diff options
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t2_16.c')
-rw-r--r-- | src/fftw3/dft/codelets/standard/t2_16.c | 411 |
1 files changed, 0 insertions, 411 deletions
diff --git a/src/fftw3/dft/codelets/standard/t2_16.c b/src/fftw3/dft/codelets/standard/t2_16.c deleted file mode 100644 index 46d4bdb..0000000 --- a/src/fftw3/dft/codelets/standard/t2_16.c +++ /dev/null @@ -1,411 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* This file was automatically generated --- DO NOT EDIT */ -/* Generated on Sat Jul 5 21:30:12 EDT 2003 */ - -#include "codelet-dft.h" - -/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 16 -name t2_16 -include t.h */ - -/* - * This function contains 196 FP additions, 108 FP multiplications, - * (or, 156 additions, 68 multiplications, 40 fused multiply/add), - * 104 stack variables, and 64 memory accesses - */ -/* - * Generator Id's : - * $Id: t2_16.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - * $Id: t2_16.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - * $Id: t2_16.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ - */ - -#include "t.h" - -static const R *t2_16(R *ri, R *ii, const R *W, stride ios, int m, int dist) -{ - DK(KP382683432, +0.382683432365089771728459984030398866761344562); - DK(KP923879532, +0.923879532511286756128183189396788286822416626); - DK(KP707106781, +0.707106781186547524400844362104849039284835938); - int i; - for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8) { - E T1, T3d, T18, T26, T29, T2R, Tq, T1r, T1E, T2k, T2g, T1O, Te, T3c, Tz; - E T1P, T1S, T1T, T1U, TG, TL, T1V, T1Y, T1Z, T20, TT, TY, T1X, T1A, T2l; - E T1J, T2h, T1h, T2b, T1m, T2a; - T1 = ri[0]; - T3d = ii[0]; - { - E T9, Td, Tl, Tp, Ty, Tu, TD, TF, TI, TK, TV, TQ, TS, TX, T1z; - E T1v, T1C, T1D, T1G, T1I, T1q, T1p, T1l, T1j, T1c, T1g, T2, T5, Ti, Tg; - E T4, Tw, Ts, Ta, Tv, T7, Tb, Tr, Tk, TW, TJ, TC, TU, To, TE; - E TH, T14, T24, T17, T25, TN, TO, TP, TR; - T9 = ri[WS(ios, 8)]; - Td = ii[WS(ios, 8)]; - Tl = ri[WS(ios, 4)]; - Tp = ii[WS(ios, 4)]; - Ty = ii[WS(ios, 12)]; - Tu = ri[WS(ios, 12)]; - TD = ri[WS(ios, 2)]; - TF = ii[WS(ios, 2)]; - TI = ri[WS(ios, 10)]; - TK = ii[WS(ios, 10)]; - TV = ri[WS(ios, 6)]; - TQ = ri[WS(ios, 14)]; - TS = ii[WS(ios, 14)]; - TX = ii[WS(ios, 6)]; - T1z = ii[WS(ios, 7)]; - T1v = ri[WS(ios, 7)]; - T1C = ri[WS(ios, 3)]; - T1D = ii[WS(ios, 3)]; - T1G = ri[WS(ios, 11)]; - T1I = ii[WS(ios, 11)]; - T1q = ii[WS(ios, 15)]; - T1p = ri[WS(ios, 15)]; - T1l = ii[WS(ios, 13)]; - T1j = ri[WS(ios, 13)]; - T1c = ri[WS(ios, 5)]; - T1g = ii[WS(ios, 5)]; - { - E T12, T13, T15, T16, T3, T6, Tm, Tj, Tn, Th; - T12 = ri[WS(ios, 1)]; - T13 = ii[WS(ios, 1)]; - T15 = ri[WS(ios, 9)]; - T16 = ii[WS(ios, 9)]; - T2 = W[4]; - T5 = W[5]; - T3 = W[0]; - T6 = W[1]; - Ti = W[3]; - Tg = W[2]; - T4 = T2 * T3; - Tw = T5 * Tg; - Ts = T5 * Ti; - Ta = T2 * T6; - Tv = T2 * Ti; - T7 = T5 * T6; - Tb = T5 * T3; - Tr = T2 * Tg; - Tm = Tg * T6; - Tj = Ti * T6; - Tn = Ti * T3; - Th = Tg * T3; - Tk = Th - Tj; - TW = Tv - Tw; - TJ = Ta + Tb; - TC = Th + Tj; - TU = Tr + Ts; - To = Tm + Tn; - TE = Tm - Tn; - TH = T4 - T7; - T14 = FMA(T3, T12, T6 * T13); - T24 = FNMS(T6, T12, T3 * T13); - T17 = FMA(T2, T15, T5 * T16); - T25 = FNMS(T5, T15, T2 * T16); - TN = W[6]; - TO = W[7]; - TP = FMA(TN, T3, TO * T6); - TR = FNMS(TO, T3, TN * T6); - } - T18 = T14 + T17; - T26 = T24 - T25; - T29 = T14 - T17; - T2R = T24 + T25; - Tq = FMA(Tk, Tl, To * Tp); - T1r = FMA(TN, T1p, TO * T1q); - T1E = FMA(Tg, T1C, Ti * T1D); - T2k = FNMS(TO, T1p, TN * T1q); - T2g = FNMS(Ti, T1C, Tg * T1D); - { - E T8, Tc, Tt, Tx; - T1O = FNMS(To, Tl, Tk * Tp); - T8 = T4 + T7; - Tc = Ta - Tb; - Te = FNMS(Tc, Td, T8 * T9); - T3c = FMA(Tc, T9, T8 * Td); - Tt = Tr - Ts; - Tx = Tv + Tw; - Tz = FMA(Tt, Tu, Tx * Ty); - T1P = FNMS(Tx, Tu, Tt * Ty); - T1S = FMA(TE, TD, TC * TF); - T1T = FNMS(TJ, TI, TH * TK); - T1U = T1S - T1T; - } - TG = FNMS(TE, TF, TC * TD); - TL = FMA(TH, TI, TJ * TK); - T1V = TG - TL; - T1Y = FMA(TR, TQ, TP * TS); - T1Z = FMA(TW, TV, TU * TX); - T20 = T1Y - T1Z; - TT = FNMS(TR, TS, TP * TQ); - TY = FNMS(TW, TX, TU * TV); - T1X = TT - TY; - { - E T1u, T1F, T1y, T1H; - { - E T1s, T1t, T1w, T1x; - T1s = T2 * TC; - T1t = T5 * TE; - T1u = T1s - T1t; - T1F = T1s + T1t; - T1w = T2 * TE; - T1x = T5 * TC; - T1y = T1w + T1x; - T1H = T1w - T1x; - } - T1A = FMA(T1u, T1v, T1y * T1z); - T2l = FNMS(T1y, T1v, T1u * T1z); - T1J = FNMS(T1H, T1I, T1F * T1G); - T2h = FMA(T1H, T1G, T1F * T1I); - } - { - E T1b, T1i, T1f, T1k; - { - E T19, T1a, T1d, T1e; - T19 = T2 * Tk; - T1a = T5 * To; - T1b = T19 + T1a; - T1i = T19 - T1a; - T1d = T2 * To; - T1e = T5 * Tk; - T1f = T1d - T1e; - T1k = T1d + T1e; - } - T1h = FNMS(T1f, T1g, T1b * T1c); - T2b = FNMS(T1k, T1j, T1i * T1l); - T1m = FMA(T1i, T1j, T1k * T1l); - T2a = FMA(T1f, T1c, T1b * T1g); - } - } - { - E TB, T2L, T10, T3k, T3f, T3l, T2O, T3a, T1o, T36, T2U, T32, T1L, T37, T2Z; - E T33; - { - E Tf, TA, T2M, T2N; - Tf = T1 + Te; - TA = Tq + Tz; - TB = Tf + TA; - T2L = Tf - TA; - { - E TM, TZ, T3b, T3e; - TM = TG + TL; - TZ = TT + TY; - T10 = TM + TZ; - T3k = TZ - TM; - T3b = T1O + T1P; - T3e = T3c + T3d; - T3f = T3b + T3e; - T3l = T3e - T3b; - } - T2M = T1S + T1T; - T2N = T1Y + T1Z; - T2O = T2M - T2N; - T3a = T2M + T2N; - { - E T1n, T2Q, T2S, T2T; - T1n = T1h + T1m; - T2Q = T18 - T1n; - T2S = T2a + T2b; - T2T = T2R - T2S; - T1o = T18 + T1n; - T36 = T2R + T2S; - T2U = T2Q + T2T; - T32 = T2T - T2Q; - } - { - E T1B, T1K, T2V, T2W, T2X, T2Y; - T1B = T1r + T1A; - T1K = T1E + T1J; - T2V = T1B - T1K; - T2W = T2k + T2l; - T2X = T2g + T2h; - T2Y = T2W - T2X; - T1L = T1B + T1K; - T37 = T2W + T2X; - T2Z = T2V - T2Y; - T33 = T2V + T2Y; - } - } - { - E T11, T1M, T39, T3g; - T11 = TB + T10; - T1M = T1o + T1L; - ri[WS(ios, 8)] = T11 - T1M; - ri[0] = T11 + T1M; - T39 = T36 + T37; - T3g = T3a + T3f; - ii[0] = T39 + T3g; - ii[WS(ios, 8)] = T3g - T39; - } - { - E T2P, T30, T3j, T3m; - T2P = T2L + T2O; - T30 = KP707106781 * (T2U + T2Z); - ri[WS(ios, 10)] = T2P - T30; - ri[WS(ios, 2)] = T2P + T30; - T3j = KP707106781 * (T32 + T33); - T3m = T3k + T3l; - ii[WS(ios, 2)] = T3j + T3m; - ii[WS(ios, 10)] = T3m - T3j; - } - { - E T31, T34, T3n, T3o; - T31 = T2L - T2O; - T34 = KP707106781 * (T32 - T33); - ri[WS(ios, 14)] = T31 - T34; - ri[WS(ios, 6)] = T31 + T34; - T3n = KP707106781 * (T2Z - T2U); - T3o = T3l - T3k; - ii[WS(ios, 6)] = T3n + T3o; - ii[WS(ios, 14)] = T3o - T3n; - } - { - E T35, T38, T3h, T3i; - T35 = TB - T10; - T38 = T36 - T37; - ri[WS(ios, 12)] = T35 - T38; - ri[WS(ios, 4)] = T35 + T38; - T3h = T1L - T1o; - T3i = T3f - T3a; - ii[WS(ios, 4)] = T3h + T3i; - ii[WS(ios, 12)] = T3i - T3h; - } - } - { - E T1R, T2v, T22, T3q, T3t, T3z, T2y, T3y, T2e, T2I, T2s, T2C, T2p, T2J, T2t; - E T2F; - { - E T1N, T1Q, T2w, T2x; - T1N = T1 - Te; - T1Q = T1O - T1P; - T1R = T1N - T1Q; - T2v = T1N + T1Q; - { - E T1W, T21, T3r, T3s; - T1W = T1U - T1V; - T21 = T1X + T20; - T22 = KP707106781 * (T1W - T21); - T3q = KP707106781 * (T1W + T21); - T3r = T3d - T3c; - T3s = Tq - Tz; - T3t = T3r - T3s; - T3z = T3s + T3r; - } - T2w = T1V + T1U; - T2x = T1X - T20; - T2y = KP707106781 * (T2w + T2x); - T3y = KP707106781 * (T2x - T2w); - { - E T28, T2A, T2d, T2B, T27, T2c; - T27 = T1h - T1m; - T28 = T26 + T27; - T2A = T26 - T27; - T2c = T2a - T2b; - T2d = T29 - T2c; - T2B = T29 + T2c; - T2e = FMA(KP923879532, T28, KP382683432 * T2d); - T2I = FNMS(KP382683432, T2B, KP923879532 * T2A); - T2s = FNMS(KP923879532, T2d, KP382683432 * T28); - T2C = FMA(KP382683432, T2A, KP923879532 * T2B); - } - { - E T2j, T2D, T2o, T2E; - { - E T2f, T2i, T2m, T2n; - T2f = T1r - T1A; - T2i = T2g - T2h; - T2j = T2f - T2i; - T2D = T2f + T2i; - T2m = T2k - T2l; - T2n = T1E - T1J; - T2o = T2m + T2n; - T2E = T2m - T2n; - } - T2p = FNMS(KP923879532, T2o, KP382683432 * T2j); - T2J = FMA(KP923879532, T2E, KP382683432 * T2D); - T2t = FMA(KP382683432, T2o, KP923879532 * T2j); - T2F = FNMS(KP382683432, T2E, KP923879532 * T2D); - } - } - { - E T23, T2q, T3x, T3A; - T23 = T1R + T22; - T2q = T2e + T2p; - ri[WS(ios, 11)] = T23 - T2q; - ri[WS(ios, 3)] = T23 + T2q; - T3x = T2s + T2t; - T3A = T3y + T3z; - ii[WS(ios, 3)] = T3x + T3A; - ii[WS(ios, 11)] = T3A - T3x; - } - { - E T2r, T2u, T3B, T3C; - T2r = T1R - T22; - T2u = T2s - T2t; - ri[WS(ios, 15)] = T2r - T2u; - ri[WS(ios, 7)] = T2r + T2u; - T3B = T2p - T2e; - T3C = T3z - T3y; - ii[WS(ios, 7)] = T3B + T3C; - ii[WS(ios, 15)] = T3C - T3B; - } - { - E T2z, T2G, T3p, T3u; - T2z = T2v + T2y; - T2G = T2C + T2F; - ri[WS(ios, 9)] = T2z - T2G; - ri[WS(ios, 1)] = T2z + T2G; - T3p = T2I + T2J; - T3u = T3q + T3t; - ii[WS(ios, 1)] = T3p + T3u; - ii[WS(ios, 9)] = T3u - T3p; - } - { - E T2H, T2K, T3v, T3w; - T2H = T2v - T2y; - T2K = T2I - T2J; - ri[WS(ios, 13)] = T2H - T2K; - ri[WS(ios, 5)] = T2H + T2K; - T3v = T2F - T2C; - T3w = T3t - T3q; - ii[WS(ios, 5)] = T3v + T3w; - ii[WS(ios, 13)] = T3w - T3v; - } - } - } - return W; -} - -static const tw_instr twinstr[] = { - {TW_COS, 0, 1}, - {TW_SIN, 0, 1}, - {TW_COS, 0, 3}, - {TW_SIN, 0, 3}, - {TW_COS, 0, 9}, - {TW_SIN, 0, 9}, - {TW_COS, 0, 15}, - {TW_SIN, 0, 15}, - {TW_NEXT, 1, 0} -}; - -static const ct_desc desc = { 16, "t2_16", twinstr, {156, 68, 40, 0}, &GENUS, 0, 0, 0 }; - -void X(codelet_t2_16) (planner *p) { - X(kdft_dit_register) (p, t2_16, &desc); -} |