T2K, T2H, T2J;
- T2I = ri[WS(ios, 38)];
- T2K = ii[WS(ios, 38)];
- T2H = W[74];
- T2J = W[75];
- T2L = FMA(T2H, T2I, T2J * T2K);
- T7p = FNMS(T2J, T2I, T2H * T2K);
- }
- T2M = T2G + T2L;
- Tdj = T7o + T7p;
- T7n = T2G - T2L;
- T7q = T7o - T7p;
- }
- {
- E T2R, T7j, T2W, T7k;
- {
- E T2O, T2Q, T2N, T2P;
- T2O = ri[WS(ios, 54)];
- T2Q = ii[WS(ios, 54)];
- T2N = W[106];
- T2P = W[107];
- T2R = FMA(T2N, T2O, T2P * T2Q);
- T7j = FNMS(T2P, T2O, T2N * T2Q);
- }
- {
- E T2T, T2V, T2S, T2U;
- T2T = ri[WS(ios, 22)];
- T2V = ii[WS(ios, 22)];
- T2S = W[42];
- T2U = W[43];
- T2W = FMA(T2S, T2T, T2U * T2V);
- T7k = FNMS(T2U, T2T, T2S * T2V);
- }
- T2X = T2R + T2W;
- Tdk = T7j + T7k;
- T7i = T2R - T2W;
- T7l = T7j - T7k;
- }
- T2B = T2p + T2A;
- T2Y = T2M + T2X;
- Tfz = T2B - T2Y;
- TfA = Tdd + Tde;
- TfB = Tdj + Tdk;
- TfC = TfA - TfB;
- {
- E T7f, T7g, Tdi, Tdl;
- T7f = T7d - T7e;
- T7g = T2u - T2z;
- T7h = T7f + T7g;
- TaW = T7f - T7g;
- Tdi = T2p - T2A;
- Tdl = Tdj - Tdk;
- Tdm = Tdi - Tdl;
- TeM = Tdi + Tdl;
- }
- {
- E T7m, T7r, T7z, T7A;
- T7m = T7i - T7l;
- T7r = T7n + T7q;
- T7s = KP707106781 * (T7m - T7r);
- TaU = KP707106781 * (T7r + T7m);
- T7z = T7q - T7n;
- T7A = T7i + T7l;
- T7B = KP707106781 * (T7z - T7A);
- TaX = KP707106781 * (T7z + T7A);
- }
- {
- E Tdf, Tdg, T7u, T7x;
- Tdf = Tdd - Tde;
- Tdg = T2X - T2M;
- Tdh = Tdf - Tdg;
- TeL = Tdf + Tdg;
- T7u = T2j - T2o;
- T7x = T7v - T7w;
- T7y = T7u - T7x;
- TaT = T7u + T7x;
- }
- }
- {
- E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G;
- E T8H, T5h, TdT, T8J, T8M;
- {
- E T4A, T4C, T4z, T4B;
- T4A = ri[WS(ios, 63)];
- T4C = ii[WS(ios, 63)];
- T4z = W[124];
- T4B = W[125];
- T4D = FMA(T4z, T4A, T4B * T4C);
- T9e = FNMS(T4B, T4A, T4z * T4C);
- }
- {
- E T4F, T4H, T4E, T4G;
- T4F = ri[WS(ios, 31)];
- T4H = ii[WS(ios, 31)];
- T4E = W[60];
- T4G = W[61];
- T4I = FMA(T4E, T4F, T4G * T4H);
- T9f = FNMS(T4G, T4F, T4E * T4H);
- }
- T4J = T4D + T4I;
- Te8 = T9e + T9f;
- {
- E T4L, T4N, T4K, T4M;
- T4L = ri[WS(ios, 15)];
- T4N = ii[WS(ios, 15)];
- T4K = W[28];
- T4M = W[29];
- T4O = FMA(T4K, T4L, T4M * T4N);
- T8A = FNMS(T4M, T4L, T4K * T4N);
- }
- {
- E T4Q, T4S, T4P, T4R;
- T4Q = ri[WS(ios, 47)];
- T4S = ii[WS(ios, 47)];
- T4P = W[92];
- T4R = W[93];
- T4T = FMA(T4P, T4Q, T4R * T4S);
- T8B = FNMS(T4R, T4Q, T4P * T4S);
- }
- T4U = T4O + T4T;
- Te9 = T8A + T8B;
- {
- E T50, T8E, T55, T8F;
- {
- E T4X, T4Z, T4W, T4Y;
- T4X = ri[WS(ios, 7)];
- T4Z = ii[WS(ios, 7)];
- T4W = W[12];
- T4Y = W[13];
- T50 = FMA(T4W, T4X, T4Y * T4Z);
- T8E = FNMS(T4Y, T4X, T4W * T4Z);
- }
- {
- E T52, T54, T51, T53;
- T52 = ri[WS(ios, 39)];
- T54 = ii[WS(ios, 39)];
- T51 = W[76];
- T53 = W[77];
- T55 = FMA(T51, T52, T53 * T54);
- T8F = FNMS(T53, T52, T51 * T54);
- }
- T56 = T50 + T55;
- TdS = T8E + T8F;
- T8G = T8E - T8F;
- T8H = T50 - T55;
- }
- {
- E T5b, T8K, T5g, T8L;
- {
- E T58, T5a, T57, T59;
- T58 = ri[WS(ios, 55)];
- T5a = ii[WS(ios, 55)];
- T57 = W[108];
- T59 = W[109];
- T5b = FMA(T57, T58, T59 * T5a);
- T8K = FNMS(T59, T58, T57 * T5a);
- }
- {
- E T5d, T5f, T5c, T5e;
- T5d = ri[WS(ios, 23)];
- T5f = ii[WS(ios, 23)];
- T5c = W[44];
- T5e = W[45];
- T5g = FMA(T5c, T5d, T5e * T5f);
- T8L = FNMS(T5e, T5d, T5c * T5f);
- }
- T5h = T5b + T5g;
- TdT = T8K + T8L;
- T8J = T5b - T5g;
- T8M = T8K - T8L;
- }
- {
- E T4V, T5i, Tea, Teb;
- T4V = T4J + T4U;
- T5i = T56 + T5h;
- T5j = T4V + T5i;
- TfR = T4V - T5i;
- Tea = Te8 - Te9;
- Teb = T5h - T56;
- Tec = Tea - Teb;
- Tf0 = Tea + Teb;
- }
- {
- E TfW, TfX, T8z, T8C;
- TfW = Te8 + Te9;
- TfX = TdS + TdT;
- TfY = TfW - TfX;
- Tgy = TfW + TfX;
- T8z = T4D - T4I;
- T8C = T8A - T8B;
- T8D = T8z - T8C;
- Tbl = T8z + T8C;
- }
- {
- E T8I, T8N, T9j, T9k;
- T8I = T8G - T8H;
- T8N = T8J + T8M;
- T8O = KP707106781 * (T8I - T8N);
- Tbx = KP707106781 * (T8I + T8N);
- T9j = T8J - T8M;
- T9k = T8H + T8G;
- T9l = KP707106781 * (T9j - T9k);
- Tbm = KP707106781 * (T9k + T9j);
- }
- {
- E TdR, TdU, T9g, T9h;
- TdR = T4J - T4U;
- TdU = TdS - TdT;
- TdV = TdR - TdU;
- TeX = TdR + TdU;
- T9g = T9e - T9f;
- T9h = T4O - T4T;
- T9i = T9g + T9h;
- Tbw = T9g - T9h;
- }
- }
- {
- E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q;
- E T7T, T3K, TdJ, T7L, T7O;
- {
- E T33, T35, T32, T34;
- T33 = ri[WS(ios, 1)];
- T35 = ii[WS(ios, 1)];
- T32 = W[0];
- T34 = W[1];
- T36 = FMA(T32, T33, T34 * T35);
- T7G = FNMS(T34, T33, T32 * T35);
- }
- {
- E T38, T3a, T37, T39;
- T38 = ri[WS(ios, 33)];
- T3a = ii[WS(ios, 33)];
- T37 = W[64];
- T39 = W[65];
- T3b = FMA(T37, T38, T39 * T3a);
- T7H = FNMS(T39, T38, T37 * T3a);
- }
- T3c = T36 + T3b;
- Tdq = T7G + T7H;
- {
- E T3e, T3g, T3d, T3f;
- T3e = ri[WS(ios, 17)];
- T3g = ii[WS(ios, 17)];
- T3d = W[32];
- T3f = W[33];
- T3h = FMA(T3d, T3e, T3f * T3g);
- T8m = FNMS(T3f, T3e, T3d * T3g);
- }
- {
- E T3j, T3l, T3i, T3k;
- T3j = ri[WS(ios, 49)];
- T3l = ii[WS(ios, 49)];
- T3i = W[96];
- T3k = W[97];
- T3m = FMA(T3i, T3j, T3k * T3l);
- T8n = FNMS(T3k, T3j, T3i * T3l);
- }
- T3n = T3h + T3m;
- Tdr = T8m + T8n;
- {
- E T3t, T7R, T3y, T7S;
- {
- E T3q, T3s, T3p, T3r;
- T3q = ri[WS(ios, 9)];
- T3s = ii[WS(ios, 9)];
- T3p = W[16];
- T3r = W[17];
- T3t = FMA(T3p, T3q, T3r * T3s);
- T7R = FNMS(T3r, T3q, T3p * T3s);
- }
- {
- E T3v, T3x, T3u, T3w;
- T3v = ri[WS(ios, 41)];
- T3x = ii[WS(ios, 41)];
- T3u = W[80];
- T3w = W[81];
- T3y = FMA(T3u, T3v, T3w * T3x);
- T7S = FNMS(T3w, T3v, T3u * T3x);
- }
- T3z = T3t + T3y;
- TdI = T7R + T7S;
- T7Q = T3t - T3y;
- T7T = T7R - T7S;
- }
- {
- E T3E, T7M, T3J, T7N;
- {
- E T3B, T3D, T3A, T3C;
- T3B = ri[WS(ios, 57)];
- T3D = ii[WS(ios, 57)];
- T3A = W[112];
- T3C = W[113];
- T3E = FMA(T3A, T3B, T3C * T3D);
- T7M = FNMS(T3C, T3B, T3A * T3D);
- }
- {
- E T3G, T3I, T3F, T3H;
- T3G = ri[WS(ios, 25)];
- T3I = ii[WS(ios, 25)];
- T3F = W[48];
- T3H = W[49];
- T3J = FMA(T3F, T3G, T3H * T3I);
- T7N = FNMS(T3H, T3G, T3F * T3I);
- }
- T3K = T3E + T3J;
- TdJ = T7M + T7N;
- T7L = T3E - T3J;
- T7O = T7M - T7N;
- }
- {
- E T3o, T3L, TdH, TdK;
- T3o = T3c + T3n;
- T3L = T3z + T3K;
- T3M = T3o + T3L;
- TfL = T3o - T3L;
- TdH = T3c - T3n;
- TdK = TdI - TdJ;
- TdL = TdH - TdK;
- TeQ = TdH + TdK;
- }
- {
- E TfG, TfH, T7I, T7J;
- TfG = Tdq + Tdr;
- TfH = TdI + TdJ;
- TfI = TfG - TfH;
- Tgt = TfG + TfH;
- T7I = T7G - T7H;
- T7J = T3h - T3m;
- T7K = T7I + T7J;
- Tb2 = T7I - T7J;
- }
- {
- E T7P, T7U, T8q, T8r;
- T7P = T7L - T7O;
- T7U = T7Q + T7T;
- T7V = KP707106781 * (T7P - T7U);
- Tbe = KP707106781 * (T7U + T7P);
- T8q = T7T - T7Q;
- T8r = T7L + T7O;
- T8s = KP707106781 * (T8q - T8r);
- Tb3 = KP707106781 * (T8q + T8r);
- }
- {
- E Tds, Tdt, T8l, T8o;
- Tds = Tdq - Tdr;
- Tdt = T3K - T3z;
- Tdu = Tds - Tdt;
- TeT = Tds + Tdt;
- T8l = T36 - T3b;
- T8o = T8m - T8n;
- T8p = T8l - T8o;
- Tbd = T8l + T8o;
- }
- }
- {
- E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X;
- E T84;
- {
- E T3R, T88, T3W, T89;
- {
- E T3O, T3Q, T3N, T3P;
- T3O = ri[WS(ios, 5)];
- T3Q = ii[WS(ios, 5)];
- T3N = W[8];
- T3P = W[9];
- T3R = FMA(T3N, T3O, T3P * T3Q);
- T88 = FNMS(T3P, T3O, T3N * T3Q);
- }
- {
- E T3T, T3V, T3S, T3U;
- T3T = ri[WS(ios, 37)];
- T3V = ii[WS(ios, 37)];
- T3S = W[72];
- T3U = W[73];
- T3W = FMA(T3S, T3T, T3U * T3V);
- T89 = FNMS(T3U, T3T, T3S * T3V);
- }
- T3X = T3R + T3W;
- TdB = T88 + T89;
- T8a = T88 - T89;
- T8d = T3R - T3W;
- }
- {
- E T4p, T7Y, T4u, T7Z;
- {
- E T4m, T4o, T4l, T4n;
- T4m = ri[WS(ios, 13)];
- T4o = ii[WS(ios, 13)];
- T4l = W[24];
- T4n = W[25];
- T4p = FMA(T4l, T4m, T4n * T4o);
- T7Y = FNMS(T4n, T4m, T4l * T4o);
- }
- {
- E T4r, T4t, T4q, T4s;
- T4r = ri[WS(ios, 45)];
- T4t = ii[WS(ios, 45)];
- T4q = W[88];
- T4s = W[89];
- T4u = FMA(T4q, T4r, T4s * T4t);
- T7Z = FNMS(T4s, T4r, T4q * T4t);
- }
- T4v = T4p + T4u;
- Tdx = T7Y + T7Z;
- T80 = T7Y - T7Z;
- T85 = T4p - T4u;
- }
- {
- E T42, T8e, T47, T8f;
- {
- E T3Z, T41, T3Y, T40;
- T3Z = ri[WS(ios, 21)];
- T41 = ii[WS(ios, 21)];
- T3Y = W[40];
- T40 = W[41];
- T42 = FMA(T3Y, T3Z, T40 * T41);
- T8e = FNMS(T40, T3Z, T3Y * T41);
- }
- {
- E T44, T46, T43, T45;
- T44 = ri[WS(ios, 53)];
- T46 = ii[WS(ios, 53)];
- T43 = W[104];
- T45 = W[105];
- T47 = FMA(T43, T44, T45 * T46);
- T8f = FNMS(T45, T44, T43 * T46);
- }
- T48 = T42 + T47;
- TdC = T8e + T8f;
- T8b = T42 - T47;
- T8g = T8e - T8f;
- }
- {
- E T4e, T82, T4j, T83;
- {
- E T4b, T4d, T4a, T4c;
- T4b = ri[WS(ios, 61)];
- T4d = ii[WS(ios, 61)];
- T4a = W[120];
- T4c = W[121];
- T4e = FMA(T4a, T4b, T4c * T4d);
- T82 = FNMS(T4c, T4b, T4a * T4d);
- }
- {
- E T4g, T4i, T4f, T4h;
- T4g = ri[WS(ios, 29)];
- T4i = ii[WS(ios, 29)];
- T4f = W[56];
- T4h = W[57];
- T4j = FMA(T4f, T4g, T4h * T4i);
- T83 = FNMS(T4h, T4g, T4f * T4i);
- }
- T4k = T4e + T4j;
- Tdw = T82 + T83;
- T7X = T4e - T4j;
- T84 = T82 - T83;
- }
- {
- E T49, T4w, TdA, TdD;
- T49 = T3X + T48;
- T4w = T4k + T4v;
- T4x = T49 + T4w;
- TfJ = T4w - T49;
- TdA = T3X - T48;
- TdD = TdB - TdC;
- TdE = TdA + TdD;
- TdM = TdD - TdA;
- }
- {
- E TfM, TfN, T81, T86;
- TfM = TdB + TdC;
- TfN = Tdw + Tdx;
- TfO = TfM - TfN;
- Tgu = TfM + TfN;
- T81 = T7X - T80;
- T86 = T84 + T85;
- T87 = FNMS(KP923879532, T86, KP382683432 * T81);
- T8v = FMA(KP382683432, T86, KP923879532 * T81);
- }
- {
- E T8c, T8h, Tb8, Tb9;
- T8c = T8a + T8b;
- T8h = T8d - T8g;
- T8i = FMA(KP923879532, T8c, KP382683432 * T8h);
- T8u = FNMS(KP923879532, T8h, KP382683432 * T8c);
- Tb8 = T8a - T8b;
- Tb9 = T8d + T8g;
- Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);
- Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
- }
- {
- E Tdv, Tdy, Tb5, Tb6;
- Tdv = T4k - T4v;
- Tdy = Tdw - Tdx;
- Tdz = Tdv - Tdy;
- TdN = Tdv + Tdy;
- Tb5 = T7X + T80;
- Tb6 = T84 - T85;
- Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
- Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);
- }
- }
- {
- E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;
- E T96;
- {
- E T5o, T8Q, T5t, T8R;
- {
- E T5l, T5n, T5k, T5m;
- T5l = ri[WS(ios, 3)];
- T5n = ii[WS(ios, 3)];
- T5k = W[4];
- T5m = W[5];
- T5o = FMA(T5k, T5l, T5m * T5n);
- T8Q = FNMS(T5m, T5l, T5k * T5n);
- }
- {
- E T5q, T5s, T5p, T5r;
- T5q = ri[WS(ios, 35)];
- T5s = ii[WS(ios, 35)];
- T5p = W[68];
- T5r = W[69];
- T5t = FMA(T5p, T5q, T5r * T5s);
- T8R = FNMS(T5r, T5q, T5p * T5s);
- }
- T5u = T5o + T5t;
- TdW = T8Q + T8R;
- T8S = T8Q - T8R;
- T8V = T5o - T5t;
- }
- {
- E T5W, T97, T61, T98;
- {
- E T5T, T5V, T5S, T5U;
- T5T = ri[WS(ios, 11)];
- T5V = ii[WS(ios, 11)];
- T5S = W[20];
- T5U = W[21];
- T5W = FMA(T5S, T5T, T5U * T5V);
- T97 = FNMS(T5U, T5T, T5S * T5V);
- }
- {
- E T5Y, T60, T5X, T5Z;
- T5Y = ri[WS(ios, 43)];
- T60 = ii[WS(ios, 43)];
- T5X = W[84];
- T5Z = W[85];
- T61 = FMA(T5X, T5Y, T5Z * T60);
- T98 = FNMS(T5Z, T5Y, T5X * T60);
- }
- T62 = T5W + T61;
- Te3 = T97 + T98;
- T94 = T5W - T61;
- T99 = T97 - T98;
- }
- {
- E T5z, T8W, T5E, T8X;
- {
- E T5w, T5y, T5v, T5x;
- T5w = ri[WS(ios, 19)];
- T5y = ii[WS(ios, 19)];
- T5v = W[36];
- T5x = W[37];
- T5z = FMA(T5v, T5w, T5x * T5y);
- T8W = FNMS(T5x, T5w, T5v * T5y);
- }
- {
- E T5B, T5D, T5A, T5C;
- T5B = ri[WS(ios, 51)];
- T5D = ii[WS(ios, 51)];
- T5A = W[100];
- T5C = W[101];
- T5E = FMA(T5A, T5B, T5C * T5D);
- T8X = FNMS(T5C, T5B, T5A * T5D);
- }
- T5F = T5z + T5E;
- TdX = T8W + T8X;
- T8T = T5z - T5E;
- T8Y = T8W - T8X;
- }
- {
- E T5L, T91, T5Q, T92;
- {
- E T5I, T5K, T5H, T5J;
- T5I = ri[WS(ios, 59)];
- T5K = ii[WS(ios, 59)];
- T5H = W[116];
- T5J = W[117];
- T5L = FMA(T5H, T5I, T5J * T5K);
- T91 = FNMS(T5J, T5I, T5H * T5K);
- }
- {
- E T5N, T5P, T5M, T5O;
- T5N = ri[WS(ios, 27)];
- T5P = ii[WS(ios, 27)];
- T5M = W[52];
- T5O = W[53];
- T5Q = FMA(T5M, T5N, T5O * T5P);
- T92 = FNMS(T5O, T5N, T5M * T5P);
- }
- T5R = T5L + T5Q;
- Te2 = T91 + T92;
- T93 = T91 - T92;
- T96 = T5L - T5Q;
- }
- {
- E T5G, T63, Te1, Te4;
- T5G = T5u + T5F;
- T63 = T5R + T62;
- T64 = T5G + T63;
- TfZ = T63 - T5G;
- Te1 = T5R - T62;
- Te4 = Te2 - Te3;
- Te5 = Te1 + Te4;
- Ted = Te1 - Te4;
- }
- {
- E TfS, TfT, T8U, T8Z;
- TfS = TdW + TdX;
- TfT = Te2 + Te3;
- TfU = TfS - TfT;
- Tgz = TfS + TfT;
- T8U = T8S + T8T;
- T8Z = T8V - T8Y;
- T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);
- T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);
- }
- {
- E T95, T9a, Tbr, Tbs;
- T95 = T93 + T94;
- T9a = T96 - T99;
- T9b = FMA(KP382683432, T95, KP923879532 * T9a);
- T9n = FNMS(KP923879532, T95, KP382683432 * T9a);
- Tbr = T93 - T94;
- Tbs = T96 + T99;
- Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);
- Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);
- }
- {
- E TdY, TdZ, Tbo, Tbp;
- TdY = TdW - TdX;
- TdZ = T5u - T5F;
- Te0 = TdY - TdZ;
- Tee = TdZ + TdY;
- Tbo = T8S - T8T;
- Tbp = T8V + T8Y;
- Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
- TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);
- }
- }
- {
- E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
- E TgM;
- {
- E TH, T1s, TgI, TgJ;
- TH = Tj + TG;
- T1s = T14 + T1r;
- T1t = TH + T1s;
- Tgn = TH - T1s;
- TgI = Tgt + Tgu;
- TgJ = Tgy + Tgz;
- TgK = TgI - TgJ;
- TgL = TgI + TgJ;
- }
- {
- E TgN, TgU, T2e, T2Z;
- TgN = Tfq + Tfr;
- TgU = TgO + TgT;
- TgV = TgN + TgU;
- Th1 = TgU - TgN;
- T2e = T1Q + T2d;
- T2Z = T2B + T2Y;
- T30 = T2e + T2Z;
- Th0 = T2Z - T2e;
- }
- {
- E T4y, T65, Tgs, Tgv;
- T4y = T3M + T4x;
- T65 = T5j + T64;
- T66 = T4y + T65;
- TgX = T65 - T4y;
- Tgs = T3M - T4x;
- Tgv = Tgt - Tgu;
- Tgw = Tgs + Tgv;
- TgE = Tgv - Tgs;
- }
- {
- E Tgx, TgA, Tgo, Tgp;
- Tgx = T5j - T64;
- TgA = Tgy - Tgz;
- TgB = Tgx - TgA;
- TgF = Tgx + TgA;
- Tgo = Tfu + Tfv;
- Tgp = TfA + TfB;
- Tgq = Tgo - Tgp;
- TgM = Tgo + Tgp;
- }
- {
- E T31, TgW, TgH, TgY;
- T31 = T1t + T30;
- ri[WS(ios, 32)] = T31 - T66;
- ri[0] = T31 + T66;
- TgW = TgM + TgV;
- ii[0] = TgL + TgW;
- ii[WS(ios, 32)] = TgW - TgL;
- TgH = T1t - T30;
- ri[WS(ios, 48)] = TgH - TgK;
- ri[WS(ios, 16)] = TgH + TgK;
- TgY = TgV - TgM;
- ii[WS(ios, 16)] = TgX + TgY;
- ii[WS(ios, 48)] = TgY - TgX;
- }
- {
- E Tgr, TgC, TgZ, Th2;
- Tgr = Tgn + Tgq;
- TgC = KP707106781 * (Tgw + TgB);
- ri[WS(ios, 40)] = Tgr - TgC;
- ri[WS(ios, 8)] = Tgr + TgC;
- TgZ = KP707106781 * (TgE + TgF);
- Th2 = Th0 + Th1;
- ii[WS(ios, 8)] = TgZ + Th2;
- ii[WS(ios, 40)] = Th2 - TgZ;
- }
- {
- E TgD, TgG, Th3, Th4;
- TgD = Tgn - Tgq;
- TgG = KP707106781 * (TgE - TgF);
- ri[WS(ios, 56)] = TgD - TgG;
- ri[WS(ios, 24)] = TgD + TgG;
- Th3 = KP707106781 * (TgB - Tgw);
- Th4 = Th1 - Th0;
- ii[WS(ios, 24)] = Th3 + Th4;
- ii[WS(ios, 56)] = Th4 - Th3;
- }
- }
- {
- E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
- E Tg5;
- {
- E Tfp, Tfs, Tgf, Tgg;
- Tfp = Tj - TG;
- Tfs = Tfq - Tfr;
- Tft = Tfp - Tfs;
- Tg7 = Tfp + Tfs;
- Tgf = TfR + TfU;
- Tgg = TfY + TfZ;
- Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);
- Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);
- }
- {
- E Th7, Th8, Tfy, TfD;
- Th7 = T1r - T14;
- Th8 = TgT - TgO;
- Th9 = Th7 + Th8;
- Thf = Th8 - Th7;
- Tfy = Tfw - Tfx;
- TfD = Tfz + TfC;
- TfE = KP707106781 * (Tfy - TfD);
- Th6 = KP707106781 * (Tfy + TfD);
- }
- {
- E TfK, TfP, Tg8, Tg9;
- TfK = TfI - TfJ;
- TfP = TfL - TfO;
- TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);
- Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);
- Tg8 = Tfx + Tfw;
- Tg9 = Tfz - TfC;
- Tga = KP707106781 * (Tg8 + Tg9);
- The = KP707106781 * (Tg9 - Tg8);
- }
- {
- E Tgc, Tgd, TfV, Tg0;
- Tgc = TfI + TfJ;
- Tgd = TfL + TfO;
- Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);
- Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
- TfV = TfR - TfU;
- Tg0 = TfY - TfZ;
- Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);
- Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);
- }
- {
- E TfF, Tg2, Thd, Thg;
- TfF = Tft + TfE;
- Tg2 = TfQ + Tg1;
- ri[WS(ios, 44)] = TfF - Tg2;
- ri[WS(ios, 12)] = TfF + Tg2;
- Thd = Tg4 + Tg5;
- Thg = The + Thf;
- ii[WS(ios, 12)] = Thd + Thg;
- ii[WS(ios, 44)] = Thg - Thd;
- }
- {
- E Tg3, Tg6, Thh, Thi;
- Tg3 = Tft - TfE;
- Tg6 = Tg4 - Tg5;
- ri[WS(ios, 60)] = Tg3 - Tg6;
- ri[WS(ios, 28)] = Tg3 + Tg6;
- Thh = Tg1 - TfQ;
- Thi = Thf - The;
- ii[WS(ios, 28)] = Thh + Thi;
- ii[WS(ios, 60)] = Thi - Thh;
- }
- {
- E Tgb, Tgi, Th5, Tha;
- Tgb = Tg7 + Tga;
- Tgi = Tge + Tgh;
- ri[WS(ios, 36)] = Tgb - Tgi;
- ri[WS(ios, 4)] = Tgb + Tgi;
- Th5 = Tgk + Tgl;
- Tha = Th6 + Th9;
- ii[WS(ios, 4)] = Th5 + Tha;
- ii[WS(ios, 36)] = Tha - Th5;
- }
- {
- E Tgj, Tgm, Thb, Thc;
- Tgj = Tg7 - Tga;
- Tgm = Tgk - Tgl;
- ri[WS(ios, 52)] = Tgj - Tgm;
- ri[WS(ios, 20)] = Tgj + Tgm;
- Thb = Tgh - Tge;
- Thc = Th9 - Th6;
- ii[WS(ios, 20)] = Thb + Thc;
- ii[WS(ios, 52)] = Thc - Thb;
- }
- }
- {
- E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
- E Teu;
- {
- E TcP, Td0, Teo, Tep;
- TcP = TcL - TcO;
- Td0 = KP707106781 * (TcU - TcZ);
- Td1 = TcP - Td0;
- Ten = TcP + Td0;
- {
- E Tdc, Tdn, ThB, ThC;
- Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
- Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);
- Tdo = Tdc - Tdn;
- ThA = Tdc + Tdn;
- ThB = KP707106781 * (TeF - TeE);
- ThC = Thn - Thm;
- ThD = ThB + ThC;
- ThJ = ThC - ThB;
- }
- Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);
- Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);
- Teq = Teo + Tep;
- ThI = Tep - Teo;
- {
- E Te7, Tev, Teg, Tew, Te6, Tef;
- Te6 = KP707106781 * (Te0 - Te5);
- Te7 = TdV - Te6;
- Tev = TdV + Te6;
- Tef = KP707106781 * (Ted - Tee);
- Teg = Tec - Tef;
- Tew = Tec + Tef;
- Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);
- TeB = FMA(KP831469612, Tew, KP555570233 * Tev);
- Tel = FMA(KP195090322, Teg, KP980785280 * Te7);
- Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);
- }
- {
- E TdG, Tes, TdP, Tet, TdF, TdO;
- TdF = KP707106781 * (Tdz - TdE);
- TdG = Tdu - TdF;
- Tes = Tdu + TdF;
- TdO = KP707106781 * (TdM - TdN);
- TdP = TdL - TdO;
- Tet = TdL + TdO;
- TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);
- TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);
- Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);
- Teu = FMA(KP555570233, Tes, KP831469612 * Tet);
- }
- }
- {
- E Tdp, Tei, ThH, ThK;
- Tdp = Td1 + Tdo;
- Tei = TdQ + Teh;
- ri[WS(ios, 46)] = Tdp - Tei;
- ri[WS(ios, 14)] = Tdp + Tei;
- ThH = Tek + Tel;
- ThK = ThI + ThJ;
- ii[WS(ios, 14)] = ThH + ThK;
- ii[WS(ios, 46)] = ThK - ThH;
- }
- {
- E Tej, Tem, ThL, ThM;
- Tej = Td1 - Tdo;
- Tem = Tek - Tel;
- ri[WS(ios, 62)] = Tej - Tem;
- ri[WS(ios, 30)] = Tej + Tem;
- ThL = Teh - TdQ;
- ThM = ThJ - ThI;
- ii[WS(ios, 30)] = ThL + ThM;
- ii[WS(ios, 62)] = ThM - ThL;
- }
- {
- E Ter, Tey, Thz, ThE;
- Ter = Ten + Teq;
- Tey = Teu + Tex;
- ri[WS(ios, 38)] = Ter - Tey;
- ri[WS(ios, 6)] = Ter + Tey;
- Thz = TeA + TeB;
- ThE = ThA + ThD;
- ii[WS(ios, 6)] = Thz + ThE;
- ii[WS(ios, 38)] = ThE - Thz;
- }
- {
- E Tez, TeC, ThF, ThG;
- Tez = Ten - Teq;
- TeC = TeA - TeB;
- ri[WS(ios, 54)] = Tez - TeC;
- ri[WS(ios, 22)] = Tez + TeC;
- ThF = Tex - Teu;
- ThG = ThD - ThA;
- ii[WS(ios, 22)] = ThF + ThG;
- ii[WS(ios, 54)] = ThG - ThF;
- }
- }
- {
- E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
- E Tfg;
- {
- E TeD, TeG, Tfa, Tfb;
- TeD = TcL + TcO;
- TeG = KP707106781 * (TeE + TeF);
- TeH = TeD - TeG;
- Tf9 = TeD + TeG;
- {
- E TeK, TeN, Thl, Tho;
- TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);
- TeN = FMA(KP923879532, TeL, KP382683432 * TeM);
- TeO = TeK - TeN;
- Thk = TeK + TeN;
- Thl = KP707106781 * (TcU + TcZ);
- Tho = Thm + Thn;
- Thp = Thl + Tho;
- Thv = Tho - Thl;
- }
- Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);
- Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);
- Tfc = Tfa + Tfb;
- Thu = Tfb - Tfa;
- {
- E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
- TeY = KP707106781 * (Tee + Ted);
- TeZ = TeX - TeY;
- Tfh = TeX + TeY;
- Tf1 = KP707106781 * (Te0 + Te5);
- Tf2 = Tf0 - Tf1;
- Tfi = Tf0 + Tf1;
- Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);
- Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);
- Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);
- Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);
- }
- {
- E TeS, Tfe, TeV, Tff, TeR, TeU;
- TeR = KP707106781 * (TdE + Tdz);
- TeS = TeQ - TeR;
- Tfe = TeQ + TeR;
- TeU = KP707106781 * (TdM + TdN);
- TeV = TeT - TeU;
- Tff = TeT + TeU;
- TeW = FMA(KP555570233, TeS, KP831469612 * TeV);
- Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);
- Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);
- Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);
- }
- }
- {
- E TeP, Tf4, Tht, Thw;
- TeP = TeH + TeO;
- Tf4 = TeW + Tf3;
- ri[WS(ios, 42)] = TeP - Tf4;
- ri[WS(ios, 10)] = TeP + Tf4;
- Tht = Tf6 + Tf7;
- Thw = Thu + Thv;
- ii[WS(ios, 10)] = Tht + Thw;
- ii[WS(ios, 42)] = Thw - Tht;
- }
- {
- E Tf5, Tf8, Thx, Thy;
- Tf5 = TeH - TeO;
- Tf8 = Tf6 - Tf7;
- ri[WS(ios, 58)] = Tf5 - Tf8;
- ri[WS(ios, 26)] = Tf5 + Tf8;
- Thx = Tf3 - TeW;
- Thy = Thv - Thu;
- ii[WS(ios, 26)] = Thx + Thy;
- ii[WS(ios, 58)] = Thy - Thx;
- }
- {
- E Tfd, Tfk, Thj, Thq;
- Tfd = Tf9 + Tfc;
- Tfk = Tfg + Tfj;
- ri[WS(ios, 34)] = Tfd - Tfk;
- ri[WS(ios, 2)] = Tfd + Tfk;
- Thj = Tfm + Tfn;
- Thq = Thk + Thp;
- ii[WS(ios, 2)] = Thj + Thq;
- ii[WS(ios, 34)] = Thq - Thj;
- }
- {
- E Tfl, Tfo, Thr, Ths;
- Tfl = Tf9 - Tfc;
- Tfo = Tfm - Tfn;
- ri[WS(ios, 50)] = Tfl - Tfo;
- ri[WS(ios, 18)] = Tfl + Tfo;
- Thr = Tfj - Tfg;
- Ths = Thp - Thk;
- ii[WS(ios, 18)] = Thr + Ths;
- ii[WS(ios, 50)] = Ths - Thr;
- }
- }
- {
- E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
- E T9H;
- {
- E T6n, T6K, TiB, TiC;
- T6n = T6b - T6m;
- T6K = T6y - T6J;
- T6L = T6n - T6K;
- T9x = T6n + T6K;
- TiB = T9P - T9O;
- TiC = Tin - Tim;
- TiD = TiB + TiC;
- TiJ = TiC - TiB;
- }
- {
- E T7c, T9y, T7D, T9z;
- {
- E T72, T7b, T7t, T7C;
- T72 = T6Q - T71;
- T7b = T77 - T7a;
- T7c = FNMS(KP980785280, T7b, KP195090322 * T72);
- T9y = FMA(KP980785280, T72, KP195090322 * T7b);
- T7t = T7h - T7s;
- T7C = T7y - T7B;
- T7D = FMA(KP195090322, T7t, KP980785280 * T7C);
- T9z = FNMS(KP980785280, T7t, KP195090322 * T7C);
- }
- T7E = T7c - T7D;
- TiI = T9z - T9y;
- T9A = T9y + T9z;
- TiA = T7c + T7D;
- }
- {
- E T8k, T9C, T8x, T9D;
- {
- E T7W, T8j, T8t, T8w;
- T7W = T7K - T7V;
- T8j = T87 - T8i;
- T8k = T7W - T8j;
- T9C = T7W + T8j;
- T8t = T8p - T8s;
- T8w = T8u - T8v;
- T8x = T8t - T8w;
- T9D = T8t + T8w;
- }
- T8y = FMA(KP995184726, T8k, KP098017140 * T8x);
- T9K = FNMS(KP634393284, T9D, KP773010453 * T9C);
- T9u = FNMS(KP995184726, T8x, KP098017140 * T8k);
- T9E = FMA(KP634393284, T9C, KP773010453 * T9D);
- }
- {
- E T9d, T9F, T9q, T9G;
- {
- E T8P, T9c, T9m, T9p;
- T8P = T8D - T8O;
- T9c = T90 - T9b;
- T9d = T8P - T9c;
- T9F = T8P + T9c;
- T9m = T9i - T9l;
- T9p = T9n - T9o;
- T9q = T9m - T9p;
- T9G = T9m + T9p;
- }
- T9r = FNMS(KP995184726, T9q, KP098017140 * T9d);
- T9L = FMA(KP773010453, T9G, KP634393284 * T9F);
- T9v = FMA(KP098017140, T9q, KP995184726 * T9d);
- T9H = FNMS(KP634393284, T9G, KP773010453 * T9F);
- }
- {
- E T7F, T9s, TiH, TiK;
- T7F = T6L + T7E;
- T9s = T8y + T9r;
- ri[WS(ios, 47)] = T7F - T9s;
- ri[WS(ios, 15)] = T7F + T9s;
- TiH = T9u + T9v;
- TiK = TiI + TiJ;
- ii[WS(ios, 15)] = TiH + TiK;
- ii[WS(ios, 47)] = TiK - TiH;
- }
- {
- E T9t, T9w, TiL, TiM;
- T9t = T6L - T7E;
- T9w = T9u - T9v;
- ri[WS(ios, 63)] = T9t - T9w;
- ri[WS(ios, 31)] = T9t + T9w;
- TiL = T9r - T8y;
- TiM = TiJ - TiI;
- ii[WS(ios, 31)] = TiL + TiM;
- ii[WS(ios, 63)] = TiM - TiL;
- }
- {
- E T9B, T9I, Tiz, TiE;
- T9B = T9x + T9A;
- T9I = T9E + T9H;
- ri[WS(ios, 39)] = T9B - T9I;
- ri[WS(ios, 7)] = T9B + T9I;
- Tiz = T9K + T9L;
- TiE = TiA + TiD;
- ii[WS(ios, 7)] = Tiz + TiE;
- ii[WS(ios, 39)] = TiE - Tiz;
- }
- {
- E T9J, T9M, TiF, TiG;
- T9J = T9x - T9A;
- T9M = T9K - T9L;
- ri[WS(ios, 55)] = T9J - T9M;
- ri[WS(ios, 23)] = T9J + T9M;
- TiF = T9H - T9E;
- TiG = TiD - TiA;
- ii[WS(ios, 23)] = TiF + TiG;
- ii[WS(ios, 55)] = TiG - TiF;
- }
- }
- {
- E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
- E TbT;
- {
- E TaD, TaK, Ti7, Ti8;
- TaD = Taz - TaC;
- TaK = TaG - TaJ;
- TaL = TaD - TaK;
- TbJ = TaD + TaK;
- Ti7 = Tc1 - Tc0;
- Ti8 = ThT - ThQ;
- Ti9 = Ti7 + Ti8;
- Tif = Ti8 - Ti7;
- }
- {
- E TaS, TbK, TaZ, TbL;
- {
- E TaO, TaR, TaV, TaY;
- TaO = TaM - TaN;
- TaR = TaP - TaQ;
- TaS = FNMS(KP831469612, TaR, KP555570233 * TaO);
- TbK = FMA(KP555570233, TaR, KP831469612 * TaO);
- TaV = TaT - TaU;
- TaY = TaW - TaX;
- TaZ = FMA(KP831469612, TaV, KP555570233 * TaY);
- TbL = FNMS(KP831469612, TaY, KP555570233 * TaV);
- }
- Tb0 = TaS - TaZ;
- Tie = TbL - TbK;
- TbM = TbK + TbL;
- Ti6 = TaS + TaZ;
- }
- {
- E Tbc, TbO, Tbj, TbP;
- {
- E Tb4, Tbb, Tbf, Tbi;
- Tb4 = Tb2 - Tb3;
- Tbb = Tb7 - Tba;
- Tbc = Tb4 - Tbb;
- TbO = Tb4 + Tbb;
- Tbf = Tbd - Tbe;
- Tbi = Tbg - Tbh;
- Tbj = Tbf - Tbi;
- TbP = Tbf + Tbi;
- }
- Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj);
- TbW = FNMS(KP471396736, TbP, KP881921264 * TbO);
- TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc);
- TbQ = FMA(KP471396736, TbO, KP881921264 * TbP);
- }
- {
- E Tbv, TbR, TbC, TbS;
- {
- E Tbn, Tbu, Tby, TbB;
- Tbn = Tbl - Tbm;
- Tbu = Tbq - Tbt;
- Tbv = Tbn - Tbu;
- TbR = Tbn + Tbu;
- Tby = Tbw - Tbx;
- TbB = Tbz - TbA;
- TbC = Tby - TbB;
- TbS = Tby + TbB;
- }
- TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv);
- TbX = FMA(KP881921264, TbS, KP471396736 * TbR);
- TbH = FMA(KP290284677, TbC, KP956940335 * Tbv);
- TbT = FNMS(KP471396736, TbS, KP881921264 * TbR);
- }
- {
- E Tb1, TbE, Tid, Tig;
- Tb1 = TaL + Tb0;
- TbE = Tbk + TbD;
- ri[WS(ios, 45)] = Tb1 - TbE;
- ri[WS(ios, 13)] = Tb1 + TbE;
- Tid = TbG + TbH;
- Tig = Tie + Tif;
- ii[WS(ios, 13)] = Tid + Tig;
- ii[WS(ios, 45)] = Tig - Tid;
- }
- {
- E TbF, TbI, Tih, Tii;
- TbF = TaL - Tb0;
- TbI = TbG - TbH;
- ri[WS(ios, 61)] = TbF - TbI;
- ri[WS(ios, 29)] = TbF + TbI;
- Tih = TbD - Tbk;
- Tii = Tif - Tie;
- ii[WS(ios, 29)] = Tih + Tii;
- ii[WS(ios, 61)] = Tii - Tih;
- }
- {
- E TbN, TbU, Ti5, Tia;
- TbN = TbJ + TbM;
- TbU = TbQ + TbT;
- ri[WS(ios, 37)] = TbN - TbU;
- ri[WS(ios, 5)] = TbN + TbU;
- Ti5 = TbW + TbX;
- Tia = Ti6 + Ti9;
- ii[WS(ios, 5)] = Ti5 + Tia;
- ii[WS(ios, 37)] = Tia - Ti5;
- }
- {
- E TbV, TbY, Tib, Tic;
- TbV = TbJ - TbM;
- TbY = TbW - TbX;
- ri[WS(ios, 53)] = TbV - TbY;
- ri[WS(ios, 21)] = TbV + TbY;
- Tib = TbT - TbQ;
- Tic = Ti9 - Ti6;
- ii[WS(ios, 21)] = Tib + Tic;
- ii[WS(ios, 53)] = Tic - Tib;
- }
- }
- {
- E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
- E TcF;
- {
- E TbZ, Tc2, ThP, ThU;
- TbZ = Taz + TaC;
- Tc2 = Tc0 + Tc1;
- Tc3 = TbZ - Tc2;
- Tcv = TbZ + Tc2;
- ThP = TaG + TaJ;
- ThU = ThQ + ThT;
- ThV = ThP + ThU;
- Ti1 = ThU - ThP;
- }
- {
- E Tc6, Tcw, Tc9, Tcx;
- {
- E Tc4, Tc5, Tc7, Tc8;
- Tc4 = TaM + TaN;
- Tc5 = TaP + TaQ;
- Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4);
- Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4);
- Tc7 = TaT + TaU;
- Tc8 = TaW + TaX;
- Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8);
- Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7);
- }
- Tca = Tc6 - Tc9;
- Ti0 = Tcx - Tcw;
- Tcy = Tcw + Tcx;
- ThO = Tc6 + Tc9;
- }
- {
- E Tce, TcA, Tch, TcB;
- {
- E Tcc, Tcd, Tcf, Tcg;
- Tcc = Tbd + Tbe;
- Tcd = Tba + Tb7;
- Tce = Tcc - Tcd;
- TcA = Tcc + Tcd;
- Tcf = Tb2 + Tb3;
- Tcg = Tbg + Tbh;
- Tch = Tcf - Tcg;
- TcB = Tcf + Tcg;
- }
- Tci = FMA(KP634393284, Tce, KP773010453 * Tch);
- TcI = FNMS(KP098017140, TcA, KP995184726 * TcB);
- Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch);
- TcC = FMA(KP995184726, TcA, KP098017140 * TcB);
- }
- {
- E Tcl, TcD, Tco, TcE;
- {
- E Tcj, Tck, Tcm, Tcn;
- Tcj = Tbl + Tbm;
- Tck = TbA + Tbz;
- Tcl = Tcj - Tck;
- TcD = Tcj + Tck;
- Tcm = Tbw + Tbx;
- Tcn = Tbq + Tbt;
- Tco = Tcm - Tcn;
- TcE = Tcm + Tcn;
- }
- Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl);
- TcJ = FMA(KP098017140, TcD, KP995184726 * TcE);
- Tct = FMA(KP773010453, Tcl, KP634393284 * Tco);
- TcF = FNMS(KP098017140, TcE, KP995184726 * TcD);
- }
- {
- E Tcb, Tcq, ThZ, Ti2;
- Tcb = Tc3 + Tca;
- Tcq = Tci + Tcp;
- ri[WS(ios, 41)] = Tcb - Tcq;
- ri[WS(ios, 9)] = Tcb + Tcq;
- ThZ = Tcs + Tct;
- Ti2 = Ti0 + Ti1;
- ii[WS(ios, 9)] = ThZ + Ti2;
- ii[WS(ios, 41)] = Ti2 - ThZ;
- }
- {
- E Tcr, Tcu, Ti3, Ti4;
- Tcr = Tc3 - Tca;
- Tcu = Tcs - Tct;
- ri[WS(ios, 57)] = Tcr - Tcu;
- ri[WS(ios, 25)] = Tcr + Tcu;
- Ti3 = Tcp - Tci;
- Ti4 = Ti1 - Ti0;
- ii[WS(ios, 25)] = Ti3 + Ti4;
- ii[WS(ios, 57)] = Ti4 - Ti3;
- }
- {
- E Tcz, TcG, ThN, ThW;
- Tcz = Tcv + Tcy;
- TcG = TcC + TcF;
- ri[WS(ios, 33)] = Tcz - TcG;
- ri[WS(ios, 1)] = Tcz + TcG;
- ThN = TcI + TcJ;
- ThW = ThO + ThV;
- ii[WS(ios, 1)] = ThN + ThW;
- ii[WS(ios, 33)] = ThW - ThN;
- }
- {
- E TcH, TcK, ThX, ThY;
- TcH = Tcv - Tcy;
- TcK = TcI - TcJ;
- ri[WS(ios, 49)] = TcH - TcK;
- ri[WS(ios, 17)] = TcH + TcK;
- ThX = TcF - TcC;
- ThY = ThV - ThO;
- ii[WS(ios, 17)] = ThX + ThY;
- ii[WS(ios, 49)] = ThY - ThX;
- }
- }
- {
- E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
- E Tat;
- {
- E T9N, T9Q, Til, Tio;
- T9N = T6b + T6m;
- T9Q = T9O + T9P;
- T9R = T9N - T9Q;
- Taj = T9N + T9Q;
- Til = T6y + T6J;
- Tio = Tim + Tin;
- Tip = Til + Tio;
- Tiv = Tio - Til;
- }
- {
- E T9U, Tak, T9X, Tal;
- {
- E T9S, T9T, T9V, T9W;
- T9S = T6Q + T71;
- T9T = T77 + T7a;
- T9U = FNMS(KP555570233, T9T, KP831469612 * T9S);
- Tak = FMA(KP555570233, T9S, KP831469612 * T9T);
- T9V = T7h + T7s;
- T9W = T7y + T7B;
- T9X = FMA(KP831469612, T9V, KP555570233 * T9W);
- Tal = FNMS(KP555570233, T9V, KP831469612 * T9W);
- }
- T9Y = T9U - T9X;
- Tiu = Tal - Tak;
- Tam = Tak + Tal;
- Tik = T9U + T9X;
- }
- {
- E Ta2, Tao, Ta5, Tap;
- {
- E Ta0, Ta1, Ta3, Ta4;
- Ta0 = T8p + T8s;
- Ta1 = T8i + T87;
- Ta2 = Ta0 - Ta1;
- Tao = Ta0 + Ta1;
- Ta3 = T7K + T7V;
- Ta4 = T8u + T8v;
- Ta5 = Ta3 - Ta4;
- Tap = Ta3 + Ta4;
- }
- Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
- Taw = FNMS(KP290284677, Tao, KP956940335 * Tap);
- Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5);
- Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
- }
- {
- E Ta9, Tar, Tac, Tas;
- {
- E Ta7, Ta8, Taa, Tab;
- Ta7 = T8D + T8O;
- Ta8 = T9o + T9n;
- Ta9 = Ta7 - Ta8;
- Tar = Ta7 + Ta8;
- Taa = T9i + T9l;
- Tab = T90 + T9b;
- Tac = Taa - Tab;
- Tas = Taa + Tab;
- }
- Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
- Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
- Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
- Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
- }
- {
- E T9Z, Tae, Tit, Tiw;
- T9Z = T9R + T9Y;
- Tae = Ta6 + Tad;
- ri[WS(ios, 43)] = T9Z - Tae;
- ri[WS(ios, 11)] = T9Z + Tae;
- Tit = Tag + Tah;
- Tiw = Tiu + Tiv;
- ii[WS(ios, 11)] = Tit + Tiw;
- ii[WS(ios, 43)] = Tiw - Tit;
- }
- {
- E Taf, Tai, Tix, Tiy;
- Taf = T9R - T9Y;
- Tai = Tag - Tah;
- ri[WS(ios, 59)] = Taf - Tai;
- ri[WS(ios, 27)] = Taf + Tai;
- Tix = Tad - Ta6;
- Tiy = Tiv - Tiu;
- ii[WS(ios, 27)] = Tix + Tiy;
- ii[WS(ios, 59)] = Tiy - Tix;
- }
- {
- E Tan, Tau, Tij, Tiq;
- Tan = Taj + Tam;
- Tau = Taq + Tat;
- ri[WS(ios, 35)] = Tan - Tau;
- ri[WS(ios, 3)] = Tan + Tau;
- Tij = Taw + Tax;
- Tiq = Tik + Tip;
- ii[WS(ios, 3)] = Tij + Tiq;
- ii[WS(ios, 35)] = Tiq - Tij;
- }
- {
- E Tav, Tay, Tir, Tis;
- Tav = Taj - Tam;
- Tay = Taw - Tax;
- ri[WS(ios, 51)] = Tav - Tay;
- ri[WS(ios, 19)] = Tav + Tay;
- Tir = Tat - Taq;
- Tis = Tip - Tik;
- ii[WS(ios, 19)] = Tir + Tis;
- ii[WS(ios, 51)] = Tis - Tir;
- }
- }
- }
- return W;
-}
-
-static const tw_instr twinstr[] = {
- {TW_FULL, 0, 64},
- {TW_NEXT, 1, 0}
-};
-
-static const ct_desc desc = { 64, "t1_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 };
-
-void X(codelet_t1_64) (planner *p) {
- X(kdft_dit_register) (p, t1_64, &desc);
-}