diff options
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t1_64.c')
-rw-r--r-- | src/fftw3/dft/codelets/standard/t1_64.c | 2001 |
1 files changed, 0 insertions, 2001 deletions
diff --git a/src/fftw3/dft/codelets/standard/t1_64.c b/src/fftw3/dft/codelets/standard/t1_64.c deleted file mode 100644 index a03697b..0000000 --- a/src/fftw3/dft/codelets/standard/t1_64.c +++ /dev/null @@ -1,2001 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* This file was automatically generated --- DO NOT EDIT */ -/* Generated on Sat Jul 5 21:30:08 EDT 2003 */ - -#include "codelet-dft.h" - -/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 64 -name t1_64 -include t.h */ - -/* - * This function contains 1038 FP additions, 500 FP multiplications, - * (or, 808 additions, 270 multiplications, 230 fused multiply/add), - * 176 stack variables, and 256 memory accesses - */ -/* - * Generator Id's : - * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - */ - -#include "t.h" - -static const R *t1_64(R *ri, R *ii, const R *W, stride ios, int m, int dist) -{ - DK(KP471396736, +0.471396736825997648556387625905254377657460319); - DK(KP881921264, +0.881921264348355029712756863660388349508442621); - DK(KP290284677, +0.290284677254462367636192375817395274691476278); - DK(KP956940335, +0.956940335732208864935797886980269969482849206); - DK(KP634393284, +0.634393284163645498215171613225493370675687095); - DK(KP773010453, +0.773010453362736960810906609758469800971041293); - DK(KP098017140, +0.098017140329560601994195563888641845861136673); - DK(KP995184726, +0.995184726672196886244836953109479921575474869); - DK(KP555570233, +0.555570233019602224742830813948532874374937191); - DK(KP831469612, +0.831469612302545237078788377617905756738560812); - DK(KP980785280, +0.980785280403230449126182236134239036973933731); - DK(KP195090322, +0.195090322016128267848284868477022240927691618); - DK(KP923879532, +0.923879532511286756128183189396788286822416626); - DK(KP382683432, +0.382683432365089771728459984030398866761344562); - DK(KP707106781, +0.707106781186547524400844362104849039284835938); - int i; - for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 126) { - E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; - E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; - E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; - E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; - E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; - E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; - E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; - E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; - E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; - { - E T1, TgR, T6, TgQ, Tc, T68, Th, T69; - T1 = ri[0]; - TgR = ii[0]; - { - E T3, T5, T2, T4; - T3 = ri[WS(ios, 32)]; - T5 = ii[WS(ios, 32)]; - T2 = W[62]; - T4 = W[63]; - T6 = FMA(T2, T3, T4 * T5); - TgQ = FNMS(T4, T3, T2 * T5); - } - { - E T9, Tb, T8, Ta; - T9 = ri[WS(ios, 16)]; - Tb = ii[WS(ios, 16)]; - T8 = W[30]; - Ta = W[31]; - Tc = FMA(T8, T9, Ta * Tb); - T68 = FNMS(Ta, T9, T8 * Tb); - } - { - E Te, Tg, Td, Tf; - Te = ri[WS(ios, 48)]; - Tg = ii[WS(ios, 48)]; - Td = W[94]; - Tf = W[95]; - Th = FMA(Td, Te, Tf * Tg); - T69 = FNMS(Tf, Te, Td * Tg); - } - { - E T7, Ti, ThR, ThS; - T7 = T1 + T6; - Ti = Tc + Th; - Tj = T7 + Ti; - TcL = T7 - Ti; - ThR = TgR - TgQ; - ThS = Tc - Th; - ThT = ThR - ThS; - Tin = ThS + ThR; - } - { - E T67, T6a, TgP, TgS; - T67 = T1 - T6; - T6a = T68 - T69; - T6b = T67 - T6a; - Taz = T67 + T6a; - TgP = T68 + T69; - TgS = TgQ + TgR; - TgT = TgP + TgS; - Thn = TgS - TgP; - } - } - { - E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; - { - E Tl, Tn, Tk, Tm; - Tl = ri[WS(ios, 8)]; - Tn = ii[WS(ios, 8)]; - Tk = W[14]; - Tm = W[15]; - To = FMA(Tk, Tl, Tm * Tn); - T6c = FNMS(Tm, Tl, Tk * Tn); - } - { - E Tq, Ts, Tp, Tr; - Tq = ri[WS(ios, 40)]; - Ts = ii[WS(ios, 40)]; - Tp = W[78]; - Tr = W[79]; - Tt = FMA(Tp, Tq, Tr * Ts); - T6d = FNMS(Tr, Tq, Tp * Ts); - } - T6e = T6c - T6d; - T6f = To - Tt; - { - E Tw, Ty, Tv, Tx; - Tw = ri[WS(ios, 56)]; - Ty = ii[WS(ios, 56)]; - Tv = W[110]; - Tx = W[111]; - Tz = FMA(Tv, Tw, Tx * Ty); - T6i = FNMS(Tx, Tw, Tv * Ty); - } - { - E TB, TD, TA, TC; - TB = ri[WS(ios, 24)]; - TD = ii[WS(ios, 24)]; - TA = W[46]; - TC = W[47]; - TE = FMA(TA, TB, TC * TD); - T6j = FNMS(TC, TB, TA * TD); - } - T6h = Tz - TE; - T6k = T6i - T6j; - { - E Tu, TF, TcM, TcN; - Tu = To + Tt; - TF = Tz + TE; - TG = Tu + TF; - Thm = TF - Tu; - TcM = T6c + T6d; - TcN = T6i + T6j; - TcO = TcM - TcN; - TgO = TcM + TcN; - } - { - E T6g, T6l, TaA, TaB; - T6g = T6e - T6f; - T6l = T6h + T6k; - T6m = KP707106781 * (T6g - T6l); - ThQ = KP707106781 * (T6g + T6l); - TaA = T6f + T6e; - TaB = T6h - T6k; - TaC = KP707106781 * (TaA + TaB); - Tim = KP707106781 * (TaB - TaA); - } - } - { - E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; - { - E TM, T6o, TR, T6p; - { - E TJ, TL, TI, TK; - TJ = ri[WS(ios, 4)]; - TL = ii[WS(ios, 4)]; - TI = W[6]; - TK = W[7]; - TM = FMA(TI, TJ, TK * TL); - T6o = FNMS(TK, TJ, TI * TL); - } - { - E TO, TQ, TN, TP; - TO = ri[WS(ios, 36)]; - TQ = ii[WS(ios, 36)]; - TN = W[70]; - TP = W[71]; - TR = FMA(TN, TO, TP * TQ); - T6p = FNMS(TP, TO, TN * TQ); - } - TS = TM + TR; - TcQ = T6o + T6p; - T6q = T6o - T6p; - T6t = TM - TR; - } - { - E TX, T6u, T12, T6v; - { - E TU, TW, TT, TV; - TU = ri[WS(ios, 20)]; - TW = ii[WS(ios, 20)]; - TT = W[38]; - TV = W[39]; - TX = FMA(TT, TU, TV * TW); - T6u = FNMS(TV, TU, TT * TW); - } - { - E TZ, T11, TY, T10; - TZ = ri[WS(ios, 52)]; - T11 = ii[WS(ios, 52)]; - TY = W[102]; - T10 = W[103]; - T12 = FMA(TY, TZ, T10 * T11); - T6v = FNMS(T10, TZ, TY * T11); - } - T13 = TX + T12; - TcR = T6u + T6v; - T6r = TX - T12; - T6w = T6u - T6v; - } - T14 = TS + T13; - Tfq = TcQ + TcR; - T6s = T6q + T6r; - T6x = T6t - T6w; - T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); - T9O = FMA(KP923879532, T6s, KP382683432 * T6x); - { - E TaE, TaF, TcS, TcT; - TaE = T6q - T6r; - TaF = T6t + T6w; - TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); - Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); - TcS = TcQ - TcR; - TcT = TS - T13; - TcU = TcS - TcT; - TeE = TcT + TcS; - } - } - { - E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; - { - E T19, T6z, T1e, T6A; - { - E T16, T18, T15, T17; - T16 = ri[WS(ios, 60)]; - T18 = ii[WS(ios, 60)]; - T15 = W[118]; - T17 = W[119]; - T19 = FMA(T15, T16, T17 * T18); - T6z = FNMS(T17, T16, T15 * T18); - } - { - E T1b, T1d, T1a, T1c; - T1b = ri[WS(ios, 28)]; - T1d = ii[WS(ios, 28)]; - T1a = W[54]; - T1c = W[55]; - T1e = FMA(T1a, T1b, T1c * T1d); - T6A = FNMS(T1c, T1b, T1a * T1d); - } - T1f = T19 + T1e; - TcW = T6z + T6A; - T6B = T6z - T6A; - T6E = T19 - T1e; - } - { - E T1k, T6F, T1p, T6G; - { - E T1h, T1j, T1g, T1i; - T1h = ri[WS(ios, 12)]; - T1j = ii[WS(ios, 12)]; - T1g = W[22]; - T1i = W[23]; - T1k = FMA(T1g, T1h, T1i * T1j); - T6F = FNMS(T1i, T1h, T1g * T1j); - } - { - E T1m, T1o, T1l, T1n; - T1m = ri[WS(ios, 44)]; - T1o = ii[WS(ios, 44)]; - T1l = W[86]; - T1n = W[87]; - T1p = FMA(T1l, T1m, T1n * T1o); - T6G = FNMS(T1n, T1m, T1l * T1o); - } - T1q = T1k + T1p; - TcX = T6F + T6G; - T6C = T1k - T1p; - T6H = T6F - T6G; - } - T1r = T1f + T1q; - Tfr = TcW + TcX; - T6D = T6B + T6C; - T6I = T6E - T6H; - T6J = FMA(KP382683432, T6D, KP923879532 * T6I); - T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); - { - E TaH, TaI, TcV, TcY; - TaH = T6B - T6C; - TaI = T6E + T6H; - TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); - Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); - TcV = T1f - T1q; - TcY = TcW - TcX; - TcZ = TcV + TcY; - TeF = TcV - TcY; - } - } - { - E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; - E T6Z, T2c, Td9, T6R, T6U; - { - E T1v, T1x, T1u, T1w; - T1v = ri[WS(ios, 2)]; - T1x = ii[WS(ios, 2)]; - T1u = W[2]; - T1w = W[3]; - T1y = FMA(T1u, T1v, T1w * T1x); - T6M = FNMS(T1w, T1v, T1u * T1x); - } - { - E T1A, T1C, T1z, T1B; - T1A = ri[WS(ios, 34)]; - T1C = ii[WS(ios, 34)]; - T1z = W[66]; - T1B = W[67]; - T1D = FMA(T1z, T1A, T1B * T1C); - T6N = FNMS(T1B, T1A, T1z * T1C); - } - T1E = T1y + T1D; - Td2 = T6M + T6N; - { - E T1G, T1I, T1F, T1H; - T1G = ri[WS(ios, 18)]; - T1I = ii[WS(ios, 18)]; - T1F = W[34]; - T1H = W[35]; - T1J = FMA(T1F, T1G, T1H * T1I); - T74 = FNMS(T1H, T1G, T1F * T1I); - } - { - E T1L, T1N, T1K, T1M; - T1L = ri[WS(ios, 50)]; - T1N = ii[WS(ios, 50)]; - T1K = W[98]; - T1M = W[99]; - T1O = FMA(T1K, T1L, T1M * T1N); - T75 = FNMS(T1M, T1L, T1K * T1N); - } - T1P = T1J + T1O; - Td3 = T74 + T75; - { - E T1V, T6X, T20, T6Y; - { - E T1S, T1U, T1R, T1T; - T1S = ri[WS(ios, 10)]; - T1U = ii[WS(ios, 10)]; - T1R = W[18]; - T1T = W[19]; - T1V = FMA(T1R, T1S, T1T * T1U); - T6X = FNMS(T1T, T1S, T1R * T1U); - } - { - E T1X, T1Z, T1W, T1Y; - T1X = ri[WS(ios, 42)]; - T1Z = ii[WS(ios, 42)]; - T1W = W[82]; - T1Y = W[83]; - T20 = FMA(T1W, T1X, T1Y * T1Z); - T6Y = FNMS(T1Y, T1X, T1W * T1Z); - } - T21 = T1V + T20; - Td8 = T6X + T6Y; - T6W = T1V - T20; - T6Z = T6X - T6Y; - } - { - E T26, T6S, T2b, T6T; - { - E T23, T25, T22, T24; - T23 = ri[WS(ios, 58)]; - T25 = ii[WS(ios, 58)]; - T22 = W[114]; - T24 = W[115]; - T26 = FMA(T22, T23, T24 * T25); - T6S = FNMS(T24, T23, T22 * T25); - } - { - E T28, T2a, T27, T29; - T28 = ri[WS(ios, 26)]; - T2a = ii[WS(ios, 26)]; - T27 = W[50]; - T29 = W[51]; - T2b = FMA(T27, T28, T29 * T2a); - T6T = FNMS(T29, T28, T27 * T2a); - } - T2c = T26 + T2b; - Td9 = T6S + T6T; - T6R = T26 - T2b; - T6U = T6S - T6T; - } - T1Q = T1E + T1P; - T2d = T21 + T2c; - Tfx = T1Q - T2d; - Tfu = Td2 + Td3; - Tfv = Td8 + Td9; - Tfw = Tfu - Tfv; - { - E T6O, T6P, Td7, Tda; - T6O = T6M - T6N; - T6P = T1J - T1O; - T6Q = T6O + T6P; - TaM = T6O - T6P; - Td7 = T1E - T1P; - Tda = Td8 - Td9; - Tdb = Td7 - Tda; - TeJ = Td7 + Tda; - } - { - E T6V, T70, T78, T79; - T6V = T6R - T6U; - T70 = T6W + T6Z; - T71 = KP707106781 * (T6V - T70); - TaQ = KP707106781 * (T70 + T6V); - T78 = T6Z - T6W; - T79 = T6R + T6U; - T7a = KP707106781 * (T78 - T79); - TaN = KP707106781 * (T78 + T79); - } - { - E Td4, Td5, T73, T76; - Td4 = Td2 - Td3; - Td5 = T2c - T21; - Td6 = Td4 - Td5; - TeI = Td4 + Td5; - T73 = T1y - T1D; - T76 = T74 - T75; - T77 = T73 - T76; - TaP = T73 + T76; - } - } - { - E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; - E T7q, T2X, Tdk, T7i, T7l; - { - E T2g, T2i, T2f, T2h; - T2g = ri[WS(ios, 62)]; - T2i = ii[WS(ios, 62)]; - T2f = W[122]; - T2h = W[123]; - T2j = FMA(T2f, T2g, T2h * T2i); - T7d = FNMS(T2h, T2g, T2f * T2i); - } - { - E T2l, T2n, T2k, T2m; - T2l = ri[WS(ios, 30)]; - T2n = ii[WS(ios, 30)]; - T2k = W[58]; - T2m = W[59]; - T2o = FMA(T2k, T2l, T2m * T2n); - T7e = FNMS(T2m, T2l, T2k * T2n); - } - T2p = T2j + T2o; - Tdd = T7d + T7e; - { - E T2r, T2t, T2q, T2s; - T2r = ri[WS(ios, 14)]; - T2t = ii[WS(ios, 14)]; - T2q = W[26]; - T2s = W[27]; - T2u = FMA(T2q, T2r, T2s * T2t); - T7v = FNMS(T2s, T2r, T2q * T2t); - } - { - E T2w, T2y, T2v, T2x; - T2w = ri[WS(ios, 46)]; - T2y = ii[WS(ios, 46)]; - T2v = W[90]; - T2x = W[91]; - T2z = FMA(T2v, T2w, T2x * T2y); - T7w = FNMS(T2x, T2w, T2v * T2y); - } - T2A = T2u + T2z; - Tde = T7v + T7w; - { - E T2G, T7o, T2L, T7p; - { - E T2D, T2F, T2C, T2E; - T2D = ri[WS(ios, 6)]; - T2F = ii[WS(ios, 6)]; - T2C = W[10]; - T2E = W[11]; - T2G = FMA(T2C, T2D, T2E * T2F); - T7o = FNMS(T2E, T2D, T2C * T2F); - } - { - E T2I, T2K, T2H, T2J; - T2I = ri[WS(ios, 38)]; - T2K = ii[WS(ios, 38)]; - T2H = W[74]; - T2J = W[75]; - T2L = FMA(T2H, T2I, T2J * T2K); - T7p = FNMS(T2J, T2I, T2H * T2K); - } - T2M = T2G + T2L; - Tdj = T7o + T7p; - T7n = T2G - T2L; - T7q = T7o - T7p; - } - { - E T2R, T7j, T2W, T7k; - { - E T2O, T2Q, T2N, T2P; - T2O = ri[WS(ios, 54)]; - T2Q = ii[WS(ios, 54)]; - T2N = W[106]; - T2P = W[107]; - T2R = FMA(T2N, T2O, T2P * T2Q); - T7j = FNMS(T2P, T2O, T2N * T2Q); - } - { - E T2T, T2V, T2S, T2U; - T2T = ri[WS(ios, 22)]; - T2V = ii[WS(ios, 22)]; - T2S = W[42]; - T2U = W[43]; - T2W = FMA(T2S, T2T, T2U * T2V); - T7k = FNMS(T2U, T2T, T2S * T2V); - } - T2X = T2R + T2W; - Tdk = T7j + T7k; - T7i = T2R - T2W; - T7l = T7j - T7k; - } - T2B = T2p + T2A; - T2Y = T2M + T2X; - Tfz = T2B - T2Y; - TfA = Tdd + Tde; - TfB = Tdj + Tdk; - TfC = TfA - TfB; - { - E T7f, T7g, Tdi, Tdl; - T7f = T7d - T7e; - T7g = T2u - T2z; - T7h = T7f + T7g; - TaW = T7f - T7g; - Tdi = T2p - T2A; - Tdl = Tdj - Tdk; - Tdm = Tdi - Tdl; - TeM = Tdi + Tdl; - } - { - E T7m, T7r, T7z, T7A; - T7m = T7i - T7l; - T7r = T7n + T7q; - T7s = KP707106781 * (T7m - T7r); - TaU = KP707106781 * (T7r + T7m); - T7z = T7q - T7n; - T7A = T7i + T7l; - T7B = KP707106781 * (T7z - T7A); - TaX = KP707106781 * (T7z + T7A); - } - { - E Tdf, Tdg, T7u, T7x; - Tdf = Tdd - Tde; - Tdg = T2X - T2M; - Tdh = Tdf - Tdg; - TeL = Tdf + Tdg; - T7u = T2j - T2o; - T7x = T7v - T7w; - T7y = T7u - T7x; - TaT = T7u + T7x; - } - } - { - E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; - E T8H, T5h, TdT, T8J, T8M; - { - E T4A, T4C, T4z, T4B; - T4A = ri[WS(ios, 63)]; - T4C = ii[WS(ios, 63)]; - T4z = W[124]; - T4B = W[125]; - T4D = FMA(T4z, T4A, T4B * T4C); - T9e = FNMS(T4B, T4A, T4z * T4C); - } - { - E T4F, T4H, T4E, T4G; - T4F = ri[WS(ios, 31)]; - T4H = ii[WS(ios, 31)]; - T4E = W[60]; - T4G = W[61]; - T4I = FMA(T4E, T4F, T4G * T4H); - T9f = FNMS(T4G, T4F, T4E * T4H); - } - T4J = T4D + T4I; - Te8 = T9e + T9f; - { - E T4L, T4N, T4K, T4M; - T4L = ri[WS(ios, 15)]; - T4N = ii[WS(ios, 15)]; - T4K = W[28]; - T4M = W[29]; - T4O = FMA(T4K, T4L, T4M * T4N); - T8A = FNMS(T4M, T4L, T4K * T4N); - } - { - E T4Q, T4S, T4P, T4R; - T4Q = ri[WS(ios, 47)]; - T4S = ii[WS(ios, 47)]; - T4P = W[92]; - T4R = W[93]; - T4T = FMA(T4P, T4Q, T4R * T4S); - T8B = FNMS(T4R, T4Q, T4P * T4S); - } - T4U = T4O + T4T; - Te9 = T8A + T8B; - { - E T50, T8E, T55, T8F; - { - E T4X, T4Z, T4W, T4Y; - T4X = ri[WS(ios, 7)]; - T4Z = ii[WS(ios, 7)]; - T4W = W[12]; - T4Y = W[13]; - T50 = FMA(T4W, T4X, T4Y * T4Z); - T8E = FNMS(T4Y, T4X, T4W * T4Z); - } - { - E T52, T54, T51, T53; - T52 = ri[WS(ios, 39)]; - T54 = ii[WS(ios, 39)]; - T51 = W[76]; - T53 = W[77]; - T55 = FMA(T51, T52, T53 * T54); - T8F = FNMS(T53, T52, T51 * T54); - } - T56 = T50 + T55; - TdS = T8E + T8F; - T8G = T8E - T8F; - T8H = T50 - T55; - } - { - E T5b, T8K, T5g, T8L; - { - E T58, T5a, T57, T59; - T58 = ri[WS(ios, 55)]; - T5a = ii[WS(ios, 55)]; - T57 = W[108]; - T59 = W[109]; - T5b = FMA(T57, T58, T59 * T5a); - T8K = FNMS(T59, T58, T57 * T5a); - } - { - E T5d, T5f, T5c, T5e; - T5d = ri[WS(ios, 23)]; - T5f = ii[WS(ios, 23)]; - T5c = W[44]; - T5e = W[45]; - T5g = FMA(T5c, T5d, T5e * T5f); - T8L = FNMS(T5e, T5d, T5c * T5f); - } - T5h = T5b + T5g; - TdT = T8K + T8L; - T8J = T5b - T5g; - T8M = T8K - T8L; - } - { - E T4V, T5i, Tea, Teb; - T4V = T4J + T4U; - T5i = T56 + T5h; - T5j = T4V + T5i; - TfR = T4V - T5i; - Tea = Te8 - Te9; - Teb = T5h - T56; - Tec = Tea - Teb; - Tf0 = Tea + Teb; - } - { - E TfW, TfX, T8z, T8C; - TfW = Te8 + Te9; - TfX = TdS + TdT; - TfY = TfW - TfX; - Tgy = TfW + TfX; - T8z = T4D - T4I; - T8C = T8A - T8B; - T8D = T8z - T8C; - Tbl = T8z + T8C; - } - { - E T8I, T8N, T9j, T9k; - T8I = T8G - T8H; - T8N = T8J + T8M; - T8O = KP707106781 * (T8I - T8N); - Tbx = KP707106781 * (T8I + T8N); - T9j = T8J - T8M; - T9k = T8H + T8G; - T9l = KP707106781 * (T9j - T9k); - Tbm = KP707106781 * (T9k + T9j); - } - { - E TdR, TdU, T9g, T9h; - TdR = T4J - T4U; - TdU = TdS - TdT; - TdV = TdR - TdU; - TeX = TdR + TdU; - T9g = T9e - T9f; - T9h = T4O - T4T; - T9i = T9g + T9h; - Tbw = T9g - T9h; - } - } - { - E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; - E T7T, T3K, TdJ, T7L, T7O; - { - E T33, T35, T32, T34; - T33 = ri[WS(ios, 1)]; - T35 = ii[WS(ios, 1)]; - T32 = W[0]; - T34 = W[1]; - T36 = FMA(T32, T33, T34 * T35); - T7G = FNMS(T34, T33, T32 * T35); - } - { - E T38, T3a, T37, T39; - T38 = ri[WS(ios, 33)]; - T3a = ii[WS(ios, 33)]; - T37 = W[64]; - T39 = W[65]; - T3b = FMA(T37, T38, T39 * T3a); - T7H = FNMS(T39, T38, T37 * T3a); - } - T3c = T36 + T3b; - Tdq = T7G + T7H; - { - E T3e, T3g, T3d, T3f; - T3e = ri[WS(ios, 17)]; - T3g = ii[WS(ios, 17)]; - T3d = W[32]; - T3f = W[33]; - T3h = FMA(T3d, T3e, T3f * T3g); - T8m = FNMS(T3f, T3e, T3d * T3g); - } - { - E T3j, T3l, T3i, T3k; - T3j = ri[WS(ios, 49)]; - T3l = ii[WS(ios, 49)]; - T3i = W[96]; - T3k = W[97]; - T3m = FMA(T3i, T3j, T3k * T3l); - T8n = FNMS(T3k, T3j, T3i * T3l); - } - T3n = T3h + T3m; - Tdr = T8m + T8n; - { - E T3t, T7R, T3y, T7S; - { - E T3q, T3s, T3p, T3r; - T3q = ri[WS(ios, 9)]; - T3s = ii[WS(ios, 9)]; - T3p = W[16]; - T3r = W[17]; - T3t = FMA(T3p, T3q, T3r * T3s); - T7R = FNMS(T3r, T3q, T3p * T3s); - } - { - E T3v, T3x, T3u, T3w; - T3v = ri[WS(ios, 41)]; - T3x = ii[WS(ios, 41)]; - T3u = W[80]; - T3w = W[81]; - T3y = FMA(T3u, T3v, T3w * T3x); - T7S = FNMS(T3w, T3v, T3u * T3x); - } - T3z = T3t + T3y; - TdI = T7R + T7S; - T7Q = T3t - T3y; - T7T = T7R - T7S; - } - { - E T3E, T7M, T3J, T7N; - { - E T3B, T3D, T3A, T3C; - T3B = ri[WS(ios, 57)]; - T3D = ii[WS(ios, 57)]; - T3A = W[112]; - T3C = W[113]; - T3E = FMA(T3A, T3B, T3C * T3D); - T7M = FNMS(T3C, T3B, T3A * T3D); - } - { - E T3G, T3I, T3F, T3H; - T3G = ri[WS(ios, 25)]; - T3I = ii[WS(ios, 25)]; - T3F = W[48]; - T3H = W[49]; - T3J = FMA(T3F, T3G, T3H * T3I); - T7N = FNMS(T3H, T3G, T3F * T3I); - } - T3K = T3E + T3J; - TdJ = T7M + T7N; - T7L = T3E - T3J; - T7O = T7M - T7N; - } - { - E T3o, T3L, TdH, TdK; - T3o = T3c + T3n; - T3L = T3z + T3K; - T3M = T3o + T3L; - TfL = T3o - T3L; - TdH = T3c - T3n; - TdK = TdI - TdJ; - TdL = TdH - TdK; - TeQ = TdH + TdK; - } - { - E TfG, TfH, T7I, T7J; - TfG = Tdq + Tdr; - TfH = TdI + TdJ; - TfI = TfG - TfH; - Tgt = TfG + TfH; - T7I = T7G - T7H; - T7J = T3h - T3m; - T7K = T7I + T7J; - Tb2 = T7I - T7J; - } - { - E T7P, T7U, T8q, T8r; - T7P = T7L - T7O; - T7U = T7Q + T7T; - T7V = KP707106781 * (T7P - T7U); - Tbe = KP707106781 * (T7U + T7P); - T8q = T7T - T7Q; - T8r = T7L + T7O; - T8s = KP707106781 * (T8q - T8r); - Tb3 = KP707106781 * (T8q + T8r); - } - { - E Tds, Tdt, T8l, T8o; - Tds = Tdq - Tdr; - Tdt = T3K - T3z; - Tdu = Tds - Tdt; - TeT = Tds + Tdt; - T8l = T36 - T3b; - T8o = T8m - T8n; - T8p = T8l - T8o; - Tbd = T8l + T8o; - } - } - { - E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; - E T84; - { - E T3R, T88, T3W, T89; - { - E T3O, T3Q, T3N, T3P; - T3O = ri[WS(ios, 5)]; - T3Q = ii[WS(ios, 5)]; - T3N = W[8]; - T3P = W[9]; - T3R = FMA(T3N, T3O, T3P * T3Q); - T88 = FNMS(T3P, T3O, T3N * T3Q); - } - { - E T3T, T3V, T3S, T3U; - T3T = ri[WS(ios, 37)]; - T3V = ii[WS(ios, 37)]; - T3S = W[72]; - T3U = W[73]; - T3W = FMA(T3S, T3T, T3U * T3V); - T89 = FNMS(T3U, T3T, T3S * T3V); - } - T3X = T3R + T3W; - TdB = T88 + T89; - T8a = T88 - T89; - T8d = T3R - T3W; - } - { - E T4p, T7Y, T4u, T7Z; - { - E T4m, T4o, T4l, T4n; - T4m = ri[WS(ios, 13)]; - T4o = ii[WS(ios, 13)]; - T4l = W[24]; - T4n = W[25]; - T4p = FMA(T4l, T4m, T4n * T4o); - T7Y = FNMS(T4n, T4m, T4l * T4o); - } - { - E T4r, T4t, T4q, T4s; - T4r = ri[WS(ios, 45)]; - T4t = ii[WS(ios, 45)]; - T4q = W[88]; - T4s = W[89]; - T4u = FMA(T4q, T4r, T4s * T4t); - T7Z = FNMS(T4s, T4r, T4q * T4t); - } - T4v = T4p + T4u; - Tdx = T7Y + T7Z; - T80 = T7Y - T7Z; - T85 = T4p - T4u; - } - { - E T42, T8e, T47, T8f; - { - E T3Z, T41, T3Y, T40; - T3Z = ri[WS(ios, 21)]; - T41 = ii[WS(ios, 21)]; - T3Y = W[40]; - T40 = W[41]; - T42 = FMA(T3Y, T3Z, T40 * T41); - T8e = FNMS(T40, T3Z, T3Y * T41); - } - { - E T44, T46, T43, T45; - T44 = ri[WS(ios, 53)]; - T46 = ii[WS(ios, 53)]; - T43 = W[104]; - T45 = W[105]; - T47 = FMA(T43, T44, T45 * T46); - T8f = FNMS(T45, T44, T43 * T46); - } - T48 = T42 + T47; - TdC = T8e + T8f; - T8b = T42 - T47; - T8g = T8e - T8f; - } - { - E T4e, T82, T4j, T83; - { - E T4b, T4d, T4a, T4c; - T4b = ri[WS(ios, 61)]; - T4d = ii[WS(ios, 61)]; - T4a = W[120]; - T4c = W[121]; - T4e = FMA(T4a, T4b, T4c * T4d); - T82 = FNMS(T4c, T4b, T4a * T4d); - } - { - E T4g, T4i, T4f, T4h; - T4g = ri[WS(ios, 29)]; - T4i = ii[WS(ios, 29)]; - T4f = W[56]; - T4h = W[57]; - T4j = FMA(T4f, T4g, T4h * T4i); - T83 = FNMS(T4h, T4g, T4f * T4i); - } - T4k = T4e + T4j; - Tdw = T82 + T83; - T7X = T4e - T4j; - T84 = T82 - T83; - } - { - E T49, T4w, TdA, TdD; - T49 = T3X + T48; - T4w = T4k + T4v; - T4x = T49 + T4w; - TfJ = T4w - T49; - TdA = T3X - T48; - TdD = TdB - TdC; - TdE = TdA + TdD; - TdM = TdD - TdA; - } - { - E TfM, TfN, T81, T86; - TfM = TdB + TdC; - TfN = Tdw + Tdx; - TfO = TfM - TfN; - Tgu = TfM + TfN; - T81 = T7X - T80; - T86 = T84 + T85; - T87 = FNMS(KP923879532, T86, KP382683432 * T81); - T8v = FMA(KP382683432, T86, KP923879532 * T81); - } - { - E T8c, T8h, Tb8, Tb9; - T8c = T8a + T8b; - T8h = T8d - T8g; - T8i = FMA(KP923879532, T8c, KP382683432 * T8h); - T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); - Tb8 = T8a - T8b; - Tb9 = T8d + T8g; - Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); - Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); - } - { - E Tdv, Tdy, Tb5, Tb6; - Tdv = T4k - T4v; - Tdy = Tdw - Tdx; - Tdz = Tdv - Tdy; - TdN = Tdv + Tdy; - Tb5 = T7X + T80; - Tb6 = T84 - T85; - Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); - Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); - } - } - { - E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; - E T96; - { - E T5o, T8Q, T5t, T8R; - { - E T5l, T5n, T5k, T5m; - T5l = ri[WS(ios, 3)]; - T5n = ii[WS(ios, 3)]; - T5k = W[4]; - T5m = W[5]; - T5o = FMA(T5k, T5l, T5m * T5n); - T8Q = FNMS(T5m, T5l, T5k * T5n); - } - { - E T5q, T5s, T5p, T5r; - T5q = ri[WS(ios, 35)]; - T5s = ii[WS(ios, 35)]; - T5p = W[68]; - T5r = W[69]; - T5t = FMA(T5p, T5q, T5r * T5s); - T8R = FNMS(T5r, T5q, T5p * T5s); - } - T5u = T5o + T5t; - TdW = T8Q + T8R; - T8S = T8Q - T8R; - T8V = T5o - T5t; - } - { - E T5W, T97, T61, T98; - { - E T5T, T5V, T5S, T5U; - T5T = ri[WS(ios, 11)]; - T5V = ii[WS(ios, 11)]; - T5S = W[20]; - T5U = W[21]; - T5W = FMA(T5S, T5T, T5U * T5V); - T97 = FNMS(T5U, T5T, T5S * T5V); - } - { - E T5Y, T60, T5X, T5Z; - T5Y = ri[WS(ios, 43)]; - T60 = ii[WS(ios, 43)]; - T5X = W[84]; - T5Z = W[85]; - T61 = FMA(T5X, T5Y, T5Z * T60); - T98 = FNMS(T5Z, T5Y, T5X * T60); - } - T62 = T5W + T61; - Te3 = T97 + T98; - T94 = T5W - T61; - T99 = T97 - T98; - } - { - E T5z, T8W, T5E, T8X; - { - E T5w, T5y, T5v, T5x; - T5w = ri[WS(ios, 19)]; - T5y = ii[WS(ios, 19)]; - T5v = W[36]; - T5x = W[37]; - T5z = FMA(T5v, T5w, T5x * T5y); - T8W = FNMS(T5x, T5w, T5v * T5y); - } - { - E T5B, T5D, T5A, T5C; - T5B = ri[WS(ios, 51)]; - T5D = ii[WS(ios, 51)]; - T5A = W[100]; - T5C = W[101]; - T5E = FMA(T5A, T5B, T5C * T5D); - T8X = FNMS(T5C, T5B, T5A * T5D); - } - T5F = T5z + T5E; - TdX = T8W + T8X; - T8T = T5z - T5E; - T8Y = T8W - T8X; - } - { - E T5L, T91, T5Q, T92; - { - E T5I, T5K, T5H, T5J; - T5I = ri[WS(ios, 59)]; - T5K = ii[WS(ios, 59)]; - T5H = W[116]; - T5J = W[117]; - T5L = FMA(T5H, T5I, T5J * T5K); - T91 = FNMS(T5J, T5I, T5H * T5K); - } - { - E T5N, T5P, T5M, T5O; - T5N = ri[WS(ios, 27)]; - T5P = ii[WS(ios, 27)]; - T5M = W[52]; - T5O = W[53]; - T5Q = FMA(T5M, T5N, T5O * T5P); - T92 = FNMS(T5O, T5N, T5M * T5P); - } - T5R = T5L + T5Q; - Te2 = T91 + T92; - T93 = T91 - T92; - T96 = T5L - T5Q; - } - { - E T5G, T63, Te1, Te4; - T5G = T5u + T5F; - T63 = T5R + T62; - T64 = T5G + T63; - TfZ = T63 - T5G; - Te1 = T5R - T62; - Te4 = Te2 - Te3; - Te5 = Te1 + Te4; - Ted = Te1 - Te4; - } - { - E TfS, TfT, T8U, T8Z; - TfS = TdW + TdX; - TfT = Te2 + Te3; - TfU = TfS - TfT; - Tgz = TfS + TfT; - T8U = T8S + T8T; - T8Z = T8V - T8Y; - T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); - T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); - } - { - E T95, T9a, Tbr, Tbs; - T95 = T93 + T94; - T9a = T96 - T99; - T9b = FMA(KP382683432, T95, KP923879532 * T9a); - T9n = FNMS(KP923879532, T95, KP382683432 * T9a); - Tbr = T93 - T94; - Tbs = T96 + T99; - Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); - Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); - } - { - E TdY, TdZ, Tbo, Tbp; - TdY = TdW - TdX; - TdZ = T5u - T5F; - Te0 = TdY - TdZ; - Tee = TdZ + TdY; - Tbo = T8S - T8T; - Tbp = T8V + T8Y; - Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); - TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); - } - } - { - E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; - E TgM; - { - E TH, T1s, TgI, TgJ; - TH = Tj + TG; - T1s = T14 + T1r; - T1t = TH + T1s; - Tgn = TH - T1s; - TgI = Tgt + Tgu; - TgJ = Tgy + Tgz; - TgK = TgI - TgJ; - TgL = TgI + TgJ; - } - { - E TgN, TgU, T2e, T2Z; - TgN = Tfq + Tfr; - TgU = TgO + TgT; - TgV = TgN + TgU; - Th1 = TgU - TgN; - T2e = T1Q + T2d; - T2Z = T2B + T2Y; - T30 = T2e + T2Z; - Th0 = T2Z - T2e; - } - { - E T4y, T65, Tgs, Tgv; - T4y = T3M + T4x; - T65 = T5j + T64; - T66 = T4y + T65; - TgX = T65 - T4y; - Tgs = T3M - T4x; - Tgv = Tgt - Tgu; - Tgw = Tgs + Tgv; - TgE = Tgv - Tgs; - } - { - E Tgx, TgA, Tgo, Tgp; - Tgx = T5j - T64; - TgA = Tgy - Tgz; - TgB = Tgx - TgA; - TgF = Tgx + TgA; - Tgo = Tfu + Tfv; - Tgp = TfA + TfB; - Tgq = Tgo - Tgp; - TgM = Tgo + Tgp; - } - { - E T31, TgW, TgH, TgY; - T31 = T1t + T30; - ri[WS(ios, 32)] = T31 - T66; - ri[0] = T31 + T66; - TgW = TgM + TgV; - ii[0] = TgL + TgW; - ii[WS(ios, 32)] = TgW - TgL; - TgH = T1t - T30; - ri[WS(ios, 48)] = TgH - TgK; - ri[WS(ios, 16)] = TgH + TgK; - TgY = TgV - TgM; - ii[WS(ios, 16)] = TgX + TgY; - ii[WS(ios, 48)] = TgY - TgX; - } - { - E Tgr, TgC, TgZ, Th2; - Tgr = Tgn + Tgq; - TgC = KP707106781 * (Tgw + TgB); - ri[WS(ios, 40)] = Tgr - TgC; - ri[WS(ios, 8)] = Tgr + TgC; - TgZ = KP707106781 * (TgE + TgF); - Th2 = Th0 + Th1; - ii[WS(ios, 8)] = TgZ + Th2; - ii[WS(ios, 40)] = Th2 - TgZ; - } - { - E TgD, TgG, Th3, Th4; - TgD = Tgn - Tgq; - TgG = KP707106781 * (TgE - TgF); - ri[WS(ios, 56)] = TgD - TgG; - ri[WS(ios, 24)] = TgD + TgG; - Th3 = KP707106781 * (TgB - Tgw); - Th4 = Th1 - Th0; - ii[WS(ios, 24)] = Th3 + Th4; - ii[WS(ios, 56)] = Th4 - Th3; - } - } - { - E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; - E Tg5; - { - E Tfp, Tfs, Tgf, Tgg; - Tfp = Tj - TG; - Tfs = Tfq - Tfr; - Tft = Tfp - Tfs; - Tg7 = Tfp + Tfs; - Tgf = TfR + TfU; - Tgg = TfY + TfZ; - Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); - Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); - } - { - E Th7, Th8, Tfy, TfD; - Th7 = T1r - T14; - Th8 = TgT - TgO; - Th9 = Th7 + Th8; - Thf = Th8 - Th7; - Tfy = Tfw - Tfx; - TfD = Tfz + TfC; - TfE = KP707106781 * (Tfy - TfD); - Th6 = KP707106781 * (Tfy + TfD); - } - { - E TfK, TfP, Tg8, Tg9; - TfK = TfI - TfJ; - TfP = TfL - TfO; - TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); - Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); - Tg8 = Tfx + Tfw; - Tg9 = Tfz - TfC; - Tga = KP707106781 * (Tg8 + Tg9); - The = KP707106781 * (Tg9 - Tg8); - } - { - E Tgc, Tgd, TfV, Tg0; - Tgc = TfI + TfJ; - Tgd = TfL + TfO; - Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); - Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); - TfV = TfR - TfU; - Tg0 = TfY - TfZ; - Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); - Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); - } - { - E TfF, Tg2, Thd, Thg; - TfF = Tft + TfE; - Tg2 = TfQ + Tg1; - ri[WS(ios, 44)] = TfF - Tg2; - ri[WS(ios, 12)] = TfF + Tg2; - Thd = Tg4 + Tg5; - Thg = The + Thf; - ii[WS(ios, 12)] = Thd + Thg; - ii[WS(ios, 44)] = Thg - Thd; - } - { - E Tg3, Tg6, Thh, Thi; - Tg3 = Tft - TfE; - Tg6 = Tg4 - Tg5; - ri[WS(ios, 60)] = Tg3 - Tg6; - ri[WS(ios, 28)] = Tg3 + Tg6; - Thh = Tg1 - TfQ; - Thi = Thf - The; - ii[WS(ios, 28)] = Thh + Thi; - ii[WS(ios, 60)] = Thi - Thh; - } - { - E Tgb, Tgi, Th5, Tha; - Tgb = Tg7 + Tga; - Tgi = Tge + Tgh; - ri[WS(ios, 36)] = Tgb - Tgi; - ri[WS(ios, 4)] = Tgb + Tgi; - Th5 = Tgk + Tgl; - Tha = Th6 + Th9; - ii[WS(ios, 4)] = Th5 + Tha; - ii[WS(ios, 36)] = Tha - Th5; - } - { - E Tgj, Tgm, Thb, Thc; - Tgj = Tg7 - Tga; - Tgm = Tgk - Tgl; - ri[WS(ios, 52)] = Tgj - Tgm; - ri[WS(ios, 20)] = Tgj + Tgm; - Thb = Tgh - Tge; - Thc = Th9 - Th6; - ii[WS(ios, 20)] = Thb + Thc; - ii[WS(ios, 52)] = Thc - Thb; - } - } - { - E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; - E Teu; - { - E TcP, Td0, Teo, Tep; - TcP = TcL - TcO; - Td0 = KP707106781 * (TcU - TcZ); - Td1 = TcP - Td0; - Ten = TcP + Td0; - { - E Tdc, Tdn, ThB, ThC; - Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); - Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); - Tdo = Tdc - Tdn; - ThA = Tdc + Tdn; - ThB = KP707106781 * (TeF - TeE); - ThC = Thn - Thm; - ThD = ThB + ThC; - ThJ = ThC - ThB; - } - Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); - Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); - Teq = Teo + Tep; - ThI = Tep - Teo; - { - E Te7, Tev, Teg, Tew, Te6, Tef; - Te6 = KP707106781 * (Te0 - Te5); - Te7 = TdV - Te6; - Tev = TdV + Te6; - Tef = KP707106781 * (Ted - Tee); - Teg = Tec - Tef; - Tew = Tec + Tef; - Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); - TeB = FMA(KP831469612, Tew, KP555570233 * Tev); - Tel = FMA(KP195090322, Teg, KP980785280 * Te7); - Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); - } - { - E TdG, Tes, TdP, Tet, TdF, TdO; - TdF = KP707106781 * (Tdz - TdE); - TdG = Tdu - TdF; - Tes = Tdu + TdF; - TdO = KP707106781 * (TdM - TdN); - TdP = TdL - TdO; - Tet = TdL + TdO; - TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); - TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); - Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); - Teu = FMA(KP555570233, Tes, KP831469612 * Tet); - } - } - { - E Tdp, Tei, ThH, ThK; - Tdp = Td1 + Tdo; - Tei = TdQ + Teh; - ri[WS(ios, 46)] = Tdp - Tei; - ri[WS(ios, 14)] = Tdp + Tei; - ThH = Tek + Tel; - ThK = ThI + ThJ; - ii[WS(ios, 14)] = ThH + ThK; - ii[WS(ios, 46)] = ThK - ThH; - } - { - E Tej, Tem, ThL, ThM; - Tej = Td1 - Tdo; - Tem = Tek - Tel; - ri[WS(ios, 62)] = Tej - Tem; - ri[WS(ios, 30)] = Tej + Tem; - ThL = Teh - TdQ; - ThM = ThJ - ThI; - ii[WS(ios, 30)] = ThL + ThM; - ii[WS(ios, 62)] = ThM - ThL; - } - { - E Ter, Tey, Thz, ThE; - Ter = Ten + Teq; - Tey = Teu + Tex; - ri[WS(ios, 38)] = Ter - Tey; - ri[WS(ios, 6)] = Ter + Tey; - Thz = TeA + TeB; - ThE = ThA + ThD; - ii[WS(ios, 6)] = Thz + ThE; - ii[WS(ios, 38)] = ThE - Thz; - } - { - E Tez, TeC, ThF, ThG; - Tez = Ten - Teq; - TeC = TeA - TeB; - ri[WS(ios, 54)] = Tez - TeC; - ri[WS(ios, 22)] = Tez + TeC; - ThF = Tex - Teu; - ThG = ThD - ThA; - ii[WS(ios, 22)] = ThF + ThG; - ii[WS(ios, 54)] = ThG - ThF; - } - } - { - E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; - E Tfg; - { - E TeD, TeG, Tfa, Tfb; - TeD = TcL + TcO; - TeG = KP707106781 * (TeE + TeF); - TeH = TeD - TeG; - Tf9 = TeD + TeG; - { - E TeK, TeN, Thl, Tho; - TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); - TeN = FMA(KP923879532, TeL, KP382683432 * TeM); - TeO = TeK - TeN; - Thk = TeK + TeN; - Thl = KP707106781 * (TcU + TcZ); - Tho = Thm + Thn; - Thp = Thl + Tho; - Thv = Tho - Thl; - } - Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); - Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); - Tfc = Tfa + Tfb; - Thu = Tfb - Tfa; - { - E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; - TeY = KP707106781 * (Tee + Ted); - TeZ = TeX - TeY; - Tfh = TeX + TeY; - Tf1 = KP707106781 * (Te0 + Te5); - Tf2 = Tf0 - Tf1; - Tfi = Tf0 + Tf1; - Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); - Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); - Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); - Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); - } - { - E TeS, Tfe, TeV, Tff, TeR, TeU; - TeR = KP707106781 * (TdE + Tdz); - TeS = TeQ - TeR; - Tfe = TeQ + TeR; - TeU = KP707106781 * (TdM + TdN); - TeV = TeT - TeU; - Tff = TeT + TeU; - TeW = FMA(KP555570233, TeS, KP831469612 * TeV); - Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); - Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); - Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); - } - } - { - E TeP, Tf4, Tht, Thw; - TeP = TeH + TeO; - Tf4 = TeW + Tf3; - ri[WS(ios, 42)] = TeP - Tf4; - ri[WS(ios, 10)] = TeP + Tf4; - Tht = Tf6 + Tf7; - Thw = Thu + Thv; - ii[WS(ios, 10)] = Tht + Thw; - ii[WS(ios, 42)] = Thw - Tht; - } - { - E Tf5, Tf8, Thx, Thy; - Tf5 = TeH - TeO; - Tf8 = Tf6 - Tf7; - ri[WS(ios, 58)] = Tf5 - Tf8; - ri[WS(ios, 26)] = Tf5 + Tf8; - Thx = Tf3 - TeW; - Thy = Thv - Thu; - ii[WS(ios, 26)] = Thx + Thy; - ii[WS(ios, 58)] = Thy - Thx; - } - { - E Tfd, Tfk, Thj, Thq; - Tfd = Tf9 + Tfc; - Tfk = Tfg + Tfj; - ri[WS(ios, 34)] = Tfd - Tfk; - ri[WS(ios, 2)] = Tfd + Tfk; - Thj = Tfm + Tfn; - Thq = Thk + Thp; - ii[WS(ios, 2)] = Thj + Thq; - ii[WS(ios, 34)] = Thq - Thj; - } - { - E Tfl, Tfo, Thr, Ths; - Tfl = Tf9 - Tfc; - Tfo = Tfm - Tfn; - ri[WS(ios, 50)] = Tfl - Tfo; - ri[WS(ios, 18)] = Tfl + Tfo; - Thr = Tfj - Tfg; - Ths = Thp - Thk; - ii[WS(ios, 18)] = Thr + Ths; - ii[WS(ios, 50)] = Ths - Thr; - } - } - { - E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; - E T9H; - { - E T6n, T6K, TiB, TiC; - T6n = T6b - T6m; - T6K = T6y - T6J; - T6L = T6n - T6K; - T9x = T6n + T6K; - TiB = T9P - T9O; - TiC = Tin - Tim; - TiD = TiB + TiC; - TiJ = TiC - TiB; - } - { - E T7c, T9y, T7D, T9z; - { - E T72, T7b, T7t, T7C; - T72 = T6Q - T71; - T7b = T77 - T7a; - T7c = FNMS(KP980785280, T7b, KP195090322 * T72); - T9y = FMA(KP980785280, T72, KP195090322 * T7b); - T7t = T7h - T7s; - T7C = T7y - T7B; - T7D = FMA(KP195090322, T7t, KP980785280 * T7C); - T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); - } - T7E = T7c - T7D; - TiI = T9z - T9y; - T9A = T9y + T9z; - TiA = T7c + T7D; - } - { - E T8k, T9C, T8x, T9D; - { - E T7W, T8j, T8t, T8w; - T7W = T7K - T7V; - T8j = T87 - T8i; - T8k = T7W - T8j; - T9C = T7W + T8j; - T8t = T8p - T8s; - T8w = T8u - T8v; - T8x = T8t - T8w; - T9D = T8t + T8w; - } - T8y = FMA(KP995184726, T8k, KP098017140 * T8x); - T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); - T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); - T9E = FMA(KP634393284, T9C, KP773010453 * T9D); - } - { - E T9d, T9F, T9q, T9G; - { - E T8P, T9c, T9m, T9p; - T8P = T8D - T8O; - T9c = T90 - T9b; - T9d = T8P - T9c; - T9F = T8P + T9c; - T9m = T9i - T9l; - T9p = T9n - T9o; - T9q = T9m - T9p; - T9G = T9m + T9p; - } - T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); - T9L = FMA(KP773010453, T9G, KP634393284 * T9F); - T9v = FMA(KP098017140, T9q, KP995184726 * T9d); - T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); - } - { - E T7F, T9s, TiH, TiK; - T7F = T6L + T7E; - T9s = T8y + T9r; - ri[WS(ios, 47)] = T7F - T9s; - ri[WS(ios, 15)] = T7F + T9s; - TiH = T9u + T9v; - TiK = TiI + TiJ; - ii[WS(ios, 15)] = TiH + TiK; - ii[WS(ios, 47)] = TiK - TiH; - } - { - E T9t, T9w, TiL, TiM; - T9t = T6L - T7E; - T9w = T9u - T9v; - ri[WS(ios, 63)] = T9t - T9w; - ri[WS(ios, 31)] = T9t + T9w; - TiL = T9r - T8y; - TiM = TiJ - TiI; - ii[WS(ios, 31)] = TiL + TiM; - ii[WS(ios, 63)] = TiM - TiL; - } - { - E T9B, T9I, Tiz, TiE; - T9B = T9x + T9A; - T9I = T9E + T9H; - ri[WS(ios, 39)] = T9B - T9I; - ri[WS(ios, 7)] = T9B + T9I; - Tiz = T9K + T9L; - TiE = TiA + TiD; - ii[WS(ios, 7)] = Tiz + TiE; - ii[WS(ios, 39)] = TiE - Tiz; - } - { - E T9J, T9M, TiF, TiG; - T9J = T9x - T9A; - T9M = T9K - T9L; - ri[WS(ios, 55)] = T9J - T9M; - ri[WS(ios, 23)] = T9J + T9M; - TiF = T9H - T9E; - TiG = TiD - TiA; - ii[WS(ios, 23)] = TiF + TiG; - ii[WS(ios, 55)] = TiG - TiF; - } - } - { - E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; - E TbT; - { - E TaD, TaK, Ti7, Ti8; - TaD = Taz - TaC; - TaK = TaG - TaJ; - TaL = TaD - TaK; - TbJ = TaD + TaK; - Ti7 = Tc1 - Tc0; - Ti8 = ThT - ThQ; - Ti9 = Ti7 + Ti8; - Tif = Ti8 - Ti7; - } - { - E TaS, TbK, TaZ, TbL; - { - E TaO, TaR, TaV, TaY; - TaO = TaM - TaN; - TaR = TaP - TaQ; - TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); - TbK = FMA(KP555570233, TaR, KP831469612 * TaO); - TaV = TaT - TaU; - TaY = TaW - TaX; - TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); - TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); - } - Tb0 = TaS - TaZ; - Tie = TbL - TbK; - TbM = TbK + TbL; - Ti6 = TaS + TaZ; - } - { - E Tbc, TbO, Tbj, TbP; - { - E Tb4, Tbb, Tbf, Tbi; - Tb4 = Tb2 - Tb3; - Tbb = Tb7 - Tba; - Tbc = Tb4 - Tbb; - TbO = Tb4 + Tbb; - Tbf = Tbd - Tbe; - Tbi = Tbg - Tbh; - Tbj = Tbf - Tbi; - TbP = Tbf + Tbi; - } - Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); - TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); - TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); - TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); - } - { - E Tbv, TbR, TbC, TbS; - { - E Tbn, Tbu, Tby, TbB; - Tbn = Tbl - Tbm; - Tbu = Tbq - Tbt; - Tbv = Tbn - Tbu; - TbR = Tbn + Tbu; - Tby = Tbw - Tbx; - TbB = Tbz - TbA; - TbC = Tby - TbB; - TbS = Tby + TbB; - } - TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); - TbX = FMA(KP881921264, TbS, KP471396736 * TbR); - TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); - TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); - } - { - E Tb1, TbE, Tid, Tig; - Tb1 = TaL + Tb0; - TbE = Tbk + TbD; - ri[WS(ios, 45)] = Tb1 - TbE; - ri[WS(ios, 13)] = Tb1 + TbE; - Tid = TbG + TbH; - Tig = Tie + Tif; - ii[WS(ios, 13)] = Tid + Tig; - ii[WS(ios, 45)] = Tig - Tid; - } - { - E TbF, TbI, Tih, Tii; - TbF = TaL - Tb0; - TbI = TbG - TbH; - ri[WS(ios, 61)] = TbF - TbI; - ri[WS(ios, 29)] = TbF + TbI; - Tih = TbD - Tbk; - Tii = Tif - Tie; - ii[WS(ios, 29)] = Tih + Tii; - ii[WS(ios, 61)] = Tii - Tih; - } - { - E TbN, TbU, Ti5, Tia; - TbN = TbJ + TbM; - TbU = TbQ + TbT; - ri[WS(ios, 37)] = TbN - TbU; - ri[WS(ios, 5)] = TbN + TbU; - Ti5 = TbW + TbX; - Tia = Ti6 + Ti9; - ii[WS(ios, 5)] = Ti5 + Tia; - ii[WS(ios, 37)] = Tia - Ti5; - } - { - E TbV, TbY, Tib, Tic; - TbV = TbJ - TbM; - TbY = TbW - TbX; - ri[WS(ios, 53)] = TbV - TbY; - ri[WS(ios, 21)] = TbV + TbY; - Tib = TbT - TbQ; - Tic = Ti9 - Ti6; - ii[WS(ios, 21)] = Tib + Tic; - ii[WS(ios, 53)] = Tic - Tib; - } - } - { - E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; - E TcF; - { - E TbZ, Tc2, ThP, ThU; - TbZ = Taz + TaC; - Tc2 = Tc0 + Tc1; - Tc3 = TbZ - Tc2; - Tcv = TbZ + Tc2; - ThP = TaG + TaJ; - ThU = ThQ + ThT; - ThV = ThP + ThU; - Ti1 = ThU - ThP; - } - { - E Tc6, Tcw, Tc9, Tcx; - { - E Tc4, Tc5, Tc7, Tc8; - Tc4 = TaM + TaN; - Tc5 = TaP + TaQ; - Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); - Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); - Tc7 = TaT + TaU; - Tc8 = TaW + TaX; - Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); - Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); - } - Tca = Tc6 - Tc9; - Ti0 = Tcx - Tcw; - Tcy = Tcw + Tcx; - ThO = Tc6 + Tc9; - } - { - E Tce, TcA, Tch, TcB; - { - E Tcc, Tcd, Tcf, Tcg; - Tcc = Tbd + Tbe; - Tcd = Tba + Tb7; - Tce = Tcc - Tcd; - TcA = Tcc + Tcd; - Tcf = Tb2 + Tb3; - Tcg = Tbg + Tbh; - Tch = Tcf - Tcg; - TcB = Tcf + Tcg; - } - Tci = FMA(KP634393284, Tce, KP773010453 * Tch); - TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); - Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); - TcC = FMA(KP995184726, TcA, KP098017140 * TcB); - } - { - E Tcl, TcD, Tco, TcE; - { - E Tcj, Tck, Tcm, Tcn; - Tcj = Tbl + Tbm; - Tck = TbA + Tbz; - Tcl = Tcj - Tck; - TcD = Tcj + Tck; - Tcm = Tbw + Tbx; - Tcn = Tbq + Tbt; - Tco = Tcm - Tcn; - TcE = Tcm + Tcn; - } - Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); - TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); - Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); - TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); - } - { - E Tcb, Tcq, ThZ, Ti2; - Tcb = Tc3 + Tca; - Tcq = Tci + Tcp; - ri[WS(ios, 41)] = Tcb - Tcq; - ri[WS(ios, 9)] = Tcb + Tcq; - ThZ = Tcs + Tct; - Ti2 = Ti0 + Ti1; - ii[WS(ios, 9)] = ThZ + Ti2; - ii[WS(ios, 41)] = Ti2 - ThZ; - } - { - E Tcr, Tcu, Ti3, Ti4; - Tcr = Tc3 - Tca; - Tcu = Tcs - Tct; - ri[WS(ios, 57)] = Tcr - Tcu; - ri[WS(ios, 25)] = Tcr + Tcu; - Ti3 = Tcp - Tci; - Ti4 = Ti1 - Ti0; - ii[WS(ios, 25)] = Ti3 + Ti4; - ii[WS(ios, 57)] = Ti4 - Ti3; - } - { - E Tcz, TcG, ThN, ThW; - Tcz = Tcv + Tcy; - TcG = TcC + TcF; - ri[WS(ios, 33)] = Tcz - TcG; - ri[WS(ios, 1)] = Tcz + TcG; - ThN = TcI + TcJ; - ThW = ThO + ThV; - ii[WS(ios, 1)] = ThN + ThW; - ii[WS(ios, 33)] = ThW - ThN; - } - { - E TcH, TcK, ThX, ThY; - TcH = Tcv - Tcy; - TcK = TcI - TcJ; - ri[WS(ios, 49)] = TcH - TcK; - ri[WS(ios, 17)] = TcH + TcK; - ThX = TcF - TcC; - ThY = ThV - ThO; - ii[WS(ios, 17)] = ThX + ThY; - ii[WS(ios, 49)] = ThY - ThX; - } - } - { - E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; - E Tat; - { - E T9N, T9Q, Til, Tio; - T9N = T6b + T6m; - T9Q = T9O + T9P; - T9R = T9N - T9Q; - Taj = T9N + T9Q; - Til = T6y + T6J; - Tio = Tim + Tin; - Tip = Til + Tio; - Tiv = Tio - Til; - } - { - E T9U, Tak, T9X, Tal; - { - E T9S, T9T, T9V, T9W; - T9S = T6Q + T71; - T9T = T77 + T7a; - T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); - Tak = FMA(KP555570233, T9S, KP831469612 * T9T); - T9V = T7h + T7s; - T9W = T7y + T7B; - T9X = FMA(KP831469612, T9V, KP555570233 * T9W); - Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); - } - T9Y = T9U - T9X; - Tiu = Tal - Tak; - Tam = Tak + Tal; - Tik = T9U + T9X; - } - { - E Ta2, Tao, Ta5, Tap; - { - E Ta0, Ta1, Ta3, Ta4; - Ta0 = T8p + T8s; - Ta1 = T8i + T87; - Ta2 = Ta0 - Ta1; - Tao = Ta0 + Ta1; - Ta3 = T7K + T7V; - Ta4 = T8u + T8v; - Ta5 = Ta3 - Ta4; - Tap = Ta3 + Ta4; - } - Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); - Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); - Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); - Taq = FMA(KP956940335, Tao, KP290284677 * Tap); - } - { - E Ta9, Tar, Tac, Tas; - { - E Ta7, Ta8, Taa, Tab; - Ta7 = T8D + T8O; - Ta8 = T9o + T9n; - Ta9 = Ta7 - Ta8; - Tar = Ta7 + Ta8; - Taa = T9i + T9l; - Tab = T90 + T9b; - Tac = Taa - Tab; - Tas = Taa + Tab; - } - Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); - Tax = FMA(KP290284677, Tar, KP956940335 * Tas); - Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); - Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); - } - { - E T9Z, Tae, Tit, Tiw; - T9Z = T9R + T9Y; - Tae = Ta6 + Tad; - ri[WS(ios, 43)] = T9Z - Tae; - ri[WS(ios, 11)] = T9Z + Tae; - Tit = Tag + Tah; - Tiw = Tiu + Tiv; - ii[WS(ios, 11)] = Tit + Tiw; - ii[WS(ios, 43)] = Tiw - Tit; - } - { - E Taf, Tai, Tix, Tiy; - Taf = T9R - T9Y; - Tai = Tag - Tah; - ri[WS(ios, 59)] = Taf - Tai; - ri[WS(ios, 27)] = Taf + Tai; - Tix = Tad - Ta6; - Tiy = Tiv - Tiu; - ii[WS(ios, 27)] = Tix + Tiy; - ii[WS(ios, 59)] = Tiy - Tix; - } - { - E Tan, Tau, Tij, Tiq; - Tan = Taj + Tam; - Tau = Taq + Tat; - ri[WS(ios, 35)] = Tan - Tau; - ri[WS(ios, 3)] = Tan + Tau; - Tij = Taw + Tax; - Tiq = Tik + Tip; - ii[WS(ios, 3)] = Tij + Tiq; - ii[WS(ios, 35)] = Tiq - Tij; - } - { - E Tav, Tay, Tir, Tis; - Tav = Taj - Tam; - Tay = Taw - Tax; - ri[WS(ios, 51)] = Tav - Tay; - ri[WS(ios, 19)] = Tav + Tay; - Tir = Tat - Taq; - Tis = Tip - Tik; - ii[WS(ios, 19)] = Tir + Tis; - ii[WS(ios, 51)] = Tis - Tir; - } - } - } - return W; -} - -static const tw_instr twinstr[] = { - {TW_FULL, 0, 64}, - {TW_NEXT, 1, 0} -}; - -static const ct_desc desc = { 64, "t1_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 }; - -void X(codelet_t1_64) (planner *p) { - X(kdft_dit_register) (p, t1_64, &desc); -} |