diff options
Diffstat (limited to 'src/fftw3/dft/rader.c')
-rw-r--r-- | src/fftw3/dft/rader.c | 491 |
1 files changed, 0 insertions, 491 deletions
diff --git a/src/fftw3/dft/rader.c b/src/fftw3/dft/rader.c deleted file mode 100644 index f31f370..0000000 --- a/src/fftw3/dft/rader.c +++ /dev/null @@ -1,491 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -#include "dft.h" - -/* - * Compute transforms of prime sizes using Rader's trick: turn them - * into convolutions of size n - 1, which you then perform via a pair - * of FFTs. This file contains both nontwiddle (direct) and - * twiddle (DIT Cooley-Tukey) solvers. - */ - -typedef struct { - solver super; -} S; - -typedef struct { - plan_dft super; - - plan *cld1, *cld2; - R *omega; - int n, g, ginv; - int is, os; - plan *cld_omega; -} P; - -typedef struct { - P super; - plan *cld; - R *W; - int os; - int m; -} P_dit; - - -static rader_tl *twiddles = 0; - -/***************************************************************************/ - -/* Below, we extensively use the identity that fft(x*)* = ifft(x) in - order to share data between forward and backward transforms and to - obviate the necessity of having separate forward and backward - plans. (Although we often compute separate plans these days anyway - due to the differing strides, etcetera.) - - Of course, since the new FFTW gives us separate pointers to - the real and imaginary parts, we could have instead used the - fft(r,i) = ifft(i,r) form of this identity, but it was easier to - reuse the code from our old version. */ - -static void apply_aux(int r, int ginv, plan *cld1,plan *cld2, const R *omega, - R *buf, R r0, R i0, R *ro, R *io, int os) -{ - int gpower, k; - - /* compute DFT of buf, storing in output (except DC): */ - { - plan_dft *cld = (plan_dft *) cld1; - cld->apply(cld1, buf, buf+1, ro+os, io+os); - } - - /* set output DC component: */ - ro[0] = r0 + ro[os]; - io[0] = i0 + io[os]; - - /* now, multiply by omega: */ - for (k = 0; k < r - 1; ++k) { - E rB, iB, rW, iW; - rW = omega[2*k]; - iW = omega[2*k+1]; - rB = ro[(k+1)*os]; - iB = io[(k+1)*os]; - ro[(k+1)*os] = rW * rB - iW * iB; - io[(k+1)*os] = -(rW * iB + iW * rB); - } - - /* this will add input[0] to all of the outputs after the ifft */ - ro[os] += r0; - io[os] -= i0; - - /* inverse FFT: */ - { - plan_dft *cld = (plan_dft *) cld2; - cld->apply(cld2, ro+os, io+os, buf, buf+1); - } - - /* finally, do inverse permutation to unshuffle the output: */ - gpower = 1; - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { - ro[gpower * os] = buf[2*k]; - io[gpower * os] = -buf[2*k+1]; - } - A(gpower == 1); -} - -static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) -{ - const P *ego = (const P *) ego_; - int is; - int k, gpower, g, r; - R *buf; - - r = ego->n; is = ego->is; g = ego->g; - buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); - - /* First, permute the input, storing in buf: */ - for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - R rA, iA; - rA = ri[gpower * is]; - iA = ii[gpower * is]; - buf[2*k] = rA; buf[2*k + 1] = iA; - } - /* gpower == g^(r-1) mod r == 1 */; - - apply_aux(r, ego->ginv, ego->cld1, ego->cld2, ego->omega, - buf, ri[0], ii[0], ro, io, ego->os); - - X(ifree)(buf); -} - -static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io) -{ - const P_dit *ego_dit = (const P_dit *) ego_; - const P *ego; - plan *cld1, *cld2; - int os, osm; - int j, k, gpower, g, ginv, r, m; - R *buf; - const R *omega, *W; - - { - plan *cld0 = ego_dit->cld; - plan_dft *cld = (plan_dft *) cld0; - cld->apply(cld0, ri, ii, ro, io); - } - - ego = (const P *) ego_; - cld1 = ego->cld1; - cld2 = ego->cld2; - r = ego->n; - m = ego_dit->m; - g = ego->g; - ginv = ego->ginv; - omega = ego->omega; - W = ego_dit->W; - os = ego_dit->os; - osm = ego->os; - gpower = 1; - - buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); - - for (j = 0; j < m; ++j, ro += os, io += os, W += 2*(r - 1)) { - /* First, permute the input and multiply by W, storing in buf: */ - A(gpower == 1); - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - E rA, iA, rW, iW; - rA = ro[gpower * osm]; - iA = io[gpower * osm]; - rW = W[2*k]; - iW = W[2*k+1]; - buf[2*k] = rW * rA - iW * iA; - buf[2*k + 1] = rW * iA + iW * rA; - } - /* gpower == g^(r-1) mod r == 1 */; - - apply_aux(r, ginv, cld1, cld2, omega, - buf, ro[0], io[0], ro, io, osm); - } - - X(ifree)(buf); -} - -static R *mktwiddle(int m, int r, int g) -{ - int i, j, gpower; - int n = r * m; - R *W; - - if ((W = X(rader_tl_find)(m, r, g, twiddles))) - return W; - - W = (R *)MALLOC(sizeof(R) * (r - 1) * m * 2, TWIDDLES); - for (i = 0; i < m; ++i) { - for (gpower = 1, j = 0; j < r - 1; - ++j, gpower = MULMOD(gpower, g, r)) { - int k = i * (r - 1) + j; - W[2*k] = X(cos2pi)(i * gpower, n); - W[2*k+1] = FFT_SIGN * X(sin2pi)(i * gpower, n); - } - A(gpower == 1); - } - - X(rader_tl_insert)(m, r, g, W, &twiddles); - return W; -} - -static void free_twiddle(R *twiddle) -{ - X(rader_tl_delete)(twiddle, &twiddles); -} - -/***************************************************************************/ - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - - AWAKE(ego->cld1, flg); - AWAKE(ego->cld2, flg); - - if (flg) { - if (!ego->omega) - ego->omega = - X(dft_rader_mkomega)(ego->cld_omega, ego->n, ego->ginv); - } else { - X(dft_rader_free_omega)(&ego->omega); - } -} - -static void awake_dit(plan *ego_, int flg) -{ - P_dit *ego = (P_dit *) ego_; - - AWAKE(ego->cld, flg); - if (flg) - ego->W = mktwiddle(ego->m, ego->super.n, ego->super.g); - else { - free_twiddle(ego->W); - ego->W = 0; - } - - awake(ego_, flg); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld_omega); - X(plan_destroy_internal)(ego->cld2); - X(plan_destroy_internal)(ego->cld1); -} - -static void destroy_dit(plan *ego_) -{ - P_dit *ego = (P_dit *) ego_; - X(plan_destroy_internal)(ego->cld); - destroy(ego_); -} - -static void print_aux(const char *name, const P *ego, printer *p) -{ - p->print(p, "(%s-%d%ois=%oos=%(%p%)", - name, ego->n, ego->is, ego->os, ego->cld1); - if (ego->cld2 != ego->cld1) - p->print(p, "%(%p%)", ego->cld2); - if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) - p->print(p, "%(%p%)", ego->cld_omega); -} - -static void print(const plan *ego_, printer *p) -{ - print_aux("dft-rader", (const P *) ego_, p); - p->putchr(p, ')'); -} - -static void print_dit(const plan *ego_, printer *p) -{ - const P_dit *ego_dit = (const P_dit *) ego_; - - print_aux("dft-rader-dit", (const P *) ego_, p); - p->print(p, "%(%p%))", ego_dit->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (DFTP(p_)) { - const problem_dft *p = (const problem_dft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk == 0 - && X(is_prime)(p->sz->dims[0].n) - ); - } - - return 0; -} - -static int applicable0_dit(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (DFTP(p_)) { - const problem_dft *p = (const problem_dft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk == 0 - && p->sz->dims[0].n > 1 - ); - } - - return 0; -} - -static int applicable(const solver *ego_, const problem *p_, - const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego_, p_)); -} - -static int applicable_dit(const solver *ego_, const problem *p_, - const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0_dit(ego_, p_)); -} - -static int mkP(P *pln, int n, int is, int os, R *ro, R *io, - planner *plnr) -{ - plan *cld1 = (plan *) 0; - plan *cld2 = (plan *) 0; - plan *cld_omega = (plan *) 0; - R *buf = (R *) 0; - - /* initial allocation for the purpose of planning */ - buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS); - - cld1 = X(mkplan_d)(plnr, - X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os), - X(mktensor_1d)(1, 0, 0), - buf, buf + 1, ro + os, io + os)); - if (!cld1) goto nada; - - cld2 = X(mkplan_d)(plnr, - X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2), - X(mktensor_1d)(1, 0, 0), - ro + os, io + os, buf, buf + 1)); - - if (!cld2) goto nada; - - /* plan for omega array */ - plnr->planner_flags |= ESTIMATE; - cld_omega = X(mkplan_d)(plnr, - X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2), - X(mktensor_1d)(1, 0, 0), - buf, buf + 1, buf, buf + 1)); - if (!cld_omega) goto nada; - - /* deallocate buffers; let awake() or apply() allocate them for real */ - X(ifree)(buf); - buf = 0; - - pln->cld1 = cld1; - pln->cld2 = cld2; - pln->cld_omega = cld_omega; - pln->omega = 0; - pln->n = n; - pln->is = is; - pln->os = os; - pln->g = X(find_generator)(n); - pln->ginv = X(power_mod)(pln->g, n - 2, n); - A(MULMOD(pln->g, pln->ginv, n) == 1); - - X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); - pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6; - pln->super.super.ops.add += (n - 1) * 2 + 4; - pln->super.super.ops.mul += (n - 1) * 4; - - return 1; - - nada: - X(ifree0)(buf); - X(plan_destroy_internal)(cld_omega); - X(plan_destroy_internal)(cld2); - X(plan_destroy_internal)(cld1); - return 0; -} - -static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) -{ - const problem_dft *p = (const problem_dft *) p_; - P *pln; - int n; - int is, os; - - static const plan_adt padt = { - X(dft_solve), awake, print, destroy - }; - - if (!applicable(ego, p_, plnr)) - return (plan *) 0; - - n = p->sz->dims[0].n; - is = p->sz->dims[0].is; - os = p->sz->dims[0].os; - - pln = MKPLAN_DFT(P, &padt, apply); - if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) { - X(ifree)(pln); - return (plan *) 0; - } - return &(pln->super.super); -} - -static plan *mkplan_dit(const solver *ego, const problem *p_, planner *plnr) -{ - const problem_dft *p = (const problem_dft *) p_; - P_dit *pln = 0; - int n, r, m; - int is, os; - plan *cld = (plan *) 0; - - static const plan_adt padt = { - X(dft_solve), awake_dit, print_dit, destroy_dit - }; - - if (!applicable_dit(ego, p_, plnr)) - goto nada; - - n = p->sz->dims[0].n; - is = p->sz->dims[0].is; - os = p->sz->dims[0].os; - - r = X(first_divisor)(n); - m = n / r; - - cld = X(mkplan_d)(plnr, - X(mkproblem_dft_d)(X(mktensor_1d)(m, r * is, os), - X(mktensor_1d)(r, is, m * os), - p->ri, p->ii, p->ro, p->io)); - if (!cld) goto nada; - - pln = MKPLAN_DFT(P_dit, &padt, apply_dit); - if (!mkP(&pln->super, r, os*m, os*m, p->ro, p->io, plnr)) - goto nada; - - pln->os = os; - pln->m = m; - pln->cld = cld; - pln->W = 0; - - pln->super.super.super.ops.add += 2 * (r-1); - pln->super.super.super.ops.mul += 4 * (r-1); - X(ops_madd)(m, &pln->super.super.super.ops, &cld->ops, - &pln->super.super.super.ops); - - return &(pln->super.super.super); - - nada: - X(plan_destroy_internal)(cld); - X(ifree0)(pln); - return (plan *) 0; -} - -/* constructors */ - -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -static solver *mksolver_dit(void) -{ - static const solver_adt sadt = { mkplan_dit }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(dft_rader_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); - REGISTER_SOLVER(p, mksolver_dit()); -} |