diff options
Diffstat (limited to 'src/fftw3/kernel/transpose.c')
-rw-r--r-- | src/fftw3/kernel/transpose.c | 430 |
1 files changed, 0 insertions, 430 deletions
diff --git a/src/fftw3/kernel/transpose.c b/src/fftw3/kernel/transpose.c deleted file mode 100644 index fb489bd..0000000 --- a/src/fftw3/kernel/transpose.c +++ /dev/null @@ -1,430 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* transposes of unit-stride arrays, including arrays of N-tuples and - non-square matrices, using cache-oblivious recursive algorithms */ - -#include "ifftw.h" -#include <string.h> /* memcpy */ - -#define CUTOFF 8 /* size below which we do a naive transpose */ - -/*************************************************************************/ -/* some utilities for the solvers */ - -static int Ntuple_transposable(const iodim *a, const iodim *b, - int vl, int s, R *ri, R *ii) -{ - return(2 == s && (ii == ri + 1 || ri == ii + 1) - && - ((a->is == b->os && a->is == (vl*2) - && a->os == b->n * (vl*2) && b->is == a->n * (vl*2)) - || - (a->os == b->is && a->os == (vl*2) - && a->is == b->n * (vl*2) && b->os == a->n * (vl*2)))); -} - - -/* our solvers' transpose routines work for square matrices of arbitrary - stride, or for non-square matrices of a given vl*vl2 corresponding - to the N of the Ntuple with vl2 == s. */ -int X(transposable)(const iodim *a, const iodim *b, - int vl, int s, R *ri, R *ii) -{ - return ((a->n == b->n && a->os == b->is && a->is == b->os) - || Ntuple_transposable(a, b, vl, s, ri, ii)); -} - -static int gcd(int a, int b) -{ - int r; - do { - r = a % b; - a = b; - b = r; - } while (r != 0); - - return a; -} - -/* all of the solvers need to extract n, m, d, n/d, and m/d from the - two iodims, so we put it here to save code space */ -void X(transpose_dims)(const iodim *a, const iodim *b, - int *n, int *m, int *d, int *nd, int *md) -{ - int n0, m0, d0; - /* matrix should be n x m, row-major */ - if (a->is < b->is) { - *n = n0 = b->n; - *m = m0 = a->n; - } - else { - *n = n0 = a->n; - *m = m0 = b->n; - } - *d = d0 = gcd(n0, m0); - *nd = n0 / d0; - *md = m0 / d0; -} - -/* use the simple square transpose in the solver for square matrices - that aren't too big or which have the wrong stride */ -int X(transpose_simplep)(const iodim *a, const iodim *b, int vl, int s, - R *ri, R *ii) -{ - return (a->n == b->n && - (a->n*(vl*2) < CUTOFF - || !Ntuple_transposable(a, b, vl, s, ri, ii))); -} - -/* use the slow general transpose if the buffer would be more than 1/8 - the whole transpose and the transpose is fairly big. - (FIXME: use the CONSERVE_MEMORY flag?) */ -int X(transpose_slowp)(const iodim *a, const iodim *b, int N) -{ - int d = gcd(a->n, b->n); - return (d < 8 && (a->n * b->n * N) / d > 65536); -} - -/*************************************************************************/ -/* Out-of-place transposes: */ - -/* Transpose A (n x m) to B (m x n), where A and B are stored - as n x fda and m x fda arrays, respectively, operating on N-tuples: */ -static void rec_transpose_Ntuple(R *A, R *B, int n, int m, int fda, int fdb, - int N) -{ - if (n == 1 || m == 1 || (n + m) * N < CUTOFF*2) { - int i, j, k; - for (i = 0; i < n; ++i) { - for (j = 0; j < m; ++j) { - for (k = 0; k < N; ++k) { /* FIXME: unroll */ - B[(j*fdb + i) * N + k] = A[(i*fda + j) * N + k]; - } - } - } - } - else if (n > m) { - int n2 = n / 2; - rec_transpose_Ntuple(A, B, n2, m, fda, fdb, N); - rec_transpose_Ntuple(A + n2*N*fda, B + n2*N, n - n2, m, fda, fdb, N); - } - else { - int m2 = m / 2; - rec_transpose_Ntuple(A, B, n, m2, fda, fdb, N); - rec_transpose_Ntuple(A + m2*N, B + m2*N*fdb, n, m - m2, fda, fdb, N); - } -} - -/*************************************************************************/ -/* In-place transposes of square matrices of N-tuples: */ - -/* Transpose both A and B, where A is n x m and B is m x n, storing - the transpose of A in B and the transpose of B in A. A and B - are actually stored as n x fda and m x fda arrays. */ -static void rec_transpose_swap_Ntuple(R *A, R *B, int n, int m, int fda, int N) -{ - if (n == 1 || m == 1 || (n + m) * N <= CUTOFF*2) { - switch (N) { - case 1: { - int i, j; - for (i = 0; i < n; ++i) { - for (j = 0; j < m; ++j) { - R a = A[(i*fda + j)]; - A[(i*fda + j)] = B[(j*fda + i)]; - B[(j*fda + i)] = a; - } - } - break; - } - case 2: { - int i, j; - for (i = 0; i < n; ++i) { - for (j = 0; j < m; ++j) { - R a0 = A[(i*fda + j) * 2 + 0]; - R a1 = A[(i*fda + j) * 2 + 1]; - A[(i*fda + j) * 2 + 0] = B[(j*fda + i) * 2 + 0]; - A[(i*fda + j) * 2 + 1] = B[(j*fda + i) * 2 + 1]; - B[(j*fda + i) * 2 + 0] = a0; - B[(j*fda + i) * 2 + 1] = a1; - } - } - break; - } - default: { - int i, j, k; - for (i = 0; i < n; ++i) { - for (j = 0; j < m; ++j) { - for (k = 0; k < N; ++k) { - R a = A[(i*fda + j) * N + k]; - A[(i*fda + j) * N + k] = - B[(j*fda + i) * N + k]; - B[(j*fda + i) * N + k] = a; - } - } - } - } - } - } else if (n > m) { - int n2 = n / 2; - rec_transpose_swap_Ntuple(A, B, n2, m, fda, N); - rec_transpose_swap_Ntuple(A + n2*N*fda, B + n2*N, n - n2, m, fda, N); - } - else { - int m2 = m / 2; - rec_transpose_swap_Ntuple(A, B, n, m2, fda, N); - rec_transpose_swap_Ntuple(A + m2*N, B + m2*N*fda, n, m - m2, fda, N); - } -} - -/* Transpose A, an n x n matrix (stored as n x fda), in-place. */ -static void rec_transpose_sq_ip_Ntuple(R *A, int n, int fda, int N) -{ - if (n == 1) - return; - else if (n*N <= CUTOFF) { - switch (N) { - case 1: { - int i, j; - for (i = 0; i < n; ++i) { - for (j = i + 1; j < n; ++j) { - R a = A[(i*fda + j)]; - A[(i*fda + j)] = A[(j*fda + i)]; - A[(j*fda + i)] = a; - } - } - break; - } - case 2: { - int i, j; - for (i = 0; i < n; ++i) { - for (j = i + 1; j < n; ++j) { - R a0 = A[(i*fda + j) * 2 + 0]; - R a1 = A[(i*fda + j) * 2 + 1]; - A[(i*fda + j) * 2 + 0] = A[(j*fda + i) * 2 + 0]; - A[(i*fda + j) * 2 + 1] = A[(j*fda + i) * 2 + 1]; - A[(j*fda + i) * 2 + 0] = a0; - A[(j*fda + i) * 2 + 1] = a1; - } - } - break; - } - default: { - int i, j, k; - for (i = 0; i < n; ++i) { - for (j = i + 1; j < n; ++j) { - for (k = 0; k < N; ++k) { - R a = A[(i*fda + j) * N + k]; - A[(i*fda + j) * N + k] = - A[(j*fda + i) * N + k]; - A[(j*fda + i) * N + k] = a; - } - } - } - } - } - } else { - int n2 = n / 2; - rec_transpose_sq_ip_Ntuple(A, n2, fda, N); - rec_transpose_sq_ip_Ntuple((A + n2*N) + n2*N*fda, n - n2, fda, N); - rec_transpose_swap_Ntuple(A + n2*N, A + n2*N*fda, n2, n - n2, fda,N); - } -} - -/*************************************************************************/ -/* In-place transposes of non-square matrices: */ - -/* Transpose the matrix A in-place, where A is an (n*d) x (m*d) matrix - of N-tuples and buf contains at least n*m*d*N elements. In - general, to transpose a p x q matrix, you should call this routine - with d = gcd(p, q), n = p/d, and m = q/d. */ -void X(transpose)(R *A, int n, int m, int d, int N, R *buf) -{ - A(n > 0 && m > 0 && N > 0 && d > 0); - if (d == 1) { - rec_transpose_Ntuple(A, buf, n,m, m,n, N); - memcpy(A, buf, m*n*N*sizeof(R)); - } - else if (n*m == 1) { - rec_transpose_sq_ip_Ntuple(A, d, d, N); - } - else { - int i, num_el = n*m*d*N; - - /* treat as (d x n) x (d' x m) matrix. (d' = d) */ - - /* First, transpose d x (n x d') x m to d x (d' x n) x m, - using the buf matrix. This consists of d transposes - of contiguous n x d' matrices of m-tuples. */ - if (n > 1) { - for (i = 0; i < d; ++i) { - rec_transpose_Ntuple(A + i*num_el, buf, - n,d, d,n, m*N); - memcpy(A + i*num_el, buf, num_el*sizeof(R)); - } - } - - /* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which - is a square in-place transpose of n*m-tuples: */ - rec_transpose_sq_ip_Ntuple(A, d, d, n*m*N); - - /* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)), - using the buf matrix. This consists of d' transposes - of contiguous d*n x m matrices. */ - if (m > 1) { - for (i = 0; i < d; ++i) { - rec_transpose_Ntuple(A + i*num_el, buf, - d*n,m, m,d*n, N); - memcpy(A + i*num_el, buf, num_el*sizeof(R)); - } - } - } -} - -/*************************************************************************/ -/* In-place transpose routine from TOMS. This routine is much slower - than the cache-oblivious algorithm above, but is has the advantage - of requiring less buffer space for the case of gcd(nx,ny) small. */ - -/* - * TOMS Transpose. Revised version of algorithm 380. - * - * These routines do in-place transposes of arrays. - * - * [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software, - * vol. 3, no. 1, 104-110 (1977) ] - * - * C version by Steven G. Johnson. February 1997. - */ - -/* - * "a" is a 1D array of length ny*nx*N which constains the nx x ny - * matrix of N-tuples to be transposed. "a" is stored in row-major - * order (last index varies fastest). move is a 1D array of length - * move_size used to store information to speed up the process. The - * value move_size=(ny+nx)/2 is recommended. buf should be an array - * of length 2*N. - * - */ - -void X(transpose_slow)(R *a, int nx, int ny, int N, - char *move, int move_size, R *buf) -{ - int i, j, im, mn; - R *b, *c, *d; - int ncount; - int k; - - /* check arguments and initialize: */ - A(ny > 0 && nx > 0 && N > 0 && move_size > 0); - - b = buf; - - if (ny == nx) { - /* - * if matrix is square, exchange elements a(i,j) and a(j,i): - */ - for (i = 0; i < nx; ++i) - for (j = i + 1; j < nx; ++j) { - memcpy(b, &a[N * (i + j * nx)], N * sizeof(R)); - memcpy(&a[N * (i + j * nx)], &a[N * (j + i * nx)], N * sizeof(R)); - memcpy(&a[N * (j + i * nx)], b, N * sizeof(R)); - } - return; - } - c = buf + N; - ncount = 2; /* always at least 2 fixed points */ - k = (mn = ny * nx) - 1; - - for (i = 0; i < move_size; ++i) - move[i] = 0; - - if (ny >= 3 && nx >= 3) - ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */ - - i = 1; - im = ny; - - while (1) { - int i1, i2, i1c, i2c; - int kmi; - - /** Rearrange the elements of a loop - and its companion loop: **/ - - i1 = i; - kmi = k - i; - memcpy(b, &a[N * i1], N * sizeof(R)); - i1c = kmi; - memcpy(c, &a[N * i1c], N * sizeof(R)); - - while (1) { - i2 = ny * i1 - k * (i1 / nx); - i2c = k - i2; - if (i1 < move_size) - move[i1] = 1; - if (i1c < move_size) - move[i1c] = 1; - ncount += 2; - if (i2 == i) - break; - if (i2 == kmi) { - d = b; - b = c; - c = d; - break; - } - memcpy(&a[N * i1], &a[N * i2], - N * sizeof(R)); - memcpy(&a[N * i1c], &a[N * i2c], - N * sizeof(R)); - i1 = i2; - i1c = i2c; - } - memcpy(&a[N * i1], b, N * sizeof(R)); - memcpy(&a[N * i1c], c, N * sizeof(R)); - - if (ncount >= mn) - break; /* we've moved all elements */ - - /** Search for loops to rearrange: **/ - - while (1) { - int max = k - i; - ++i; - A(i <= max); - im += ny; - if (im > k) - im -= k; - i2 = im; - if (i == i2) - continue; - if (i >= move_size) { - while (i2 > i && i2 < max) { - i1 = i2; - i2 = ny * i1 - k * (i1 / nx); - } - if (i2 == i) - break; - } else if (!move[i]) - break; - } - } -} |