summaryrefslogtreecommitdiff
path: root/src/fftw3/dft/codelets/standard/t2_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/dft/codelets/standard/t2_64.c')
-rw-r--r--src/fftw3/dft/codelets/standard/t2_64.c1906
1 files changed, 0 insertions, 1906 deletions
diff --git a/src/fftw3/dft/codelets/standard/t2_64.c b/src/fftw3/dft/codelets/standard/t2_64.c
deleted file mode 100644
index 6fc7efd..0000000
--- a/src/fftw3/dft/codelets/standard/t2_64.c
+++ /dev/null
@@ -1,1906 +0,0 @@
-/*
- * Copyright (c) 2003 Matteo Frigo
- * Copyright (c) 2003 Massachusetts Institute of Technology
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- */
-
-/* This file was automatically generated --- DO NOT EDIT */
-/* Generated on Sat Jul 5 21:30:32 EDT 2003 */
-
-#include "codelet-dft.h"
-
-/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 64 -name t2_64 -include t.h */
-
-/*
- * This function contains 1154 FP additions, 660 FP multiplications,
- * (or, 880 additions, 386 multiplications, 274 fused multiply/add),
- * 382 stack variables, and 256 memory accesses
- */
-/*
- * Generator Id's :
- * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- * $Id: t2_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $
- */
-
-#include "t.h"
-
-static const R *t2_64(R *ri, R *ii, const R *W, stride ios, int m, int dist)
-{
- DK(KP290284677, +0.290284677254462367636192375817395274691476278);
- DK(KP956940335, +0.956940335732208864935797886980269969482849206);
- DK(KP881921264, +0.881921264348355029712756863660388349508442621);
- DK(KP471396736, +0.471396736825997648556387625905254377657460319);
- DK(KP098017140, +0.098017140329560601994195563888641845861136673);
- DK(KP995184726, +0.995184726672196886244836953109479921575474869);
- DK(KP773010453, +0.773010453362736960810906609758469800971041293);
- DK(KP634393284, +0.634393284163645498215171613225493370675687095);
- DK(KP555570233, +0.555570233019602224742830813948532874374937191);
- DK(KP831469612, +0.831469612302545237078788377617905756738560812);
- DK(KP980785280, +0.980785280403230449126182236134239036973933731);
- DK(KP195090322, +0.195090322016128267848284868477022240927691618);
- DK(KP707106781, +0.707106781186547524400844362104849039284835938);
- DK(KP923879532, +0.923879532511286756128183189396788286822416626);
- DK(KP382683432, +0.382683432365089771728459984030398866761344562);
- int i;
- for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 10) {
- E T1, Ti1, Tp, Tt, TH, TL, T6a, T6c, T4J, T4H, T1g, T91, T7W, T7m, T2O;
- E T4j, T7P, T4P, T8y, T2w, T8t, T2Z, T8e, T48, T1z, T7s, T1I, T7t, T8p, Ten;
- E T1Y, T7D, T2t, T7O, T7L, Te6, T3N, T8E, T7A, Te0, T4C, TeA, T8S, T9v, T65;
- E Tfi, T9J, Taq, T6K, Tf6, Ta2, Ta5, T73, Tfc, Tad, Tag, T3z, T83, T3u, T82;
- E T81, T84, T15, T9K, T68, T7j, T43, T9w, T4F, T8G, T5l, TeL, T9k, T9n, T6o;
- E Tf2, T9Q, T9R, T6z, Tf3, T9T, T9W, To, Ts, T4o, T8u, T4U, T92, T5a, TeT;
- E T8V, T8Y, T5G, TeG, T97, T9e, T27, T7X, T2T, T7E, T7b, Tai, T6T, Ta3, Tf7;
- E Ta8, T7Q, T2H, T2c, T76, Tah, T7F, T4d, T8z, TG, TK, T69, T6b, T3b, T87;
- E T5u, T9l, TeM, T9q, T88, T89, T3o, T86, T5P, T9f, TeH, T9a, T34, T8f, T1r;
- E T7n, T3S, T8F, T4G, T4I;
- T1 = ri[0];
- Ti1 = ii[0];
- Tp = ri[WS(ios, 32)];
- Tt = ii[WS(ios, 32)];
- TH = ri[WS(ios, 16)];
- TL = ii[WS(ios, 16)];
- T6a = ri[WS(ios, 47)];
- T6c = ii[WS(ios, 47)];
- T4J = ii[WS(ios, 49)];
- T4H = ri[WS(ios, 49)];
- {
- E T12, T14, T1b, T1f, T1q, T1m, T1w, T1y, T1D, T1H, T1S, T1M, T1N, T1W, T2M;
- E T2g, T2b, T29, T26, T22, T2i, T2E, T2G, T2v, T2u, T2r, T2n, T2N, T3a, T38;
- E T3l, T3n, T3r, T3t, T33, T31, T2Y, T2W, T4g, T2S, T2Q, T3w, T3y, T3E, T3G;
- E T3P, T3J, T3L, T3R, T4a, T4c, T47, T46, T42, T40, T4i, T6P, T6R, T6M, T6L;
- E T6I, T6G, T6W, T6Y, T74, T75, T5I, T78, T7a, T6x, T6v, T6s, T6q, T6h, T6m;
- E T6k, T6g, T5N, T5L, T5Z, T63, T66, T67, T5H, T54, T4D, T4A, T4y, T4n, T4l;
- E T4E, T4X, T4Z, T4T, T4R, T4O, T4N, T58, T5s, T5q, T5x, T5z, T5C, T5E, T5n;
- E T5m, T5j, T5h, T5d, T5e, Ta, Ty, Tf, Tw, T2, Tj, T3, Tc, T1E, T1B;
- E T1F, T1A, T1R, T3x, T2m, T3K, T61, T1V, T60, T3I, T51, T52, T2V, T56, T5X;
- E T3v, T55, T2X, T2q, T5W, T4w, T6E, Ta0, T8Q, Tac, T72, Tb, Tg, Th, T3e;
- E T3f, T3h, T1a, T2x, T2B, TU, TV, TY, T1e, T2y, T2A, TC, TD, T1u, Tk;
- E Tl, Tm, T39, T3U, T3W, T37, T3T, T3X, TQ, TR, TZ, T3c, T3d, T3i, Tx;
- E Tz, T1t, TN, TX, T2f, T5V, Tao, T2h, T3D, T4f, T4h, T3F, T3q, T3s;
- T12 = ri[WS(ios, 48)];
- T14 = ii[WS(ios, 48)];
- T1b = ri[WS(ios, 8)];
- T1f = ii[WS(ios, 8)];
- T1q = ii[WS(ios, 40)];
- T1m = ri[WS(ios, 40)];
- T1w = ri[WS(ios, 56)];
- T1y = ii[WS(ios, 56)];
- T1D = ri[WS(ios, 24)];
- T1H = ii[WS(ios, 24)];
- T1S = ri[WS(ios, 36)];
- T1M = ri[WS(ios, 4)];
- T1N = ii[WS(ios, 4)];
- T1W = ii[WS(ios, 36)];
- T2M = ri[WS(ios, 2)];
- T2g = ri[WS(ios, 60)];
- T2b = ii[WS(ios, 52)];
- T29 = ri[WS(ios, 52)];
- T26 = ii[WS(ios, 20)];
- T22 = ri[WS(ios, 20)];
- T2i = ii[WS(ios, 60)];
- T2E = ri[WS(ios, 44)];
- T2G = ii[WS(ios, 44)];
- T2v = ii[WS(ios, 12)];
- T2u = ri[WS(ios, 12)];
- T2r = ii[WS(ios, 28)];
- T2n = ri[WS(ios, 28)];
- T2N = ii[WS(ios, 2)];
- T3a = ii[WS(ios, 10)];
- T38 = ri[WS(ios, 10)];
- T3l = ri[WS(ios, 42)];
- T3n = ii[WS(ios, 42)];
- T3r = ri[WS(ios, 58)];
- T3t = ii[WS(ios, 58)];
- T33 = ii[WS(ios, 50)];
- T31 = ri[WS(ios, 50)];
- T2Y = ii[WS(ios, 18)];
- T2W = ri[WS(ios, 18)];
- T4g = ri[WS(ios, 54)];
- T2S = ii[WS(ios, 34)];
- T2Q = ri[WS(ios, 34)];
- T3w = ri[WS(ios, 26)];
- T3y = ii[WS(ios, 26)];
- T3E = ri[WS(ios, 62)];
- T3G = ii[WS(ios, 62)];
- T3P = ri[WS(ios, 14)];
- T3J = ri[WS(ios, 30)];
- T3L = ii[WS(ios, 30)];
- T3R = ii[WS(ios, 14)];
- T4a = ri[WS(ios, 38)];
- T4c = ii[WS(ios, 38)];
- T47 = ii[WS(ios, 6)];
- T46 = ri[WS(ios, 6)];
- T42 = ii[WS(ios, 46)];
- T40 = ri[WS(ios, 46)];
- T4i = ii[WS(ios, 54)];
- T6P = ri[WS(ios, 51)];
- T6R = ii[WS(ios, 51)];
- T6M = ii[WS(ios, 19)];
- T6L = ri[WS(ios, 19)];
- T6I = ii[WS(ios, 35)];
- T6G = ri[WS(ios, 35)];
- T6W = ri[WS(ios, 59)];
- T6Y = ii[WS(ios, 59)];
- T74 = ri[WS(ios, 11)];
- T75 = ii[WS(ios, 11)];
- T5I = ii[WS(ios, 13)];
- T78 = ri[WS(ios, 43)];
- T7a = ii[WS(ios, 43)];
- T6x = ii[WS(ios, 23)];
- T6v = ri[WS(ios, 23)];
- T6s = ii[WS(ios, 55)];
- T6q = ri[WS(ios, 55)];
- T6h = ii[WS(ios, 7)];
- T6m = ii[WS(ios, 39)];
- T6k = ri[WS(ios, 39)];
- T6g = ri[WS(ios, 7)];
- T5N = ii[WS(ios, 45)];
- T5L = ri[WS(ios, 45)];
- T5Z = ri[WS(ios, 31)];
- T63 = ii[WS(ios, 31)];
- T66 = ri[WS(ios, 15)];
- T67 = ii[WS(ios, 15)];
- T5H = ri[WS(ios, 13)];
- T54 = ri[WS(ios, 25)];
- T4D = ri[WS(ios, 17)];
- T4A = ii[WS(ios, 33)];
- T4y = ri[WS(ios, 33)];
- T4n = ii[WS(ios, 22)];
- T4l = ri[WS(ios, 22)];
- T4E = ii[WS(ios, 17)];
- T4X = ri[WS(ios, 57)];
- T4Z = ii[WS(ios, 57)];
- T4T = ii[WS(ios, 41)];
- T4R = ri[WS(ios, 41)];
- T4O = ii[WS(ios, 9)];
- T4N = ri[WS(ios, 9)];
- T58 = ii[WS(ios, 25)];
- T5s = ii[WS(ios, 53)];
- T5q = ri[WS(ios, 53)];
- T5x = ri[WS(ios, 61)];
- T5z = ii[WS(ios, 61)];
- T5C = ri[WS(ios, 29)];
- T5E = ii[WS(ios, 29)];
- T5n = ii[WS(ios, 21)];
- T5m = ri[WS(ios, 21)];
- T5j = ii[WS(ios, 37)];
- T5h = ri[WS(ios, 37)];
- T5d = ri[WS(ios, 5)];
- T5e = ii[WS(ios, 5)];
- {
- E T4u, T4v, T5T, T5U, T6C, T6D, T70, T71, T4, T7, T5, T8, TO, TP, T1U;
- E T2p, T18, T2k, T2l, T2o, TT, TS, T19, T1c, T1T, T1P, T1Q, T1d;
- T4u = ri[WS(ios, 1)];
- T4v = ii[WS(ios, 1)];
- T5T = ri[WS(ios, 63)];
- T5U = ii[WS(ios, 63)];
- T6C = ri[WS(ios, 3)];
- T6D = ii[WS(ios, 3)];
- T70 = ri[WS(ios, 27)];
- T71 = ii[WS(ios, 27)];
- {
- E T6, Te, T9, Td;
- T4 = W[2];
- T7 = W[3];
- T5 = W[0];
- T8 = W[1];
- T6 = T4 * T5;
- Te = T7 * T5;
- T9 = T7 * T8;
- Td = T4 * T8;
- Ta = T6 - T9;
- Ty = Td - Te;
- Tf = Td + Te;
- Tw = T6 + T9;
- T2 = W[6];
- Tj = W[7];
- T3 = W[4];
- Tc = W[5];
- TO = T3 * T4;
- TP = Tc * T7;
- T1U = Tj * T3;
- T2p = Tj * T5;
- T18 = T3 * T5;
- T2k = T2 * T5;
- T2l = Tj * T8;
- T2o = T2 * T8;
- TT = Tc * T4;
- TS = T3 * T7;
- T19 = Tc * T8;
- T1c = T3 * T8;
- T1E = T2 * T7;
- T1T = T2 * Tc;
- T1B = Tj * T7;
- T1F = Tj * T4;
- T1P = T2 * T3;
- T1Q = Tj * Tc;
- T1A = T2 * T4;
- T1d = Tc * T5;
- }
- T1R = T1P - T1Q;
- T3x = T2o - T2p;
- T2m = T2k - T2l;
- T3K = T1E + T1F;
- T61 = Tj * Ta;
- T1V = T1T + T1U;
- T60 = T2 * Tf;
- T3I = T1A - T1B;
- T51 = T2 * Tw;
- T52 = Tj * Ty;
- T2V = T1P + T1Q;
- T56 = Tj * Tw;
- T5X = Tj * Tf;
- T3v = T2k + T2l;
- T55 = T2 * Ty;
- T2X = T1T - T1U;
- T2q = T2o + T2p;
- T5W = T2 * Ta;
- T4w = FMA(T5, T4u, T8 * T4v);
- T6E = FMA(T4, T6C, T7 * T6D);
- Ta0 = FNMS(T7, T6C, T4 * T6D);
- T8Q = FNMS(T8, T4u, T5 * T4v);
- Tac = FNMS(Tj, T70, T2 * T71);
- T72 = FMA(T2, T70, Tj * T71);
- Tb = T3 * Ta;
- Tg = Tc * Tf;
- Th = Tb + Tg;
- T3e = TS - TT;
- T3f = Tj * T3e;
- T3h = T2 * T3e;
- T1a = T18 + T19;
- T2x = T2 * T1a;
- T2B = Tj * T1a;
- TU = TS + TT;
- TV = Tj * TU;
- TY = T2 * TU;
- T1e = T1c - T1d;
- T2y = Tj * T1e;
- T2A = T2 * T1e;
- TC = T3 * Ty;
- TD = Tc * Tw;
- T1u = TC + TD;
- Tk = T3 * Tf;
- Tl = Tc * Ta;
- Tm = Tk - Tl;
- T39 = T1c + T1d;
- T3U = Tj * T39;
- T3W = T2 * T39;
- T37 = T18 - T19;
- T3T = T2 * T37;
- T3X = Tj * T37;
- TQ = TO - TP;
- TR = T2 * TQ;
- TZ = Tj * TQ;
- T3c = TO + TP;
- T3d = T2 * T3c;
- T3i = Tj * T3c;
- Tx = T3 * Tw;
- Tz = Tc * Ty;
- T1t = Tx - Tz;
- TN = W[8];
- TX = W[9];
- T2f = FMA(TN, T4, TX * T7);
- T5V = FMA(TN, T5T, TX * T5U);
- Tao = FNMS(TX, T5T, TN * T5U);
- T2h = FNMS(TX, T4, TN * T7);
- T3D = FMA(TN, T5, TX * T8);
- T4f = FMA(TN, T3, TX * Tc);
- T4h = FNMS(TX, T3, TN * Tc);
- T3F = FNMS(TX, T5, TN * T8);
- }
- T1g = FNMS(T1e, T1f, T1a * T1b);
- T91 = FNMS(Tc, T4N, T3 * T4O);
- T7W = FMA(Ty, T2M, Tw * T2N);
- T7m = FMA(T1e, T1b, T1a * T1f);
- T2O = FNMS(Ty, T2N, Tw * T2M);
- T4j = FNMS(T4h, T4i, T4f * T4g);
- T7P = FNMS(TU, T2u, TQ * T2v);
- T4P = FMA(T3, T4N, Tc * T4O);
- T8y = FMA(T3e, T46, T3c * T47);
- T2w = FMA(TQ, T2u, TU * T2v);
- {
- E T1v, T1x, T1O, T1X;
- T8t = FMA(T4h, T4g, T4f * T4i);
- T2Z = FNMS(T2X, T2Y, T2V * T2W);
- T8e = FMA(T2X, T2W, T2V * T2Y);
- T48 = FNMS(T3e, T47, T3c * T46);
- T1v = FMA(TN, T1t, TX * T1u);
- T1x = FNMS(TX, T1t, TN * T1u);
- T1z = FNMS(T1x, T1y, T1v * T1w);
- T7s = FMA(T1x, T1w, T1v * T1y);
- {
- E T1C, T1G, T8n, T8o;
- T1C = T1A + T1B;
- T1G = T1E - T1F;
- T1I = FNMS(T1G, T1H, T1C * T1D);
- T7t = FMA(T1G, T1D, T1C * T1H);
- T8n = FMA(T3F, T3E, T3D * T3G);
- T8o = FNMS(T3K, T3J, T3I * T3L);
- T8p = T8n - T8o;
- Ten = T8n + T8o;
- }
- T1O = FMA(Ta, T1M, Tf * T1N);
- T1X = FMA(T1R, T1S, T1V * T1W);
- T1Y = T1O + T1X;
- T7D = T1O - T1X;
- {
- E T2j, T2s, T7J, T7K;
- T2j = FNMS(T2h, T2i, T2f * T2g);
- T2s = FMA(T2m, T2n, T2q * T2r);
- T2t = T2j + T2s;
- T7O = T2j - T2s;
- T7J = FMA(T2h, T2g, T2f * T2i);
- T7K = FNMS(T2q, T2n, T2m * T2r);
- T7L = T7J - T7K;
- Te6 = T7J + T7K;
- }
- }
- {
- E T3H, T3M, T7y, T7z;
- T3H = FNMS(T3F, T3G, T3D * T3E);
- T3M = FMA(T3I, T3J, T3K * T3L);
- T3N = T3H + T3M;
- T8E = T3H - T3M;
- T7y = FNMS(Tf, T1M, Ta * T1N);
- T7z = FNMS(T1V, T1S, T1R * T1W);
- T7A = T7y - T7z;
- Te0 = T7y + T7z;
- }
- {
- E T4B, T8R, T4x, T4z;
- T4x = T3d + T3f;
- T4z = T3h - T3i;
- T4B = FNMS(T4z, T4A, T4x * T4y);
- T8R = FMA(T4z, T4y, T4x * T4A);
- T4C = T4w + T4B;
- TeA = T8Q + T8R;
- T8S = T8Q - T8R;
- T9v = T4w - T4B;
- }
- {
- E T64, Tap, T5Y, T62;
- T5Y = T5W - T5X;
- T62 = T60 + T61;
- T64 = FMA(T5Y, T5Z, T62 * T63);
- Tap = FNMS(T62, T5Z, T5Y * T63);
- T65 = T5V + T64;
- Tfi = Tao + Tap;
- T9J = T5V - T64;
- Taq = Tao - Tap;
- }
- {
- E T6J, Ta1, T6F, T6H;
- T6F = T2x + T2y;
- T6H = T2A - T2B;
- T6J = FNMS(T6H, T6I, T6F * T6G);
- Ta1 = FMA(T6H, T6G, T6F * T6I);
- T6K = T6E + T6J;
- Tf6 = Ta0 + Ta1;
- Ta2 = Ta0 - Ta1;
- Ta5 = T6E - T6J;
- }
- {
- E T6Z, Tab, T6V, T6X;
- T6V = FMA(TN, Ta, TX * Tf);
- T6X = FNMS(TX, Ta, TN * Tf);
- T6Z = FNMS(T6X, T6Y, T6V * T6W);
- Tab = FMA(T6X, T6W, T6V * T6Y);
- T73 = T6Z + T72;
- Tfc = Tab + Tac;
- Tad = Tab - Tac;
- Tag = T6Z - T72;
- }
- T3z = FNMS(T3x, T3y, T3v * T3w);
- T83 = FMA(T3x, T3w, T3v * T3y);
- T3q = FNMS(TX, Tm, TN * Th);
- T3s = FMA(TN, Tm, TX * Th);
- T3u = FMA(T3q, T3r, T3s * T3t);
- T82 = FNMS(T3s, T3r, T3q * T3t);
- T81 = T3u - T3z;
- T84 = T82 - T83;
- {
- E TW, T10, T11, T13;
- TW = TR + TV;
- T10 = TY - TZ;
- T11 = FNMS(TX, T10, TN * TW);
- T13 = FMA(TN, T10, TX * TW);
- T15 = FMA(T11, T12, T13 * T14);
- T9K = FMA(T10, T66, TW * T67);
- T68 = FNMS(T10, T67, TW * T66);
- T7j = FNMS(T13, T12, T11 * T14);
- }
- {
- E T3V, T3Y, T3Z, T41;
- T3V = T3T + T3U;
- T3Y = T3W - T3X;
- T3Z = FNMS(TX, T3Y, TN * T3V);
- T41 = FMA(TN, T3Y, TX * T3V);
- T43 = FMA(T3Z, T40, T41 * T42);
- T9w = FMA(T3Y, T4D, T3V * T4E);
- T4F = FNMS(T3Y, T4E, T3V * T4D);
- T8G = FNMS(T41, T40, T3Z * T42);
- }
- {
- E T5f, T9i, T5k, T9j, T5g, T5i;
- T5f = FNMS(Tm, T5e, Th * T5d);
- T9i = FMA(Tm, T5d, Th * T5e);
- T5g = T3T - T3U;
- T5i = T3W + T3X;
- T5k = FMA(T5g, T5h, T5i * T5j);
- T9j = FNMS(T5i, T5h, T5g * T5j);
- T5l = T5f + T5k;
- TeL = T9i + T9j;
- T9k = T9i - T9j;
- T9n = T5f - T5k;
- }
- {
- E T6i, T9O, T6n, T9P, T6j, T6l;
- T6i = FMA(T1t, T6g, T1u * T6h);
- T9O = FNMS(T1u, T6g, T1t * T6h);
- T6j = TR - TV;
- T6l = TY + TZ;
- T6n = FMA(T6j, T6k, T6l * T6m);
- T9P = FNMS(T6l, T6k, T6j * T6m);
- T6o = T6i + T6n;
- Tf2 = T9O + T9P;
- T9Q = T9O - T9P;
- T9R = T6i - T6n;
- }
- {
- E T6t, T9U, T6y, T9V;
- {
- E T6p, T6r, T6u, T6w;
- T6p = FNMS(TX, T1e, TN * T1a);
- T6r = FMA(TN, T1e, TX * T1a);
- T6t = FMA(T6p, T6q, T6r * T6s);
- T9U = FNMS(T6r, T6q, T6p * T6s);
- T6u = T5W + T5X;
- T6w = T60 - T61;
- T6y = FNMS(T6w, T6x, T6u * T6v);
- T9V = FMA(T6w, T6v, T6u * T6x);
- }
- T6z = T6t + T6y;
- Tf3 = T9U + T9V;
- T9T = T6t - T6y;
- T9W = T9U - T9V;
- }
- {
- E Ti, Tn, T4k, Tq, Tr, T4m, T4Q, T4S;
- Ti = T2 * Th;
- Tn = Tj * Tm;
- T4k = Ti - Tn;
- Tq = T2 * Tm;
- Tr = Tj * Th;
- T4m = Tq + Tr;
- To = Ti + Tn;
- Ts = Tq - Tr;
- T4o = FMA(T4k, T4l, T4m * T4n);
- T8u = FNMS(T4m, T4l, T4k * T4n);
- T4Q = FMA(TN, T4k, TX * T4m);
- T4S = FNMS(TX, T4k, TN * T4m);
- T4U = FNMS(T4S, T4T, T4Q * T4R);
- T92 = FMA(T4S, T4R, T4Q * T4T);
- }
- {
- E T50, T8W, T59, T8X;
- {
- E T4W, T4Y, T53, T57;
- T4W = FNMS(TX, T3e, TN * T3c);
- T4Y = FMA(TN, T3e, TX * T3c);
- T50 = FMA(T4W, T4X, T4Y * T4Z);
- T8W = FNMS(T4Y, T4X, T4W * T4Z);
- T53 = T51 - T52;
- T57 = T55 + T56;
- T59 = FMA(T53, T54, T57 * T58);
- T8X = FNMS(T57, T54, T53 * T58);
- }
- T5a = T50 + T59;
- TeT = T8W + T8X;
- T8V = T50 - T59;
- T8Y = T8W - T8X;
- }
- {
- E T5A, T9c, T5F, T9d;
- {
- E T5w, T5y, T5B, T5D;
- T5w = FNMS(TX, Ty, TN * Tw);
- T5y = FMA(TN, Ty, TX * Tw);
- T5A = FMA(T5w, T5x, T5y * T5z);
- T9c = FNMS(T5y, T5x, T5w * T5z);
- T5B = T51 + T52;
- T5D = T55 - T56;
- T5F = FNMS(T5D, T5E, T5B * T5C);
- T9d = FMA(T5D, T5C, T5B * T5E);
- }
- T5G = T5A + T5F;
- TeG = T9c + T9d;
- T97 = T5A - T5F;
- T9e = T9c - T9d;
- }
- {
- E T21, T2P, T25, T2R, T77, T79;
- {
- E T1Z, T20, T23, T24;
- T1Z = T2 * T1t;
- T20 = Tj * T1u;
- T21 = T1Z + T20;
- T2P = T1Z - T20;
- T23 = T2 * T1u;
- T24 = Tj * T1t;
- T25 = T23 - T24;
- T2R = T23 + T24;
- }
- T27 = FNMS(T25, T26, T21 * T22);
- T7X = FNMS(T2R, T2Q, T2P * T2S);
- T2T = FMA(T2P, T2Q, T2R * T2S);
- T7E = FMA(T25, T22, T21 * T26);
- T77 = FNMS(TX, T25, TN * T21);
- T79 = FMA(TN, T25, TX * T21);
- T7b = FMA(T77, T78, T79 * T7a);
- Tai = FNMS(T79, T78, T77 * T7a);
- }
- {
- E T6S, Ta7, T2D, Ta6, T2F, T6N;
- {
- E T6O, T6Q, T2z, T2C;
- T6O = FMA(TN, TQ, TX * TU);
- T6Q = FNMS(TX, TQ, TN * TU);
- T6S = FNMS(T6Q, T6R, T6O * T6P);
- Ta7 = FMA(T6Q, T6P, T6O * T6R);
- T2z = T2x - T2y;
- T2C = T2A + T2B;
- T2D = FMA(TN, T2z, TX * T2C);
- Ta6 = FNMS(T2C, T6L, T2z * T6M);
- T2F = FNMS(TX, T2z, TN * T2C);
- T6N = FMA(T2z, T6L, T2C * T6M);
- }
- T6T = T6N + T6S;
- Ta3 = T6N - T6S;
- Tf7 = Ta6 + Ta7;
- Ta8 = Ta6 - Ta7;
- T7Q = FMA(T2F, T2E, T2D * T2G);
- T2H = FNMS(T2F, T2G, T2D * T2E);
- }
- {
- E TA, TE, TB, TF, TJ, TI, T2a, T28, T49, T4b;
- TA = Tx + Tz;
- TE = TC - TD;
- TB = T2 * TA;
- TF = Tj * TE;
- TJ = Tj * TA;
- TI = T2 * TE;
- T2a = FMA(TN, TE, TX * TA);
- T28 = FNMS(TX, TE, TN * TA);
- T2c = FMA(T28, T29, T2a * T2b);
- T76 = FNMS(TE, T75, TA * T74);
- Tah = FMA(TE, T74, TA * T75);
- T7F = FNMS(T2a, T29, T28 * T2b);
- T49 = TB + TF;
- T4b = TI - TJ;
- T4d = FNMS(T4b, T4c, T49 * T4a);
- T8z = FMA(T4b, T4a, T49 * T4c);
- TG = TB - TF;
- TK = TI + TJ;
- T69 = FMA(TN, TG, TX * TK);
- T6b = FNMS(TX, TG, TN * TK);
- }
- {
- E T5t, T9p, T3k, T9o, T3m, T5o;
- T3b = FMA(T37, T38, T39 * T3a);
- T87 = FNMS(T39, T38, T37 * T3a);
- {
- E T5p, T5r, T3g, T3j;
- T5p = FMA(TN, T37, TX * T39);
- T5r = FNMS(TX, T37, TN * T39);
- T5t = FNMS(T5r, T5s, T5p * T5q);
- T9p = FMA(T5r, T5q, T5p * T5s);
- T3g = T3d - T3f;
- T3j = T3h + T3i;
- T3k = FMA(TN, T3g, TX * T3j);
- T9o = FNMS(T3j, T5m, T3g * T5n);
- T3m = FNMS(TX, T3g, TN * T3j);
- T5o = FMA(T3g, T5m, T3j * T5n);
- }
- T5u = T5o + T5t;
- T9l = T5o - T5t;
- TeM = T9o + T9p;
- T9q = T9o - T9p;
- T88 = FMA(T3m, T3l, T3k * T3n);
- T89 = T87 - T88;
- T3o = FNMS(T3m, T3n, T3k * T3l);
- T86 = T3b - T3o;
- }
- {
- E T5O, T99, T1i, T1n, T1o, T1k, T30, T5J, T98, T32;
- {
- E T5K, T5M, T1h, T1j;
- T5K = FNMS(TX, T2X, TN * T2V);
- T5M = FMA(TN, T2X, TX * T2V);
- T5O = FMA(T5K, T5L, T5M * T5N);
- T99 = FNMS(T5M, T5L, T5K * T5N);
- T1h = Tb - Tg;
- T1j = Tk + Tl;
- T1i = T2 * T1h;
- T1n = T2 * T1j;
- T1o = Tj * T1h;
- T1k = Tj * T1j;
- T30 = FMA(TN, T1h, TX * T1j);
- T5J = FMA(T1h, T5H, T1j * T5I);
- T98 = FNMS(T1j, T5H, T1h * T5I);
- T32 = FNMS(TX, T1h, TN * T1j);
- }
- T5P = T5J + T5O;
- T9f = T5J - T5O;
- TeH = T98 + T99;
- T9a = T98 - T99;
- T34 = FNMS(T32, T33, T30 * T31);
- T8f = FMA(T32, T31, T30 * T33);
- {
- E T1l, T1p, T3O, T3Q;
- T1l = T1i - T1k;
- T1p = T1n + T1o;
- T1r = FMA(T1l, T1m, T1p * T1q);
- T7n = FNMS(T1p, T1m, T1l * T1q);
- T3O = T1i + T1k;
- T3Q = T1n - T1o;
- T3S = FNMS(T3Q, T3R, T3O * T3P);
- T8F = FMA(T3Q, T3P, T3O * T3R);
- T4G = FNMS(TX, T3Q, TN * T3O);
- T4I = FMA(TN, T3Q, TX * T3O);
- }
- }
- }
- {
- E T5R, TgT, TgY, ThE, T9t, Tbe, T9G, Tbb, Tcl, Tdq, Tcs, Tdn, TeP, Tg4, TeY;
- E Tg1, T7e, Th4, ThJ, Th9, Tfp, Tg8, Tfg, Tgb, T2K, TgC, Tih, ThX, TfQ, TiL;
- E Tea, Tiv, Tam, Tbl, TcL, Tdu, Taz, Tbi, TcE, Tdx, T7U, Tjv, Tdc, Tjh, Tb0;
- E TjL, TbU, TiZ, T8D, Tb5, Tc8, Tdi, T8M, Tb6, Tc5, Tdh, T4r, Thz, Tex, Tfz;
- E TfX, Tgl, TgN, Thj, T8m, TaI, Tdg, TdG, Tb4, Tbu, Tc2, TcU, T3C, Thy, Tem;
- E Tfy, TfU, Tgk, TgI, Thi, T6B, Th1, Tfm, Tga, Th8, ThI, T9Z, Tbh, Taw, Tbk;
- E TcI, Tdw, Tf5, Tg7, Tcx, Tdt, T5c, TgV, TeV, Tg0, TgS, ThD, TeE, Tg3, T96;
- E Tbd, Tce, Tdp, Tcp, Tdm, T9D, Tba, T1L, Tgz, Ti4, Tii, Tiy, TiM, TdZ, TfN;
- E T7x, TaX, Tj4, Tji, Tjy, TjM, TbN, Td9;
- {
- E T5v, T5Q, TgW, TgX;
- T5v = T5l + T5u;
- T5Q = T5G + T5P;
- T5R = T5v + T5Q;
- TgT = T5Q - T5v;
- TgW = TeL + TeM;
- TgX = TeG + TeH;
- TgY = TgW - TgX;
- ThE = TgW + TgX;
- }
- {
- E T9h, T9F, T9s, T9E;
- {
- E T9b, T9g, T9m, T9r;
- T9b = T97 - T9a;
- T9g = T9e + T9f;
- T9h = FNMS(KP923879532, T9g, KP382683432 * T9b);
- T9F = FMA(KP382683432, T9g, KP923879532 * T9b);
- T9m = T9k + T9l;
- T9r = T9n - T9q;
- T9s = FMA(KP923879532, T9m, KP382683432 * T9r);
- T9E = FNMS(KP923879532, T9r, KP382683432 * T9m);
- }
- T9t = T9h - T9s;
- Tbe = T9E + T9F;
- T9G = T9E - T9F;
- Tbb = T9s + T9h;
- }
- {
- E Tch, Tcr, Tck, Tcq;
- {
- E Tcf, Tcg, Tci, Tcj;
- Tcf = T97 + T9a;
- Tcg = T9e - T9f;
- Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf);
- Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf);
- Tci = T9k - T9l;
- Tcj = T9n + T9q;
- Tck = FMA(KP382683432, Tci, KP923879532 * Tcj);
- Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci);
- }
- Tcl = Tch - Tck;
- Tdq = Tcq + Tcr;
- Tcs = Tcq - Tcr;
- Tdn = Tck + Tch;
- }
- {
- E TeJ, TeX, TeO, TeW;
- {
- E TeF, TeI, TeK, TeN;
- TeF = T5G - T5P;
- TeI = TeG - TeH;
- TeJ = TeF - TeI;
- TeX = TeF + TeI;
- TeK = T5l - T5u;
- TeN = TeL - TeM;
- TeO = TeK + TeN;
- TeW = TeN - TeK;
- }
- TeP = KP707106781 * (TeJ - TeO);
- Tg4 = KP707106781 * (TeW + TeX);
- TeY = KP707106781 * (TeW - TeX);
- Tg1 = KP707106781 * (TeO + TeJ);
- }
- {
- E T6U, Th2, T7d, Tfb, Tfe, Th3, Tfa, Tfo, Tfn, Tff;
- T6U = T6K + T6T;
- Th2 = Tf6 + Tf7;
- {
- E T7c, Tfd, Tf8, Tf9;
- T7c = T76 + T7b;
- T7d = T73 + T7c;
- Tfb = T73 - T7c;
- Tfd = Tah + Tai;
- Tfe = Tfc - Tfd;
- Th3 = Tfc + Tfd;
- Tf8 = Tf6 - Tf7;
- Tf9 = T6K - T6T;
- Tfa = Tf8 - Tf9;
- Tfo = Tf9 + Tf8;
- }
- T7e = T6U + T7d;
- Th4 = Th2 - Th3;
- ThJ = Th2 + Th3;
- Th9 = T7d - T6U;
- Tfn = Tfb - Tfe;
- Tfp = KP707106781 * (Tfn - Tfo);
- Tg8 = KP707106781 * (Tfo + Tfn);
- Tff = Tfb + Tfe;
- Tfg = KP707106781 * (Tfa - Tff);
- Tgb = KP707106781 * (Tfa + Tff);
- }
- {
- E T2e, Te3, Te8, TgB, T2J, Te5, Te2, TgA;
- {
- E T2d, Te7, T2I, Te1;
- T2d = T27 + T2c;
- T2e = T1Y + T2d;
- Te3 = T1Y - T2d;
- Te7 = T7P + T7Q;
- Te8 = Te6 - Te7;
- TgB = Te6 + Te7;
- T2I = T2w + T2H;
- T2J = T2t + T2I;
- Te5 = T2t - T2I;
- Te1 = T7E + T7F;
- Te2 = Te0 - Te1;
- TgA = Te0 + Te1;
- }
- T2K = T2e + T2J;
- TgC = TgA - TgB;
- Tih = T2J - T2e;
- ThX = TgA + TgB;
- {
- E TfO, TfP, Te4, Te9;
- TfO = Te3 + Te2;
- TfP = Te5 - Te8;
- TfQ = KP707106781 * (TfO + TfP);
- TiL = KP707106781 * (TfP - TfO);
- Te4 = Te2 - Te3;
- Te9 = Te5 + Te8;
- Tea = KP707106781 * (Te4 - Te9);
- Tiv = KP707106781 * (Te4 + Te9);
- }
- }
- {
- E Taf, TcB, Tak, TcC, Taa, Tay, TcA, TcK, Tae, Taj;
- Tae = T76 - T7b;
- Taf = Tad + Tae;
- TcB = Tad - Tae;
- Taj = Tah - Tai;
- Tak = Tag - Taj;
- TcC = Tag + Taj;
- {
- E Ta4, Ta9, Tcy, Tcz;
- Ta4 = Ta2 + Ta3;
- Ta9 = Ta5 - Ta8;
- Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4);
- Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9);
- Tcy = Ta2 - Ta3;
- Tcz = Ta5 + Ta8;
- TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy);
- TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz);
- }
- {
- E Tal, TcJ, Tax, TcD;
- Tal = FMA(KP382683432, Taf, KP923879532 * Tak);
- Tam = Taa - Tal;
- Tbl = Taa + Tal;
- TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC);
- TcL = TcJ - TcK;
- Tdu = TcK + TcJ;
- Tax = FNMS(KP923879532, Taf, KP382683432 * Tak);
- Taz = Tax - Tay;
- Tbi = Tay + Tax;
- TcD = FMA(KP923879532, TcB, KP382683432 * TcC);
- TcE = TcA - TcD;
- Tdx = TcA + TcD;
- }
- }
- {
- E T7C, TbO, T7S, TbS, T7H, TbP, T7N, TbR;
- {
- E T7B, T7R, T7G, T7M;
- T7B = T27 - T2c;
- T7C = T7A + T7B;
- TbO = T7A - T7B;
- T7R = T7P - T7Q;
- T7S = T7O - T7R;
- TbS = T7O + T7R;
- T7G = T7E - T7F;
- T7H = T7D - T7G;
- TbP = T7D + T7G;
- T7M = T2w - T2H;
- T7N = T7L + T7M;
- TbR = T7L - T7M;
- }
- {
- E T7I, T7T, Tda, Tdb;
- T7I = FNMS(KP923879532, T7H, KP382683432 * T7C);
- T7T = FMA(KP382683432, T7N, KP923879532 * T7S);
- T7U = T7I - T7T;
- Tjv = T7I + T7T;
- Tda = FMA(KP382683432, TbO, KP923879532 * TbP);
- Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS);
- Tdc = Tda + Tdb;
- Tjh = Tdb - Tda;
- }
- {
- E TaY, TaZ, TbQ, TbT;
- TaY = FMA(KP923879532, T7C, KP382683432 * T7H);
- TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S);
- Tb0 = TaY + TaZ;
- TjL = TaZ - TaY;
- TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO);
- TbT = FMA(KP923879532, TbR, KP382683432 * TbS);
- TbU = TbQ - TbT;
- TiZ = TbQ + TbT;
- }
- }
- {
- E T8r, Tc6, T8I, Tc3, T8w, T8K, T8B, T8J, T8q, T8H;
- T8q = T3S - T43;
- T8r = T8p + T8q;
- Tc6 = T8p - T8q;
- T8H = T8F - T8G;
- T8I = T8E - T8H;
- Tc3 = T8E + T8H;
- {
- E T8s, T8v, T8x, T8A;
- T8s = T4j - T4o;
- T8v = T8t - T8u;
- T8w = T8s - T8v;
- T8K = T8s + T8v;
- T8x = T48 - T4d;
- T8A = T8y - T8z;
- T8B = T8x + T8A;
- T8J = T8A - T8x;
- }
- {
- E T8C, Tc7, T8L, Tc4;
- T8C = KP707106781 * (T8w - T8B);
- T8D = T8r - T8C;
- Tb5 = T8r + T8C;
- Tc7 = KP707106781 * (T8J + T8K);
- Tc8 = Tc6 - Tc7;
- Tdi = Tc6 + Tc7;
- T8L = KP707106781 * (T8J - T8K);
- T8M = T8I - T8L;
- Tb6 = T8I + T8L;
- Tc4 = KP707106781 * (T8B + T8w);
- Tc5 = Tc3 - Tc4;
- Tdh = Tc3 + Tc4;
- }
- }
- {
- E T45, Tes, Tep, TgK, T4q, Teq, Tev, TgL, T44, Teo, Ter, Tew;
- T44 = T3S + T43;
- T45 = T3N + T44;
- Tes = T3N - T44;
- Teo = T8F + T8G;
- Tep = Ten - Teo;
- TgK = Ten + Teo;
- {
- E T4e, T4p, Tet, Teu;
- T4e = T48 + T4d;
- T4p = T4j + T4o;
- T4q = T4e + T4p;
- Teq = T4p - T4e;
- Tet = T8y + T8z;
- Teu = T8t + T8u;
- Tev = Tet - Teu;
- TgL = Tet + Teu;
- }
- T4r = T45 + T4q;
- Thz = TgK + TgL;
- Ter = Tep - Teq;
- Tew = Tes - Tev;
- Tex = FMA(KP382683432, Ter, KP923879532 * Tew);
- Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew);
- {
- E TfV, TfW, TgJ, TgM;
- TfV = Tep + Teq;
- TfW = Tes + Tev;
- TfX = FMA(KP923879532, TfV, KP382683432 * TfW);
- Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW);
- TgJ = T45 - T4q;
- TgM = TgK - TgL;
- TgN = TgJ + TgM;
- Thj = TgJ - TgM;
- }
- }
- {
- E T80, TbW, T8k, TbX, T8b, Tc0, T8h, TbZ;
- {
- E T7Y, T7Z, T8i, T8j;
- T7Y = T7W - T7X;
- T7Z = T2Z - T34;
- T80 = T7Y + T7Z;
- TbW = T7Y - T7Z;
- T8i = T89 - T86;
- T8j = T81 + T84;
- T8k = KP707106781 * (T8i - T8j);
- TbX = KP707106781 * (T8i + T8j);
- }
- {
- E T85, T8a, T8d, T8g;
- T85 = T81 - T84;
- T8a = T86 + T89;
- T8b = KP707106781 * (T85 - T8a);
- Tc0 = KP707106781 * (T8a + T85);
- T8d = T2O - T2T;
- T8g = T8e - T8f;
- T8h = T8d - T8g;
- TbZ = T8d + T8g;
- }
- {
- E T8c, T8l, Tde, Tdf;
- T8c = T80 - T8b;
- T8l = T8h - T8k;
- T8m = FNMS(KP980785280, T8l, KP195090322 * T8c);
- TaI = FMA(KP980785280, T8c, KP195090322 * T8l);
- Tde = TbW + TbX;
- Tdf = TbZ + Tc0;
- Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde);
- TdG = FMA(KP980785280, Tdf, KP195090322 * Tde);
- }
- {
- E Tb2, Tb3, TbY, Tc1;
- Tb2 = T80 + T8b;
- Tb3 = T8h + T8k;
- Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2);
- Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3);
- TbY = TbW - TbX;
- Tc1 = TbZ - Tc0;
- Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY);
- TcU = FMA(KP555570233, Tc1, KP831469612 * TbY);
- }
- }
- {
- E T36, Teh, Tek, TgF, T3B, Tef, Tee, TgE, Teg, Tel;
- {
- E T2U, T35, Tei, Tej;
- T2U = T2O + T2T;
- T35 = T2Z + T34;
- T36 = T2U + T35;
- Teh = T2U - T35;
- Tei = T87 + T88;
- Tej = T82 + T83;
- Tek = Tei - Tej;
- TgF = Tei + Tej;
- }
- {
- E T3p, T3A, Tec, Ted;
- T3p = T3b + T3o;
- T3A = T3u + T3z;
- T3B = T3p + T3A;
- Tef = T3A - T3p;
- Tec = T7W + T7X;
- Ted = T8e + T8f;
- Tee = Tec - Ted;
- TgE = Tec + Ted;
- }
- T3C = T36 + T3B;
- Thy = TgE + TgF;
- Teg = Tee - Tef;
- Tel = Teh - Tek;
- Tem = FNMS(KP923879532, Tel, KP382683432 * Teg);
- Tfy = FMA(KP923879532, Teg, KP382683432 * Tel);
- {
- E TfS, TfT, TgG, TgH;
- TfS = Tee + Tef;
- TfT = Teh + Tek;
- TfU = FNMS(KP382683432, TfT, KP923879532 * TfS);
- Tgk = FMA(KP382683432, TfS, KP923879532 * TfT);
- TgG = TgE - TgF;
- TgH = T36 - T3B;
- TgI = TgG - TgH;
- Thi = TgH + TgG;
- }
- }
- {
- E T6A, Tfl, Th7, Tf4, T6e, Tar, T9Y, TcH, Tav, Tcw, T9M, Tfj;
- T6A = T6o + T6z;
- Tfl = T6z - T6o;
- Th7 = Tf2 + Tf3;
- Tf4 = Tf2 - Tf3;
- {
- E T6d, T9S, T9X, Tat, Tau, T9L;
- T6d = FNMS(T6b, T6c, T69 * T6a);
- T6e = T68 + T6d;
- Tar = T68 - T6d;
- T9S = T9Q - T9R;
- T9X = T9T + T9W;
- T9Y = KP707106781 * (T9S - T9X);
- TcH = KP707106781 * (T9S + T9X);
- Tat = T9T - T9W;
- Tau = T9R + T9Q;
- Tav = KP707106781 * (Tat - Tau);
- Tcw = KP707106781 * (Tau + Tat);
- T9L = FMA(T6b, T6a, T69 * T6c);
- T9M = T9K - T9L;
- Tfj = T9K + T9L;
- }
- {
- E T6f, Tfk, Th6, T9N;
- T6f = T65 + T6e;
- T6B = T6f + T6A;
- Th1 = T6f - T6A;
- Tfk = Tfi - Tfj;
- Tfm = Tfk - Tfl;
- Tga = Tfk + Tfl;
- Th6 = Tfi + Tfj;
- Th8 = Th6 - Th7;
- ThI = Th6 + Th7;
- T9N = T9J - T9M;
- T9Z = T9N - T9Y;
- Tbh = T9N + T9Y;
- }
- {
- E Tas, TcG, Tf1, Tcv;
- Tas = Taq + Tar;
- Taw = Tas - Tav;
- Tbk = Tas + Tav;
- TcG = Taq - Tar;
- TcI = TcG - TcH;
- Tdw = TcG + TcH;
- Tf1 = T65 - T6e;
- Tf5 = Tf1 - Tf4;
- Tg7 = Tf1 + Tf4;
- Tcv = T9J + T9M;
- Tcx = Tcv - Tcw;
- Tdt = Tcv + Tcw;
- }
- }
- {
- E T8Z, T9B, T5b, TeD, TeU, TgR, T94, T9A, T4L, T8T, T9y, TeB, T4V;
- T8Z = T8V - T8Y;
- T9B = T8V + T8Y;
- T4V = T4P + T4U;
- T5b = T4V + T5a;
- TeD = T5a - T4V;
- {
- E TeS, T90, T93, T4K, T9x;
- TeS = T91 + T92;
- TeU = TeS - TeT;
- TgR = TeS + TeT;
- T90 = T4P - T4U;
- T93 = T91 - T92;
- T94 = T90 + T93;
- T9A = T93 - T90;
- T4K = FMA(T4G, T4H, T4I * T4J);
- T4L = T4F + T4K;
- T8T = T4F - T4K;
- T9x = FNMS(T4I, T4H, T4G * T4J);
- T9y = T9w - T9x;
- TeB = T9w + T9x;
- }
- {
- E T4M, TeR, TgQ, TeC;
- T4M = T4C + T4L;
- T5c = T4M + T5b;
- TgV = T4M - T5b;
- TeR = T4C - T4L;
- TeV = TeR - TeU;
- Tg0 = TeR + TeU;
- TgQ = TeA + TeB;
- TgS = TgQ - TgR;
- ThD = TgQ + TgR;
- TeC = TeA - TeB;
- TeE = TeC - TeD;
- Tg3 = TeC + TeD;
- }
- {
- E T8U, T95, Tcc, Tcd;
- T8U = T8S + T8T;
- T95 = KP707106781 * (T8Z - T94);
- T96 = T8U - T95;
- Tbd = T8U + T95;
- Tcc = T8S - T8T;
- Tcd = KP707106781 * (T9A + T9B);
- Tce = Tcc - Tcd;
- Tdp = Tcc + Tcd;
- }
- {
- E Tcn, Tco, T9z, T9C;
- Tcn = T9v + T9y;
- Tco = KP707106781 * (T94 + T8Z);
- Tcp = Tcn - Tco;
- Tdm = Tcn + Tco;
- T9z = T9v - T9y;
- T9C = KP707106781 * (T9A - T9B);
- T9D = T9z - T9C;
- Tba = T9z + T9C;
- }
- }
- {
- E Tv, T7h, TdY, ThY, Ti2, Tj1, T16, Tj2, T1K, Tiw, T7q, TbK, T7v, TbL, T7k;
- E ThZ, T7r, T7u, T7i;
- {
- E Tu, TdW, TdX, Ti0, TM;
- Tu = FNMS(Ts, Tt, To * Tp);
- Tv = T1 + Tu;
- T7h = T1 - Tu;
- TdW = T7m + T7n;
- TdX = T7s + T7t;
- TdY = TdW - TdX;
- ThY = TdW + TdX;
- Ti0 = FMA(Ts, Tp, To * Tt);
- Ti2 = Ti0 + Ti1;
- Tj1 = Ti1 - Ti0;
- TM = FMA(TG, TH, TK * TL);
- T16 = TM + T15;
- Tj2 = TM - T15;
- }
- {
- E T1s, T1J, T7o, T7p;
- T1s = T1g + T1r;
- T1J = T1z + T1I;
- T1K = T1s + T1J;
- Tiw = T1J - T1s;
- T7o = T7m - T7n;
- T7p = T1g - T1r;
- T7q = T7o - T7p;
- TbK = T7p + T7o;
- }
- T7r = T1z - T1I;
- T7u = T7s - T7t;
- T7v = T7r + T7u;
- TbL = T7r - T7u;
- T7i = FNMS(TK, TH, TG * TL);
- T7k = T7i - T7j;
- ThZ = T7i + T7j;
- {
- E T17, Ti3, Tix, TdV;
- T17 = Tv + T16;
- T1L = T17 + T1K;
- Tgz = T17 - T1K;
- Ti3 = ThZ + Ti2;
- Ti4 = ThY + Ti3;
- Tii = Ti3 - ThY;
- Tix = Ti2 - ThZ;
- Tiy = Tiw + Tix;
- TiM = Tix - Tiw;
- TdV = Tv - T16;
- TdZ = TdV - TdY;
- TfN = TdV + TdY;
- }
- {
- E T7l, T7w, Tj0, Tj3;
- T7l = T7h - T7k;
- T7w = KP707106781 * (T7q - T7v);
- T7x = T7l - T7w;
- TaX = T7l + T7w;
- Tj0 = KP707106781 * (T7q + T7v);
- Tj3 = Tj1 - Tj2;
- Tj4 = Tj0 + Tj3;
- Tji = Tj3 - Tj0;
- }
- {
- E Tjw, Tjx, TbJ, TbM;
- Tjw = KP707106781 * (TbL - TbK);
- Tjx = Tj2 + Tj1;
- Tjy = Tjw + Tjx;
- TjM = Tjx - Tjw;
- TbJ = T7h + T7k;
- TbM = KP707106781 * (TbK + TbL);
- TbN = TbJ - TbM;
- Td9 = TbJ + TbM;
- }
- }
- {
- E T4t, ThR, Ti6, Ti8, T7g, Ti7, ThU, ThV;
- {
- E T2L, T4s, ThW, Ti5;
- T2L = T1L + T2K;
- T4s = T3C + T4r;
- T4t = T2L + T4s;
- ThR = T2L - T4s;
- ThW = Thy + Thz;
- Ti5 = ThX + Ti4;
- Ti6 = ThW + Ti5;
- Ti8 = Ti5 - ThW;
- }
- {
- E T5S, T7f, ThS, ThT;
- T5S = T5c + T5R;
- T7f = T6B + T7e;
- T7g = T5S + T7f;
- Ti7 = T7f - T5S;
- ThS = ThD + ThE;
- ThT = ThI + ThJ;
- ThU = ThS - ThT;
- ThV = ThS + ThT;
- }
- ri[WS(ios, 32)] = T4t - T7g;
- ii[WS(ios, 32)] = Ti6 - ThV;
- ri[0] = T4t + T7g;
- ii[0] = ThV + Ti6;
- ri[WS(ios, 48)] = ThR - ThU;
- ii[WS(ios, 48)] = Ti8 - Ti7;
- ri[WS(ios, 16)] = ThR + ThU;
- ii[WS(ios, 16)] = Ti7 + Ti8;
- }
- {
- E ThB, ThN, Tic, Tie, ThG, ThO, ThL, ThP;
- {
- E Thx, ThA, Tia, Tib;
- Thx = T1L - T2K;
- ThA = Thy - Thz;
- ThB = Thx + ThA;
- ThN = Thx - ThA;
- Tia = T4r - T3C;
- Tib = Ti4 - ThX;
- Tic = Tia + Tib;
- Tie = Tib - Tia;
- }
- {
- E ThC, ThF, ThH, ThK;
- ThC = T5c - T5R;
- ThF = ThD - ThE;
- ThG = ThC + ThF;
- ThO = ThF - ThC;
- ThH = T6B - T7e;
- ThK = ThI - ThJ;
- ThL = ThH - ThK;
- ThP = ThH + ThK;
- }
- {
- E ThM, Ti9, ThQ, Tid;
- ThM = KP707106781 * (ThG + ThL);
- ri[WS(ios, 40)] = ThB - ThM;
- ri[WS(ios, 8)] = ThB + ThM;
- Ti9 = KP707106781 * (ThO + ThP);
- ii[WS(ios, 8)] = Ti9 + Tic;
- ii[WS(ios, 40)] = Tic - Ti9;
- ThQ = KP707106781 * (ThO - ThP);
- ri[WS(ios, 56)] = ThN - ThQ;
- ri[WS(ios, 24)] = ThN + ThQ;
- Tid = KP707106781 * (ThL - ThG);
- ii[WS(ios, 24)] = Tid + Tie;
- ii[WS(ios, 56)] = Tie - Tid;
- }
- }
- {
- E TgP, Thd, Tiq, Tis, Th0, The, Thb, Thf;
- {
- E TgD, TgO, Tio, Tip;
- TgD = Tgz - TgC;
- TgO = KP707106781 * (TgI - TgN);
- TgP = TgD + TgO;
- Thd = TgD - TgO;
- Tio = KP707106781 * (Thj - Thi);
- Tip = Tii - Tih;
- Tiq = Tio + Tip;
- Tis = Tip - Tio;
- }
- {
- E TgU, TgZ, Th5, Tha;
- TgU = TgS - TgT;
- TgZ = TgV - TgY;
- Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ);
- The = FNMS(KP923879532, TgZ, KP382683432 * TgU);
- Th5 = Th1 - Th4;
- Tha = Th8 - Th9;
- Thb = FNMS(KP923879532, Tha, KP382683432 * Th5);
- Thf = FMA(KP382683432, Tha, KP923879532 * Th5);
- }
- {
- E Thc, Tin, Thg, Tir;
- Thc = Th0 + Thb;
- ri[WS(ios, 44)] = TgP - Thc;
- ri[WS(ios, 12)] = TgP + Thc;
- Tin = The + Thf;
- ii[WS(ios, 12)] = Tin + Tiq;
- ii[WS(ios, 44)] = Tiq - Tin;
- Thg = The - Thf;
- ri[WS(ios, 60)] = Thd - Thg;
- ri[WS(ios, 28)] = Thd + Thg;
- Tir = Thb - Th0;
- ii[WS(ios, 28)] = Tir + Tis;
- ii[WS(ios, 60)] = Tis - Tir;
- }
- }
- {
- E TfB, TfJ, TiO, TiQ, TfE, TfK, TfH, TfL;
- {
- E Tfx, TfA, TiK, TiN;
- Tfx = TdZ + Tea;
- TfA = Tfy + Tfz;
- TfB = Tfx + TfA;
- TfJ = Tfx - TfA;
- TiK = Tem + Tex;
- TiN = TiL + TiM;
- TiO = TiK + TiN;
- TiQ = TiN - TiK;
- }
- {
- E TfC, TfD, TfF, TfG;
- TfC = TeE + TeP;
- TfD = TeV + TeY;
- TfE = FMA(KP555570233, TfC, KP831469612 * TfD);
- TfK = FNMS(KP555570233, TfD, KP831469612 * TfC);
- TfF = Tf5 + Tfg;
- TfG = Tfm + Tfp;
- TfH = FNMS(KP555570233, TfG, KP831469612 * TfF);
- TfL = FMA(KP831469612, TfG, KP555570233 * TfF);
- }
- {
- E TfI, TiJ, TfM, TiP;
- TfI = TfE + TfH;
- ri[WS(ios, 38)] = TfB - TfI;
- ri[WS(ios, 6)] = TfB + TfI;
- TiJ = TfK + TfL;
- ii[WS(ios, 6)] = TiJ + TiO;
- ii[WS(ios, 38)] = TiO - TiJ;
- TfM = TfK - TfL;
- ri[WS(ios, 54)] = TfJ - TfM;
- ri[WS(ios, 22)] = TfJ + TfM;
- TiP = TfH - TfE;
- ii[WS(ios, 22)] = TiP + TiQ;
- ii[WS(ios, 54)] = TiQ - TiP;
- }
- }
- {
- E Thl, Tht, Tik, Tim, Tho, Thu, Thr, Thv;
- {
- E Thh, Thk, Tig, Tij;
- Thh = Tgz + TgC;
- Thk = KP707106781 * (Thi + Thj);
- Thl = Thh + Thk;
- Tht = Thh - Thk;
- Tig = KP707106781 * (TgI + TgN);
- Tij = Tih + Tii;
- Tik = Tig + Tij;
- Tim = Tij - Tig;
- }
- {
- E Thm, Thn, Thp, Thq;
- Thm = TgS + TgT;
- Thn = TgV + TgY;
- Tho = FMA(KP382683432, Thm, KP923879532 * Thn);
- Thu = FNMS(KP382683432, Thn, KP923879532 * Thm);
- Thp = Th1 + Th4;
- Thq = Th8 + Th9;
- Thr = FNMS(KP382683432, Thq, KP923879532 * Thp);
- Thv = FMA(KP923879532, Thq, KP382683432 * Thp);
- }
- {
- E Ths, Tif, Thw, Til;
- Ths = Tho + Thr;
- ri[WS(ios, 36)] = Thl - Ths;
- ri[WS(ios, 4)] = Thl + Ths;
- Tif = Thu + Thv;
- ii[WS(ios, 4)] = Tif + Tik;
- ii[WS(ios, 36)] = Tik - Tif;
- Thw = Thu - Thv;
- ri[WS(ios, 52)] = Tht - Thw;
- ri[WS(ios, 20)] = Tht + Thw;
- Til = Thr - Tho;
- ii[WS(ios, 20)] = Til + Tim;
- ii[WS(ios, 52)] = Tim - Til;
- }
- }
- {
- E Tez, Tft, TiU, TiW, Tf0, Tfu, Tfr, Tfv;
- {
- E Teb, Tey, TiS, TiT;
- Teb = TdZ - Tea;
- Tey = Tem - Tex;
- Tez = Teb + Tey;
- Tft = Teb - Tey;
- TiS = Tfz - Tfy;
- TiT = TiM - TiL;
- TiU = TiS + TiT;
- TiW = TiT - TiS;
- }
- {
- E TeQ, TeZ, Tfh, Tfq;
- TeQ = TeE - TeP;
- TeZ = TeV - TeY;
- Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ);
- Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ);
- Tfh = Tf5 - Tfg;
- Tfq = Tfm - Tfp;
- Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh);
- Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh);
- }
- {
- E Tfs, TiR, Tfw, TiV;
- Tfs = Tf0 + Tfr;
- ri[WS(ios, 46)] = Tez - Tfs;
- ri[WS(ios, 14)] = Tez + Tfs;
- TiR = Tfu + Tfv;
- ii[WS(ios, 14)] = TiR + TiU;
- ii[WS(ios, 46)] = TiU - TiR;
- Tfw = Tfu - Tfv;
- ri[WS(ios, 62)] = Tft - Tfw;
- ri[WS(ios, 30)] = Tft + Tfw;
- TiV = Tfr - Tf0;
- ii[WS(ios, 30)] = TiV + TiW;
- ii[WS(ios, 62)] = TiW - TiV;
- }
- }
- {
- E TfZ, Tgf, TiG, TiI, Tg6, Tgg, Tgd, Tgh;
- {
- E TfR, TfY, TiE, TiF;
- TfR = TfN - TfQ;
- TfY = TfU - TfX;
- TfZ = TfR + TfY;
- Tgf = TfR - TfY;
- TiE = Tgl - Tgk;
- TiF = Tiy - Tiv;
- TiG = TiE + TiF;
- TiI = TiF - TiE;
- }
- {
- E Tg2, Tg5, Tg9, Tgc;
- Tg2 = Tg0 - Tg1;
- Tg5 = Tg3 - Tg4;
- Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5);
- Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5);
- Tg9 = Tg7 - Tg8;
- Tgc = Tga - Tgb;
- Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9);
- Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc);
- }
- {
- E Tge, TiD, Tgi, TiH;
- Tge = Tg6 + Tgd;
- ri[WS(ios, 42)] = TfZ - Tge;
- ri[WS(ios, 10)] = TfZ + Tge;
- TiD = Tgg + Tgh;
- ii[WS(ios, 10)] = TiD + TiG;
- ii[WS(ios, 42)] = TiG - TiD;
- Tgi = Tgg - Tgh;
- ri[WS(ios, 58)] = Tgf - Tgi;
- ri[WS(ios, 26)] = Tgf + Tgi;
- TiH = Tgd - Tg6;
- ii[WS(ios, 26)] = TiH + TiI;
- ii[WS(ios, 58)] = TiI - TiH;
- }
- }
- {
- E Tgn, Tgv, TiA, TiC, Tgq, Tgw, Tgt, Tgx;
- {
- E Tgj, Tgm, Tiu, Tiz;
- Tgj = TfN + TfQ;
- Tgm = Tgk + Tgl;
- Tgn = Tgj + Tgm;
- Tgv = Tgj - Tgm;
- Tiu = TfU + TfX;
- Tiz = Tiv + Tiy;
- TiA = Tiu + Tiz;
- TiC = Tiz - Tiu;
- }
- {
- E Tgo, Tgp, Tgr, Tgs;
- Tgo = Tg0 + Tg1;
- Tgp = Tg3 + Tg4;
- Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp);
- Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp);
- Tgr = Tg7 + Tg8;
- Tgs = Tga + Tgb;
- Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr);
- Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs);
- }
- {
- E Tgu, Tit, Tgy, TiB;
- Tgu = Tgq + Tgt;
- ri[WS(ios, 34)] = Tgn - Tgu;
- ri[WS(ios, 2)] = Tgn + Tgu;
- Tit = Tgw + Tgx;
- ii[WS(ios, 2)] = Tit + TiA;
- ii[WS(ios, 34)] = TiA - Tit;
- Tgy = Tgw - Tgx;
- ri[WS(ios, 50)] = Tgv - Tgy;
- ri[WS(ios, 18)] = Tgv + Tgy;
- TiB = Tgt - Tgq;
- ii[WS(ios, 18)] = TiB + TiC;
- ii[WS(ios, 50)] = TiC - TiB;
- }
- }
- {
- E T7V, TjN, TjT, TaH, T8O, TjK, TaK, TjS, TaO, TaU, T9I, TaE, TaR, TaV, TaB;
- E TaF, T8N;
- T7V = T7x - T7U;
- TjN = TjL + TjM;
- TjT = TjM - TjL;
- TaH = T7x + T7U;
- T8N = FMA(KP195090322, T8D, KP980785280 * T8M);
- T8O = T8m - T8N;
- TjK = T8m + T8N;
- {
- E TaJ, TaM, TaN, T9u, T9H;
- TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M);
- TaK = TaI + TaJ;
- TjS = TaJ - TaI;
- TaM = T96 + T9t;
- TaN = T9D + T9G;
- TaO = FMA(KP634393284, TaM, KP773010453 * TaN);
- TaU = FNMS(KP634393284, TaN, KP773010453 * TaM);
- T9u = T96 - T9t;
- T9H = T9D - T9G;
- T9I = FMA(KP995184726, T9u, KP098017140 * T9H);
- TaE = FNMS(KP995184726, T9H, KP098017140 * T9u);
- {
- E TaP, TaQ, Tan, TaA;
- TaP = T9Z + Tam;
- TaQ = Taw + Taz;
- TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP);
- TaV = FMA(KP773010453, TaQ, KP634393284 * TaP);
- Tan = T9Z - Tam;
- TaA = Taw - Taz;
- TaB = FNMS(KP995184726, TaA, KP098017140 * Tan);
- TaF = FMA(KP098017140, TaA, KP995184726 * Tan);
- }
- }
- {
- E T8P, TaC, TjR, TjU;
- T8P = T7V + T8O;
- TaC = T9I + TaB;
- ri[WS(ios, 47)] = T8P - TaC;
- ri[WS(ios, 15)] = T8P + TaC;
- TjR = TaE + TaF;
- TjU = TjS + TjT;
- ii[WS(ios, 15)] = TjR + TjU;
- ii[WS(ios, 47)] = TjU - TjR;
- }
- {
- E TaD, TaG, TjV, TjW;
- TaD = T7V - T8O;
- TaG = TaE - TaF;
- ri[WS(ios, 63)] = TaD - TaG;
- ri[WS(ios, 31)] = TaD + TaG;
- TjV = TaB - T9I;
- TjW = TjT - TjS;
- ii[WS(ios, 31)] = TjV + TjW;
- ii[WS(ios, 63)] = TjW - TjV;
- }
- {
- E TaL, TaS, TjJ, TjO;
- TaL = TaH + TaK;
- TaS = TaO + TaR;
- ri[WS(ios, 39)] = TaL - TaS;
- ri[WS(ios, 7)] = TaL + TaS;
- TjJ = TaU + TaV;
- TjO = TjK + TjN;
- ii[WS(ios, 7)] = TjJ + TjO;
- ii[WS(ios, 39)] = TjO - TjJ;
- }
- {
- E TaT, TaW, TjP, TjQ;
- TaT = TaH - TaK;
- TaW = TaU - TaV;
- ri[WS(ios, 55)] = TaT - TaW;
- ri[WS(ios, 23)] = TaT + TaW;
- TjP = TaR - TaO;
- TjQ = TjN - TjK;
- ii[WS(ios, 23)] = TjP + TjQ;
- ii[WS(ios, 55)] = TjQ - TjP;
- }
- }
- {
- E TbV, Tjj, Tjp, TcT, Tca, Tjg, TcW, Tjo, Td0, Td6, Tcu, TcQ, Td3, Td7, TcN;
- E TcR, Tc9;
- TbV = TbN - TbU;
- Tjj = Tjh + Tji;
- Tjp = Tji - Tjh;
- TcT = TbN + TbU;
- Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8);
- Tca = Tc2 - Tc9;
- Tjg = Tc2 + Tc9;
- {
- E TcV, TcY, TcZ, Tcm, Tct;
- TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5);
- TcW = TcU + TcV;
- Tjo = TcV - TcU;
- TcY = Tce + Tcl;
- TcZ = Tcp + Tcs;
- Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ);
- Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY);
- Tcm = Tce - Tcl;
- Tct = Tcp - Tcs;
- Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct);
- TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm);
- {
- E Td1, Td2, TcF, TcM;
- Td1 = Tcx + TcE;
- Td2 = TcI + TcL;
- Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1);
- Td7 = FMA(KP881921264, Td2, KP471396736 * Td1);
- TcF = Tcx - TcE;
- TcM = TcI - TcL;
- TcN = FNMS(KP956940335, TcM, KP290284677 * TcF);
- TcR = FMA(KP290284677, TcM, KP956940335 * TcF);
- }
- }
- {
- E Tcb, TcO, Tjn, Tjq;
- Tcb = TbV + Tca;
- TcO = Tcu + TcN;
- ri[WS(ios, 45)] = Tcb - TcO;
- ri[WS(ios, 13)] = Tcb + TcO;
- Tjn = TcQ + TcR;
- Tjq = Tjo + Tjp;
- ii[WS(ios, 13)] = Tjn + Tjq;
- ii[WS(ios, 45)] = Tjq - Tjn;
- }
- {
- E TcP, TcS, Tjr, Tjs;
- TcP = TbV - Tca;
- TcS = TcQ - TcR;
- ri[WS(ios, 61)] = TcP - TcS;
- ri[WS(ios, 29)] = TcP + TcS;
- Tjr = TcN - Tcu;
- Tjs = Tjp - Tjo;
- ii[WS(ios, 29)] = Tjr + Tjs;
- ii[WS(ios, 61)] = Tjs - Tjr;
- }
- {
- E TcX, Td4, Tjf, Tjk;
- TcX = TcT + TcW;
- Td4 = Td0 + Td3;
- ri[WS(ios, 37)] = TcX - Td4;
- ri[WS(ios, 5)] = TcX + Td4;
- Tjf = Td6 + Td7;
- Tjk = Tjg + Tjj;
- ii[WS(ios, 5)] = Tjf + Tjk;
- ii[WS(ios, 37)] = Tjk - Tjf;
- }
- {
- E Td5, Td8, Tjl, Tjm;
- Td5 = TcT - TcW;
- Td8 = Td6 - Td7;
- ri[WS(ios, 53)] = Td5 - Td8;
- ri[WS(ios, 21)] = Td5 + Td8;
- Tjl = Td3 - Td0;
- Tjm = Tjj - Tjg;
- ii[WS(ios, 21)] = Tjl + Tjm;
- ii[WS(ios, 53)] = Tjm - Tjl;
- }
- }
- {
- E Tb1, Tjz, TjF, Tbt, Tb8, Tju, Tbw, TjE, TbA, TbG, Tbg, Tbq, TbD, TbH, Tbn;
- E Tbr, Tb7;
- Tb1 = TaX - Tb0;
- Tjz = Tjv + Tjy;
- TjF = Tjy - Tjv;
- Tbt = TaX + Tb0;
- Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6);
- Tb8 = Tb4 - Tb7;
- Tju = Tb4 + Tb7;
- {
- E Tbv, Tby, Tbz, Tbc, Tbf;
- Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6);
- Tbw = Tbu + Tbv;
- TjE = Tbv - Tbu;
- Tby = Tba + Tbb;
- Tbz = Tbd + Tbe;
- TbA = FMA(KP956940335, Tby, KP290284677 * Tbz);
- TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz);
- Tbc = Tba - Tbb;
- Tbf = Tbd - Tbe;
- Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf);
- Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf);
- {
- E TbB, TbC, Tbj, Tbm;
- TbB = Tbh + Tbi;
- TbC = Tbk + Tbl;
- TbD = FNMS(KP290284677, TbC, KP956940335 * TbB);
- TbH = FMA(KP290284677, TbB, KP956940335 * TbC);
- Tbj = Tbh - Tbi;
- Tbm = Tbk - Tbl;
- Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj);
- Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm);
- }
- }
- {
- E Tb9, Tbo, TjD, TjG;
- Tb9 = Tb1 + Tb8;
- Tbo = Tbg + Tbn;
- ri[WS(ios, 43)] = Tb9 - Tbo;
- ri[WS(ios, 11)] = Tb9 + Tbo;
- TjD = Tbq + Tbr;
- TjG = TjE + TjF;
- ii[WS(ios, 11)] = TjD + TjG;
- ii[WS(ios, 43)] = TjG - TjD;
- }
- {
- E Tbp, Tbs, TjH, TjI;
- Tbp = Tb1 - Tb8;
- Tbs = Tbq - Tbr;
- ri[WS(ios, 59)] = Tbp - Tbs;
- ri[WS(ios, 27)] = Tbp + Tbs;
- TjH = Tbn - Tbg;
- TjI = TjF - TjE;
- ii[WS(ios, 27)] = TjH + TjI;
- ii[WS(ios, 59)] = TjI - TjH;
- }
- {
- E Tbx, TbE, Tjt, TjA;
- Tbx = Tbt + Tbw;
- TbE = TbA + TbD;
- ri[WS(ios, 35)] = Tbx - TbE;
- ri[WS(ios, 3)] = Tbx + TbE;
- Tjt = TbG + TbH;
- TjA = Tju + Tjz;
- ii[WS(ios, 3)] = Tjt + TjA;
- ii[WS(ios, 35)] = TjA - Tjt;
- }
- {
- E TbF, TbI, TjB, TjC;
- TbF = Tbt - Tbw;
- TbI = TbG - TbH;
- ri[WS(ios, 51)] = TbF - TbI;
- ri[WS(ios, 19)] = TbF + TbI;
- TjB = TbD - TbA;
- TjC = Tjz - Tju;
- ii[WS(ios, 19)] = TjB + TjC;
- ii[WS(ios, 51)] = TjC - TjB;
- }
- }
- {
- E Tdd, Tj5, Tjb, TdF, Tdk, TiY, TdI, Tja, TdM, TdS, Tds, TdC, TdP, TdT, Tdz;
- E TdD, Tdj;
- Tdd = Td9 - Tdc;
- Tj5 = TiZ + Tj4;
- Tjb = Tj4 - TiZ;
- TdF = Td9 + Tdc;
- Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi);
- Tdk = Tdg - Tdj;
- TiY = Tdg + Tdj;
- {
- E TdH, TdK, TdL, Tdo, Tdr;
- TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh);
- TdI = TdG + TdH;
- Tja = TdH - TdG;
- TdK = Tdm + Tdn;
- TdL = Tdp + Tdq;
- TdM = FMA(KP995184726, TdK, KP098017140 * TdL);
- TdS = FNMS(KP098017140, TdK, KP995184726 * TdL);
- Tdo = Tdm - Tdn;
- Tdr = Tdp - Tdq;
- Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr);
- TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr);
- {
- E TdN, TdO, Tdv, Tdy;
- TdN = Tdt + Tdu;
- TdO = Tdw + Tdx;
- TdP = FNMS(KP098017140, TdO, KP995184726 * TdN);
- TdT = FMA(KP098017140, TdN, KP995184726 * TdO);
- Tdv = Tdt - Tdu;
- Tdy = Tdw - Tdx;
- Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv);
- TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy);
- }
- }
- {
- E Tdl, TdA, Tj9, Tjc;
- Tdl = Tdd + Tdk;
- TdA = Tds + Tdz;
- ri[WS(ios, 41)] = Tdl - TdA;
- ri[WS(ios, 9)] = Tdl + TdA;
- Tj9 = TdC + TdD;
- Tjc = Tja + Tjb;
- ii[WS(ios, 9)] = Tj9 + Tjc;
- ii[WS(ios, 41)] = Tjc - Tj9;
- }
- {
- E TdB, TdE, Tjd, Tje;
- TdB = Tdd - Tdk;
- TdE = TdC - TdD;
- ri[WS(ios, 57)] = TdB - TdE;
- ri[WS(ios, 25)] = TdB + TdE;
- Tjd = Tdz - Tds;
- Tje = Tjb - Tja;
- ii[WS(ios, 25)] = Tjd + Tje;
- ii[WS(ios, 57)] = Tje - Tjd;
- }
- {
- E TdJ, TdQ, TiX, Tj6;
- TdJ = TdF + TdI;
- TdQ = TdM + TdP;
- ri[WS(ios, 33)] = TdJ - TdQ;
- ri[WS(ios, 1)] = TdJ + TdQ;
- TiX = TdS + TdT;
- Tj6 = TiY + Tj5;
- ii[WS(ios, 1)] = TiX + Tj6;
- ii[WS(ios, 33)] = Tj6 - TiX;
- }
- {
- E TdR, TdU, Tj7, Tj8;
- TdR = TdF - TdI;
- TdU = TdS - TdT;
- ri[WS(ios, 49)] = TdR - TdU;
- ri[WS(ios, 17)] = TdR + TdU;
- Tj7 = TdP - TdM;
- Tj8 = Tj5 - TiY;
- ii[WS(ios, 17)] = Tj7 + Tj8;
- ii[WS(ios, 49)] = Tj8 - Tj7;
- }
- }
- }
- }
- return W;
-}
-
-static const tw_instr twinstr[] = {
- {TW_COS, 0, 1},
- {TW_SIN, 0, 1},
- {TW_COS, 0, 3},
- {TW_SIN, 0, 3},
- {TW_COS, 0, 9},
- {TW_SIN, 0, 9},
- {TW_COS, 0, 27},
- {TW_SIN, 0, 27},
- {TW_COS, 0, 63},
- {TW_SIN, 0, 63},
- {TW_NEXT, 1, 0}
-};
-
-static const ct_desc desc = { 64, "t2_64", twinstr, {880, 386, 274, 0}, &GENUS, 0, 0, 0 };
-
-void X(codelet_t2_64) (planner *p) {
- X(kdft_dit_register) (p, t2_64, &desc);
-}