summaryrefslogtreecommitdiff
path: root/src/fftw3/rdft/codelets/hc2r/hb_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/rdft/codelets/hc2r/hb_64.c')
-rw-r--r--src/fftw3/rdft/codelets/hc2r/hb_64.c1972
1 files changed, 1972 insertions, 0 deletions
diff --git a/src/fftw3/rdft/codelets/hc2r/hb_64.c b/src/fftw3/rdft/codelets/hc2r/hb_64.c
new file mode 100644
index 0000000..d3f9afc
--- /dev/null
+++ b/src/fftw3/rdft/codelets/hc2r/hb_64.c
@@ -0,0 +1,1972 @@
+/*
+ * Copyright (c) 2003 Matteo Frigo
+ * Copyright (c) 2003 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sat Jul 5 22:11:42 EDT 2003 */
+
+#include "codelet-rdft.h"
+
+/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -sign 1 -n 64 -dif -name hb_64 -include hb.h */
+
+/*
+ * This function contains 1038 FP additions, 500 FP multiplications,
+ * (or, 808 additions, 270 multiplications, 230 fused multiply/add),
+ * 196 stack variables, and 256 memory accesses
+ */
+/*
+ * Generator Id's :
+ * $Id: hb_64.c,v 1.1 2008/10/17 06:12:08 scuri Exp $
+ * $Id: hb_64.c,v 1.1 2008/10/17 06:12:08 scuri Exp $
+ * $Id: hb_64.c,v 1.1 2008/10/17 06:12:08 scuri Exp $
+ */
+
+#include "hb.h"
+
+static const R *hb_64(R *rio, R *iio, const R *W, stride ios, int m, int dist)
+{
+ DK(KP634393284, +0.634393284163645498215171613225493370675687095);
+ DK(KP773010453, +0.773010453362736960810906609758469800971041293);
+ DK(KP098017140, +0.098017140329560601994195563888641845861136673);
+ DK(KP995184726, +0.995184726672196886244836953109479921575474869);
+ DK(KP471396736, +0.471396736825997648556387625905254377657460319);
+ DK(KP881921264, +0.881921264348355029712756863660388349508442621);
+ DK(KP290284677, +0.290284677254462367636192375817395274691476278);
+ DK(KP956940335, +0.956940335732208864935797886980269969482849206);
+ DK(KP195090322, +0.195090322016128267848284868477022240927691618);
+ DK(KP980785280, +0.980785280403230449126182236134239036973933731);
+ DK(KP555570233, +0.555570233019602224742830813948532874374937191);
+ DK(KP831469612, +0.831469612302545237078788377617905756738560812);
+ DK(KP382683432, +0.382683432365089771728459984030398866761344562);
+ DK(KP923879532, +0.923879532511286756128183189396788286822416626);
+ DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+ int i;
+ for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 126) {
+ E Tf, T7i, Tfa, ThM, Tgp, ThH, T2c, T5O, T4T, T6n, Tcp, Ted, TcA, TdE, T87;
+ E T9o, TK, T93, T2P, T4F, Tfo, Thz, T5T, T6j, Tbx, TdI, Tfl, ThA, T7r, T81;
+ E TbE, TdH, TZ, T94, T38, T4G, Tfv, ThC, T5W, T6k, TbQ, TdK, Tfs, ThD, T7w;
+ E T82, TbX, TdL, Tu, T84, Tfh, ThG, Tgm, ThN, T2v, T6m, T4K, T5P, Tce, TdF;
+ E TcD, Tec, T7l, T9p, T1L, T20, T9c, T9d, T9e, T9f, T40, T66, Tg1, Thu, Tg8;
+ E Thv, Tg5, Thr, T4n, T67, T4j, T69, T4w, T6a, TaT, TdW, Tb8, TdZ, TfU, Ths;
+ E T7O, T8y, T7T, T8z, Tbc, TdX, Tbj, Te0, T1g, T1v, T97, T98, T99, T9a, T3j;
+ E T5Z, TfI, Thk, TfP, Thl, TfM, Tho, T3G, T60, T3C, T62, T3P, T63, Tak, TdQ;
+ E Tav, TdT, TfB, Thn, T7D, T8v, T7I, T8w, TaD, TdP, TaG, TdS;
+ {
+ E T3, Tcm, T4O, Tcv, T6, Tcu, T4R, Tcn, Td, Tcy, T2a, Tch, Ta, Tcx, T27;
+ E Tck;
+ {
+ E T1, T2, T4P, T4Q;
+ T1 = rio[0];
+ T2 = iio[-WS(ios, 32)];
+ T3 = T1 + T2;
+ Tcm = T1 - T2;
+ {
+ E T4M, T4N, T4, T5;
+ T4M = iio[0];
+ T4N = rio[WS(ios, 32)];
+ T4O = T4M - T4N;
+ Tcv = T4M + T4N;
+ T4 = rio[WS(ios, 16)];
+ T5 = iio[-WS(ios, 48)];
+ T6 = T4 + T5;
+ Tcu = T4 - T5;
+ }
+ T4P = iio[-WS(ios, 16)];
+ T4Q = rio[WS(ios, 48)];
+ T4R = T4P - T4Q;
+ Tcn = T4P + T4Q;
+ {
+ E Tb, Tc, Tcf, T28, T29, Tcg;
+ Tb = iio[-WS(ios, 56)];
+ Tc = rio[WS(ios, 24)];
+ Tcf = Tb - Tc;
+ T28 = iio[-WS(ios, 24)];
+ T29 = rio[WS(ios, 56)];
+ Tcg = T29 + T28;
+ Td = Tb + Tc;
+ Tcy = Tcf + Tcg;
+ T2a = T28 - T29;
+ Tch = Tcf - Tcg;
+ }
+ {
+ E T8, T9, Tcj, T25, T26, Tci;
+ T8 = rio[WS(ios, 8)];
+ T9 = iio[-WS(ios, 40)];
+ Tcj = T8 - T9;
+ T25 = iio[-WS(ios, 8)];
+ T26 = rio[WS(ios, 40)];
+ Tci = T25 + T26;
+ Ta = T8 + T9;
+ Tcx = Tcj + Tci;
+ T27 = T25 - T26;
+ Tck = Tci - Tcj;
+ }
+ }
+ {
+ E T7, Te, Tf8, Tf9;
+ T7 = T3 + T6;
+ Te = Ta + Td;
+ Tf = T7 + Te;
+ T7i = T7 - Te;
+ Tf8 = Tcv - Tcu;
+ Tf9 = KP707106781 * (Tck + Tch);
+ Tfa = Tf8 + Tf9;
+ ThM = Tf8 - Tf9;
+ }
+ {
+ E Tgn, Tgo, T24, T2b;
+ Tgn = KP707106781 * (Tcx + Tcy);
+ Tgo = Tcm + Tcn;
+ Tgp = Tgn + Tgo;
+ ThH = Tgo - Tgn;
+ T24 = T3 - T6;
+ T2b = T27 - T2a;
+ T2c = T24 + T2b;
+ T5O = T24 - T2b;
+ }
+ {
+ E T4L, T4S, Tcl, Tco;
+ T4L = Td - Ta;
+ T4S = T4O - T4R;
+ T4T = T4L + T4S;
+ T6n = T4S - T4L;
+ Tcl = KP707106781 * (Tch - Tck);
+ Tco = Tcm - Tcn;
+ Tcp = Tcl + Tco;
+ Ted = Tco - Tcl;
+ }
+ {
+ E Tcw, Tcz, T85, T86;
+ Tcw = Tcu + Tcv;
+ Tcz = KP707106781 * (Tcx - Tcy);
+ TcA = Tcw + Tcz;
+ TdE = Tcw - Tcz;
+ T85 = T4O + T4R;
+ T86 = T27 + T2a;
+ T87 = T85 - T86;
+ T9o = T86 + T85;
+ }
+ }
+ {
+ E TC, Tby, T2x, Tbu, T2N, Tbz, T7o, Tbv, TJ, TbB, TbC, T2E, T2G, Tbp, Tbs;
+ E T7p, Tfj, Tfk;
+ {
+ E Tw, Tx, Ty, Tz, TA, TB;
+ Tw = rio[WS(ios, 2)];
+ Tx = iio[-WS(ios, 34)];
+ Ty = Tw + Tx;
+ Tz = rio[WS(ios, 18)];
+ TA = iio[-WS(ios, 50)];
+ TB = Tz + TA;
+ TC = Ty + TB;
+ Tby = Tz - TA;
+ T2x = Ty - TB;
+ Tbu = Tw - Tx;
+ }
+ {
+ E T2H, T2I, T2J, T2K, T2L, T2M;
+ T2H = iio[-WS(ios, 2)];
+ T2I = rio[WS(ios, 34)];
+ T2J = T2H - T2I;
+ T2K = iio[-WS(ios, 18)];
+ T2L = rio[WS(ios, 50)];
+ T2M = T2K - T2L;
+ T2N = T2J - T2M;
+ Tbz = T2H + T2I;
+ T7o = T2J + T2M;
+ Tbv = T2K + T2L;
+ }
+ {
+ E TF, Tbr, T2A, Tbq, TI, Tbn, T2D, Tbo;
+ {
+ E TD, TE, T2y, T2z;
+ TD = rio[WS(ios, 10)];
+ TE = iio[-WS(ios, 42)];
+ TF = TD + TE;
+ Tbr = TD - TE;
+ T2y = iio[-WS(ios, 10)];
+ T2z = rio[WS(ios, 42)];
+ T2A = T2y - T2z;
+ Tbq = T2y + T2z;
+ }
+ {
+ E TG, TH, T2B, T2C;
+ TG = iio[-WS(ios, 58)];
+ TH = rio[WS(ios, 26)];
+ TI = TG + TH;
+ Tbn = TG - TH;
+ T2B = iio[-WS(ios, 26)];
+ T2C = rio[WS(ios, 58)];
+ T2D = T2B - T2C;
+ Tbo = T2C + T2B;
+ }
+ TJ = TF + TI;
+ TbB = Tbr + Tbq;
+ TbC = Tbn + Tbo;
+ T2E = T2A - T2D;
+ T2G = TI - TF;
+ Tbp = Tbn - Tbo;
+ Tbs = Tbq - Tbr;
+ T7p = T2A + T2D;
+ }
+ TK = TC + TJ;
+ T93 = T7p + T7o;
+ {
+ E T2F, T2O, Tfm, Tfn;
+ T2F = T2x + T2E;
+ T2O = T2G + T2N;
+ T2P = FMA(KP923879532, T2F, KP382683432 * T2O);
+ T4F = FNMS(KP382683432, T2F, KP923879532 * T2O);
+ Tfm = KP707106781 * (TbB + TbC);
+ Tfn = Tbu + Tbv;
+ Tfo = Tfm + Tfn;
+ Thz = Tfn - Tfm;
+ }
+ {
+ E T5R, T5S, Tbt, Tbw;
+ T5R = T2x - T2E;
+ T5S = T2N - T2G;
+ T5T = FNMS(KP382683432, T5S, KP923879532 * T5R);
+ T6j = FMA(KP382683432, T5R, KP923879532 * T5S);
+ Tbt = KP707106781 * (Tbp - Tbs);
+ Tbw = Tbu - Tbv;
+ Tbx = Tbt + Tbw;
+ TdI = Tbw - Tbt;
+ }
+ Tfj = Tbz - Tby;
+ Tfk = KP707106781 * (Tbs + Tbp);
+ Tfl = Tfj + Tfk;
+ ThA = Tfj - Tfk;
+ {
+ E T7n, T7q, TbA, TbD;
+ T7n = TC - TJ;
+ T7q = T7o - T7p;
+ T7r = T7n + T7q;
+ T81 = T7q - T7n;
+ TbA = Tby + Tbz;
+ TbD = KP707106781 * (TbB - TbC);
+ TbE = TbA + TbD;
+ TdH = TbA - TbD;
+ }
+ }
+ {
+ E TR, TbU, T2Q, TbN, T36, TbV, T7t, TbO, TY, TbR, TbS, T2X, T2Z, TbI, TbL;
+ E T7u, Tfq, Tfr;
+ {
+ E TL, TM, TN, TO, TP, TQ;
+ TL = iio[-WS(ios, 62)];
+ TM = rio[WS(ios, 30)];
+ TN = TL + TM;
+ TO = rio[WS(ios, 14)];
+ TP = iio[-WS(ios, 46)];
+ TQ = TO + TP;
+ TR = TN + TQ;
+ TbU = TL - TM;
+ T2Q = TN - TQ;
+ TbN = TO - TP;
+ }
+ {
+ E T30, T31, T32, T33, T34, T35;
+ T30 = iio[-WS(ios, 30)];
+ T31 = rio[WS(ios, 62)];
+ T32 = T30 - T31;
+ T33 = iio[-WS(ios, 14)];
+ T34 = rio[WS(ios, 46)];
+ T35 = T33 - T34;
+ T36 = T32 - T35;
+ TbV = T33 + T34;
+ T7t = T32 + T35;
+ TbO = T31 + T30;
+ }
+ {
+ E TU, TbG, T2T, TbH, TX, TbJ, T2W, TbK;
+ {
+ E TS, TT, T2R, T2S;
+ TS = rio[WS(ios, 6)];
+ TT = iio[-WS(ios, 38)];
+ TU = TS + TT;
+ TbG = TS - TT;
+ T2R = iio[-WS(ios, 6)];
+ T2S = rio[WS(ios, 38)];
+ T2T = T2R - T2S;
+ TbH = T2R + T2S;
+ }
+ {
+ E TV, TW, T2U, T2V;
+ TV = iio[-WS(ios, 54)];
+ TW = rio[WS(ios, 22)];
+ TX = TV + TW;
+ TbJ = TV - TW;
+ T2U = iio[-WS(ios, 22)];
+ T2V = rio[WS(ios, 54)];
+ T2W = T2U - T2V;
+ TbK = T2V + T2U;
+ }
+ TY = TU + TX;
+ TbR = TbJ - TbK;
+ TbS = TbH - TbG;
+ T2X = T2T - T2W;
+ T2Z = TX - TU;
+ TbI = TbG + TbH;
+ TbL = TbJ + TbK;
+ T7u = T2T + T2W;
+ }
+ TZ = TR + TY;
+ T94 = T7u + T7t;
+ {
+ E T2Y, T37, Tft, Tfu;
+ T2Y = T2Q + T2X;
+ T37 = T2Z + T36;
+ T38 = FNMS(KP382683432, T37, KP923879532 * T2Y);
+ T4G = FMA(KP382683432, T2Y, KP923879532 * T37);
+ Tft = KP707106781 * (TbI + TbL);
+ Tfu = TbU + TbV;
+ Tfv = Tft + Tfu;
+ ThC = Tfu - Tft;
+ }
+ {
+ E T5U, T5V, TbM, TbP;
+ T5U = T2Q - T2X;
+ T5V = T36 - T2Z;
+ T5W = FMA(KP923879532, T5U, KP382683432 * T5V);
+ T6k = FNMS(KP382683432, T5U, KP923879532 * T5V);
+ TbM = KP707106781 * (TbI - TbL);
+ TbP = TbN - TbO;
+ TbQ = TbM + TbP;
+ TdK = TbP - TbM;
+ }
+ Tfq = KP707106781 * (TbS + TbR);
+ Tfr = TbN + TbO;
+ Tfs = Tfq - Tfr;
+ ThD = Tfq + Tfr;
+ {
+ E T7s, T7v, TbT, TbW;
+ T7s = TR - TY;
+ T7v = T7t - T7u;
+ T7w = T7s - T7v;
+ T82 = T7s + T7v;
+ TbT = KP707106781 * (TbR - TbS);
+ TbW = TbU - TbV;
+ TbX = TbT + TbW;
+ TdL = TbW - TbT;
+ }
+ }
+ {
+ E Ti, T2g, Tl, T2j, T2d, T2k, Tfc, Tfb, Tc5, Tc2, Tp, T2p, Ts, T2s, T2m;
+ E T2t, Tff, Tfe, Tcc, Tc9;
+ {
+ E Tc0, Tc4, Tc3, Tc1;
+ {
+ E Tg, Th, T2e, T2f;
+ Tg = rio[WS(ios, 4)];
+ Th = iio[-WS(ios, 36)];
+ Ti = Tg + Th;
+ Tc0 = Tg - Th;
+ T2e = iio[-WS(ios, 4)];
+ T2f = rio[WS(ios, 36)];
+ T2g = T2e - T2f;
+ Tc4 = T2e + T2f;
+ }
+ {
+ E Tj, Tk, T2h, T2i;
+ Tj = rio[WS(ios, 20)];
+ Tk = iio[-WS(ios, 52)];
+ Tl = Tj + Tk;
+ Tc3 = Tj - Tk;
+ T2h = iio[-WS(ios, 20)];
+ T2i = rio[WS(ios, 52)];
+ T2j = T2h - T2i;
+ Tc1 = T2h + T2i;
+ }
+ T2d = Ti - Tl;
+ T2k = T2g - T2j;
+ Tfc = Tc0 + Tc1;
+ Tfb = Tc4 - Tc3;
+ Tc5 = Tc3 + Tc4;
+ Tc2 = Tc0 - Tc1;
+ }
+ {
+ E Tc7, Tcb, Tca, Tc8;
+ {
+ E Tn, To, T2n, T2o;
+ Tn = iio[-WS(ios, 60)];
+ To = rio[WS(ios, 28)];
+ Tp = Tn + To;
+ Tc7 = Tn - To;
+ T2n = iio[-WS(ios, 28)];
+ T2o = rio[WS(ios, 60)];
+ T2p = T2n - T2o;
+ Tcb = T2o + T2n;
+ }
+ {
+ E Tq, Tr, T2q, T2r;
+ Tq = rio[WS(ios, 12)];
+ Tr = iio[-WS(ios, 44)];
+ Ts = Tq + Tr;
+ Tca = Tq - Tr;
+ T2q = iio[-WS(ios, 12)];
+ T2r = rio[WS(ios, 44)];
+ T2s = T2q - T2r;
+ Tc8 = T2q + T2r;
+ }
+ T2m = Tp - Ts;
+ T2t = T2p - T2s;
+ Tff = Tca + Tcb;
+ Tfe = Tc7 + Tc8;
+ Tcc = Tca - Tcb;
+ Tc9 = Tc7 - Tc8;
+ }
+ {
+ E Tm, Tt, Tfd, Tfg;
+ Tm = Ti + Tl;
+ Tt = Tp + Ts;
+ Tu = Tm + Tt;
+ T84 = Tt - Tm;
+ Tfd = FNMS(KP382683432, Tfc, KP923879532 * Tfb);
+ Tfg = FNMS(KP923879532, Tff, KP382683432 * Tfe);
+ Tfh = Tfd + Tfg;
+ ThG = Tfg - Tfd;
+ }
+ {
+ E Tgk, Tgl, T2l, T2u;
+ Tgk = FMA(KP382683432, Tfb, KP923879532 * Tfc);
+ Tgl = FMA(KP923879532, Tfe, KP382683432 * Tff);
+ Tgm = Tgk + Tgl;
+ ThN = Tgk - Tgl;
+ T2l = T2d + T2k;
+ T2u = T2m - T2t;
+ T2v = KP707106781 * (T2l + T2u);
+ T6m = KP707106781 * (T2l - T2u);
+ }
+ {
+ E T4I, T4J, Tc6, Tcd;
+ T4I = T2k - T2d;
+ T4J = T2m + T2t;
+ T4K = KP707106781 * (T4I + T4J);
+ T5P = KP707106781 * (T4J - T4I);
+ Tc6 = FNMS(KP382683432, Tc5, KP923879532 * Tc2);
+ Tcd = FMA(KP923879532, Tc9, KP382683432 * Tcc);
+ Tce = Tc6 + Tcd;
+ TdF = Tcd - Tc6;
+ }
+ {
+ E TcB, TcC, T7j, T7k;
+ TcB = FMA(KP923879532, Tc5, KP382683432 * Tc2);
+ TcC = FNMS(KP382683432, Tc9, KP923879532 * Tcc);
+ TcD = TcB + TcC;
+ Tec = TcB - TcC;
+ T7j = T2g + T2j;
+ T7k = T2s + T2p;
+ T7l = T7j - T7k;
+ T9p = T7j + T7k;
+ }
+ }
+ {
+ E T1z, T1C, T1D, Tbg, TaQ, T4r, T4u, T7Q, Tbh, TaR, T1G, T3V, T1J, T3Y, T1K;
+ E T7R, Tbe, Tbd, TaO, TaL, T1S, TfV, TfW, T41, T48, TaW, TaZ, T7L, T1Z, TfY;
+ E TfZ, T4a, T4h, Tb3, Tb6, T7M;
+ {
+ E T1x, T1y, T1A, T1B;
+ T1x = iio[-WS(ios, 63)];
+ T1y = rio[WS(ios, 31)];
+ T1z = T1x + T1y;
+ T1A = rio[WS(ios, 15)];
+ T1B = iio[-WS(ios, 47)];
+ T1C = T1A + T1B;
+ T1D = T1z + T1C;
+ Tbg = T1x - T1y;
+ TaQ = T1A - T1B;
+ }
+ {
+ E T4p, T4q, T4s, T4t;
+ T4p = iio[-WS(ios, 31)];
+ T4q = rio[WS(ios, 63)];
+ T4r = T4p - T4q;
+ T4s = iio[-WS(ios, 15)];
+ T4t = rio[WS(ios, 47)];
+ T4u = T4s - T4t;
+ T7Q = T4r + T4u;
+ Tbh = T4s + T4t;
+ TaR = T4q + T4p;
+ }
+ {
+ E TaJ, TaK, TaM, TaN;
+ {
+ E T1E, T1F, T3T, T3U;
+ T1E = rio[WS(ios, 7)];
+ T1F = iio[-WS(ios, 39)];
+ T1G = T1E + T1F;
+ TaJ = T1E - T1F;
+ T3T = iio[-WS(ios, 7)];
+ T3U = rio[WS(ios, 39)];
+ T3V = T3T - T3U;
+ TaK = T3T + T3U;
+ }
+ {
+ E T1H, T1I, T3W, T3X;
+ T1H = iio[-WS(ios, 55)];
+ T1I = rio[WS(ios, 23)];
+ T1J = T1H + T1I;
+ TaM = T1H - T1I;
+ T3W = iio[-WS(ios, 23)];
+ T3X = rio[WS(ios, 55)];
+ T3Y = T3W - T3X;
+ TaN = T3X + T3W;
+ }
+ T1K = T1G + T1J;
+ T7R = T3V + T3Y;
+ Tbe = TaK - TaJ;
+ Tbd = TaM - TaN;
+ TaO = TaM + TaN;
+ TaL = TaJ + TaK;
+ }
+ {
+ E T1O, TaX, T44, TaV, T1R, TaU, T47, TaY;
+ {
+ E T1M, T1N, T42, T43;
+ T1M = rio[WS(ios, 3)];
+ T1N = iio[-WS(ios, 35)];
+ T1O = T1M + T1N;
+ TaX = T1M - T1N;
+ T42 = iio[-WS(ios, 3)];
+ T43 = rio[WS(ios, 35)];
+ T44 = T42 - T43;
+ TaV = T42 + T43;
+ }
+ {
+ E T1P, T1Q, T45, T46;
+ T1P = rio[WS(ios, 19)];
+ T1Q = iio[-WS(ios, 51)];
+ T1R = T1P + T1Q;
+ TaU = T1P - T1Q;
+ T45 = iio[-WS(ios, 19)];
+ T46 = rio[WS(ios, 51)];
+ T47 = T45 - T46;
+ TaY = T45 + T46;
+ }
+ T1S = T1O + T1R;
+ TfV = TaV - TaU;
+ TfW = TaX + TaY;
+ T41 = T1O - T1R;
+ T48 = T44 - T47;
+ TaW = TaU + TaV;
+ TaZ = TaX - TaY;
+ T7L = T44 + T47;
+ }
+ {
+ E T1V, Tb4, T4d, Tb2, T1Y, Tb1, T4g, Tb5;
+ {
+ E T1T, T1U, T4b, T4c;
+ T1T = iio[-WS(ios, 59)];
+ T1U = rio[WS(ios, 27)];
+ T1V = T1T + T1U;
+ Tb4 = T1T - T1U;
+ T4b = iio[-WS(ios, 27)];
+ T4c = rio[WS(ios, 59)];
+ T4d = T4b - T4c;
+ Tb2 = T4c + T4b;
+ }
+ {
+ E T1W, T1X, T4e, T4f;
+ T1W = rio[WS(ios, 11)];
+ T1X = iio[-WS(ios, 43)];
+ T1Y = T1W + T1X;
+ Tb1 = T1W - T1X;
+ T4e = iio[-WS(ios, 11)];
+ T4f = rio[WS(ios, 43)];
+ T4g = T4e - T4f;
+ Tb5 = T4e + T4f;
+ }
+ T1Z = T1V + T1Y;
+ TfY = Tb4 + Tb5;
+ TfZ = Tb1 + Tb2;
+ T4a = T1V - T1Y;
+ T4h = T4d - T4g;
+ Tb3 = Tb1 - Tb2;
+ Tb6 = Tb4 - Tb5;
+ T7M = T4g + T4d;
+ }
+ T1L = T1D + T1K;
+ T20 = T1S + T1Z;
+ T9c = T1L - T20;
+ T9d = T7R + T7Q;
+ T9e = T7L + T7M;
+ T9f = T9d - T9e;
+ {
+ E T3S, T3Z, TfX, Tg0;
+ T3S = T1z - T1C;
+ T3Z = T3V - T3Y;
+ T40 = T3S + T3Z;
+ T66 = T3S - T3Z;
+ TfX = FNMS(KP382683432, TfW, KP923879532 * TfV);
+ Tg0 = FNMS(KP923879532, TfZ, KP382683432 * TfY);
+ Tg1 = TfX + Tg0;
+ Thu = Tg0 - TfX;
+ }
+ {
+ E Tg6, Tg7, Tg3, Tg4;
+ Tg6 = KP707106781 * (TaL + TaO);
+ Tg7 = Tbg + Tbh;
+ Tg8 = Tg6 + Tg7;
+ Thv = Tg7 - Tg6;
+ Tg3 = FMA(KP382683432, TfV, KP923879532 * TfW);
+ Tg4 = FMA(KP923879532, TfY, KP382683432 * TfZ);
+ Tg5 = Tg3 + Tg4;
+ Thr = Tg3 - Tg4;
+ }
+ {
+ E T4l, T4m, T49, T4i;
+ T4l = T48 - T41;
+ T4m = T4a + T4h;
+ T4n = KP707106781 * (T4l + T4m);
+ T67 = KP707106781 * (T4m - T4l);
+ T49 = T41 + T48;
+ T4i = T4a - T4h;
+ T4j = KP707106781 * (T49 + T4i);
+ T69 = KP707106781 * (T49 - T4i);
+ }
+ {
+ E T4o, T4v, TaP, TaS;
+ T4o = T1J - T1G;
+ T4v = T4r - T4u;
+ T4w = T4o + T4v;
+ T6a = T4v - T4o;
+ TaP = KP707106781 * (TaL - TaO);
+ TaS = TaQ - TaR;
+ TaT = TaP + TaS;
+ TdW = TaS - TaP;
+ }
+ {
+ E Tb0, Tb7, TfS, TfT;
+ Tb0 = FMA(KP923879532, TaW, KP382683432 * TaZ);
+ Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb3);
+ Tb8 = Tb0 + Tb7;
+ TdZ = Tb0 - Tb7;
+ TfS = KP707106781 * (Tbe + Tbd);
+ TfT = TaQ + TaR;
+ TfU = TfS - TfT;
+ Ths = TfS + TfT;
+ }
+ {
+ E T7K, T7N, T7P, T7S;
+ T7K = T1D - T1K;
+ T7N = T7L - T7M;
+ T7O = T7K + T7N;
+ T8y = T7K - T7N;
+ T7P = T1Z - T1S;
+ T7S = T7Q - T7R;
+ T7T = T7P + T7S;
+ T8z = T7S - T7P;
+ }
+ {
+ E Tba, Tbb, Tbf, Tbi;
+ Tba = FNMS(KP382683432, TaW, KP923879532 * TaZ);
+ Tbb = FMA(KP923879532, Tb6, KP382683432 * Tb3);
+ Tbc = Tba + Tbb;
+ TdX = Tbb - Tba;
+ Tbf = KP707106781 * (Tbd - Tbe);
+ Tbi = Tbg - Tbh;
+ Tbj = Tbf + Tbi;
+ Te0 = Tbi - Tbf;
+ }
+ }
+ {
+ E T14, T17, T18, Tax, Tas, T3K, T3N, T7F, Tay, Tat, T1b, T3e, T1e, T3h, T1f;
+ E T7G, TaB, TaA, Taq, Tan, T1n, TfC, TfD, T3k, T3r, Ta8, Tab, T7A, T1u, TfF;
+ E TfG, T3t, T3A, Taf, Tai, T7B;
+ {
+ E T12, T13, T15, T16;
+ T12 = rio[WS(ios, 1)];
+ T13 = iio[-WS(ios, 33)];
+ T14 = T12 + T13;
+ T15 = rio[WS(ios, 17)];
+ T16 = iio[-WS(ios, 49)];
+ T17 = T15 + T16;
+ T18 = T14 + T17;
+ Tax = T15 - T16;
+ Tas = T12 - T13;
+ }
+ {
+ E T3I, T3J, T3L, T3M;
+ T3I = iio[-WS(ios, 1)];
+ T3J = rio[WS(ios, 33)];
+ T3K = T3I - T3J;
+ T3L = iio[-WS(ios, 17)];
+ T3M = rio[WS(ios, 49)];
+ T3N = T3L - T3M;
+ T7F = T3K + T3N;
+ Tay = T3I + T3J;
+ Tat = T3L + T3M;
+ }
+ {
+ E Tap, Tao, Tal, Tam;
+ {
+ E T19, T1a, T3c, T3d;
+ T19 = rio[WS(ios, 9)];
+ T1a = iio[-WS(ios, 41)];
+ T1b = T19 + T1a;
+ Tap = T19 - T1a;
+ T3c = iio[-WS(ios, 9)];
+ T3d = rio[WS(ios, 41)];
+ T3e = T3c - T3d;
+ Tao = T3c + T3d;
+ }
+ {
+ E T1c, T1d, T3f, T3g;
+ T1c = iio[-WS(ios, 57)];
+ T1d = rio[WS(ios, 25)];
+ T1e = T1c + T1d;
+ Tal = T1c - T1d;
+ T3f = iio[-WS(ios, 25)];
+ T3g = rio[WS(ios, 57)];
+ T3h = T3f - T3g;
+ Tam = T3g + T3f;
+ }
+ T1f = T1b + T1e;
+ T7G = T3e + T3h;
+ TaB = Tal + Tam;
+ TaA = Tap + Tao;
+ Taq = Tao - Tap;
+ Tan = Tal - Tam;
+ }
+ {
+ E T1j, Ta6, T3n, Taa, T1m, Ta9, T3q, Ta7;
+ {
+ E T1h, T1i, T3l, T3m;
+ T1h = rio[WS(ios, 5)];
+ T1i = iio[-WS(ios, 37)];
+ T1j = T1h + T1i;
+ Ta6 = T1h - T1i;
+ T3l = iio[-WS(ios, 5)];
+ T3m = rio[WS(ios, 37)];
+ T3n = T3l - T3m;
+ Taa = T3l + T3m;
+ }
+ {
+ E T1k, T1l, T3o, T3p;
+ T1k = rio[WS(ios, 21)];
+ T1l = iio[-WS(ios, 53)];
+ T1m = T1k + T1l;
+ Ta9 = T1k - T1l;
+ T3o = iio[-WS(ios, 21)];
+ T3p = rio[WS(ios, 53)];
+ T3q = T3o - T3p;
+ Ta7 = T3o + T3p;
+ }
+ T1n = T1j + T1m;
+ TfC = Taa - Ta9;
+ TfD = Ta6 + Ta7;
+ T3k = T1j - T1m;
+ T3r = T3n - T3q;
+ Ta8 = Ta6 - Ta7;
+ Tab = Ta9 + Taa;
+ T7A = T3n + T3q;
+ }
+ {
+ E T1q, Tad, T3w, Tah, T1t, Tag, T3z, Tae;
+ {
+ E T1o, T1p, T3u, T3v;
+ T1o = iio[-WS(ios, 61)];
+ T1p = rio[WS(ios, 29)];
+ T1q = T1o + T1p;
+ Tad = T1o - T1p;
+ T3u = iio[-WS(ios, 29)];
+ T3v = rio[WS(ios, 61)];
+ T3w = T3u - T3v;
+ Tah = T3v + T3u;
+ }
+ {
+ E T1r, T1s, T3x, T3y;
+ T1r = rio[WS(ios, 13)];
+ T1s = iio[-WS(ios, 45)];
+ T1t = T1r + T1s;
+ Tag = T1r - T1s;
+ T3x = iio[-WS(ios, 13)];
+ T3y = rio[WS(ios, 45)];
+ T3z = T3x - T3y;
+ Tae = T3x + T3y;
+ }
+ T1u = T1q + T1t;
+ TfF = Tad + Tae;
+ TfG = Tag + Tah;
+ T3t = T1q - T1t;
+ T3A = T3w - T3z;
+ Taf = Tad - Tae;
+ Tai = Tag - Tah;
+ T7B = T3z + T3w;
+ }
+ T1g = T18 + T1f;
+ T1v = T1n + T1u;
+ T97 = T1g - T1v;
+ T98 = T7G + T7F;
+ T99 = T7A + T7B;
+ T9a = T98 - T99;
+ {
+ E T3b, T3i, TfE, TfH;
+ T3b = T14 - T17;
+ T3i = T3e - T3h;
+ T3j = T3b + T3i;
+ T5Z = T3b - T3i;
+ TfE = FNMS(KP382683432, TfD, KP923879532 * TfC);
+ TfH = FNMS(KP923879532, TfG, KP382683432 * TfF);
+ TfI = TfE + TfH;
+ Thk = TfH - TfE;
+ }
+ {
+ E TfN, TfO, TfK, TfL;
+ TfN = KP707106781 * (TaA + TaB);
+ TfO = Tas + Tat;
+ TfP = TfN + TfO;
+ Thl = TfO - TfN;
+ TfK = FMA(KP382683432, TfC, KP923879532 * TfD);
+ TfL = FMA(KP923879532, TfF, KP382683432 * TfG);
+ TfM = TfK + TfL;
+ Tho = TfK - TfL;
+ }
+ {
+ E T3E, T3F, T3s, T3B;
+ T3E = T3r - T3k;
+ T3F = T3t + T3A;
+ T3G = KP707106781 * (T3E + T3F);
+ T60 = KP707106781 * (T3F - T3E);
+ T3s = T3k + T3r;
+ T3B = T3t - T3A;
+ T3C = KP707106781 * (T3s + T3B);
+ T62 = KP707106781 * (T3s - T3B);
+ }
+ {
+ E T3H, T3O, Tac, Taj;
+ T3H = T1e - T1b;
+ T3O = T3K - T3N;
+ T3P = T3H + T3O;
+ T63 = T3O - T3H;
+ Tac = FNMS(KP382683432, Tab, KP923879532 * Ta8);
+ Taj = FMA(KP923879532, Taf, KP382683432 * Tai);
+ Tak = Tac + Taj;
+ TdQ = Taj - Tac;
+ }
+ {
+ E Tar, Tau, Tfz, TfA;
+ Tar = KP707106781 * (Tan - Taq);
+ Tau = Tas - Tat;
+ Tav = Tar + Tau;
+ TdT = Tau - Tar;
+ Tfz = Tay - Tax;
+ TfA = KP707106781 * (Taq + Tan);
+ TfB = Tfz + TfA;
+ Thn = Tfz - TfA;
+ }
+ {
+ E T7z, T7C, T7E, T7H;
+ T7z = T18 - T1f;
+ T7C = T7A - T7B;
+ T7D = T7z + T7C;
+ T8v = T7z - T7C;
+ T7E = T1u - T1n;
+ T7H = T7F - T7G;
+ T7I = T7E + T7H;
+ T8w = T7H - T7E;
+ }
+ {
+ E Taz, TaC, TaE, TaF;
+ Taz = Tax + Tay;
+ TaC = KP707106781 * (TaA - TaB);
+ TaD = Taz + TaC;
+ TdP = Taz - TaC;
+ TaE = FMA(KP923879532, Tab, KP382683432 * Ta8);
+ TaF = FNMS(KP382683432, Taf, KP923879532 * Tai);
+ TaG = TaE + TaF;
+ TdS = TaE - TaF;
+ }
+ }
+ {
+ E T11, T9K, T9T, Ta2, T22, T9Q, T9N, Ta3;
+ {
+ E Tv, T10, T9R, T9S;
+ Tv = Tf + Tu;
+ T10 = TK + TZ;
+ T11 = Tv + T10;
+ T9K = Tv - T10;
+ T9R = T9p + T9o;
+ T9S = T93 + T94;
+ T9T = T9R - T9S;
+ Ta2 = T9S + T9R;
+ }
+ {
+ E T1w, T21, T9L, T9M;
+ T1w = T1g + T1v;
+ T21 = T1L + T20;
+ T22 = T1w + T21;
+ T9Q = T21 - T1w;
+ T9L = T99 + T98;
+ T9M = T9e + T9d;
+ T9N = T9L - T9M;
+ Ta3 = T9L + T9M;
+ }
+ rio[0] = T11 + T22;
+ iio[-WS(ios, 63)] = Ta3 + Ta2;
+ {
+ E T9O, T9U, T9J, T9P;
+ T9O = T9K + T9N;
+ T9U = T9Q + T9T;
+ T9J = W[94];
+ T9P = W[95];
+ rio[WS(ios, 48)] = FNMS(T9P, T9U, T9J * T9O);
+ iio[-WS(ios, 15)] = FMA(T9P, T9O, T9J * T9U);
+ }
+ {
+ E T9W, T9Y, T9V, T9X;
+ T9W = T9K - T9N;
+ T9Y = T9T - T9Q;
+ T9V = W[30];
+ T9X = W[31];
+ rio[WS(ios, 16)] = FNMS(T9X, T9Y, T9V * T9W);
+ iio[-WS(ios, 47)] = FMA(T9X, T9W, T9V * T9Y);
+ }
+ {
+ E Ta0, Ta4, T9Z, Ta1;
+ Ta0 = T11 - T22;
+ Ta4 = Ta2 - Ta3;
+ T9Z = W[62];
+ Ta1 = W[63];
+ rio[WS(ios, 32)] = FNMS(Ta1, Ta4, T9Z * Ta0);
+ iio[-WS(ios, 31)] = FMA(Ta1, Ta0, T9Z * Ta4);
+ }
+ }
+ {
+ E T96, T9y, T9r, T9D, T9h, T9C, T9m, T9z;
+ {
+ E T92, T95, T9n, T9q;
+ T92 = Tf - Tu;
+ T95 = T93 - T94;
+ T96 = T92 + T95;
+ T9y = T92 - T95;
+ T9n = TZ - TK;
+ T9q = T9o - T9p;
+ T9r = T9n + T9q;
+ T9D = T9q - T9n;
+ }
+ {
+ E T9b, T9g, T9k, T9l;
+ T9b = T97 + T9a;
+ T9g = T9c - T9f;
+ T9h = KP707106781 * (T9b + T9g);
+ T9C = KP707106781 * (T9b - T9g);
+ T9k = T9a - T97;
+ T9l = T9c + T9f;
+ T9m = KP707106781 * (T9k + T9l);
+ T9z = KP707106781 * (T9l - T9k);
+ }
+ {
+ E T9i, T9s, T91, T9j;
+ T9i = T96 + T9h;
+ T9s = T9m + T9r;
+ T91 = W[110];
+ T9j = W[111];
+ rio[WS(ios, 56)] = FNMS(T9j, T9s, T91 * T9i);
+ iio[-WS(ios, 7)] = FMA(T9j, T9i, T91 * T9s);
+ }
+ {
+ E T9G, T9I, T9F, T9H;
+ T9G = T9y - T9z;
+ T9I = T9D - T9C;
+ T9F = W[78];
+ T9H = W[79];
+ rio[WS(ios, 40)] = FNMS(T9H, T9I, T9F * T9G);
+ iio[-WS(ios, 23)] = FMA(T9H, T9G, T9F * T9I);
+ }
+ {
+ E T9u, T9w, T9t, T9v;
+ T9u = T96 - T9h;
+ T9w = T9r - T9m;
+ T9t = W[46];
+ T9v = W[47];
+ rio[WS(ios, 24)] = FNMS(T9v, T9w, T9t * T9u);
+ iio[-WS(ios, 39)] = FMA(T9v, T9u, T9t * T9w);
+ }
+ {
+ E T9A, T9E, T9x, T9B;
+ T9A = T9y + T9z;
+ T9E = T9C + T9D;
+ T9x = W[14];
+ T9B = W[15];
+ rio[WS(ios, 8)] = FNMS(T9B, T9E, T9x * T9A);
+ iio[-WS(ios, 55)] = FMA(T9B, T9A, T9x * T9E);
+ }
+ }
+ {
+ E T8u, T8Q, T8J, T8V, T8B, T8U, T8G, T8R;
+ {
+ E T8s, T8t, T8H, T8I;
+ T8s = T7i - T7l;
+ T8t = KP707106781 * (T82 - T81);
+ T8u = T8s + T8t;
+ T8Q = T8s - T8t;
+ T8H = KP707106781 * (T7r - T7w);
+ T8I = T87 - T84;
+ T8J = T8H + T8I;
+ T8V = T8I - T8H;
+ }
+ {
+ E T8x, T8A, T8E, T8F;
+ T8x = FNMS(KP382683432, T8w, KP923879532 * T8v);
+ T8A = FMA(KP923879532, T8y, KP382683432 * T8z);
+ T8B = T8x + T8A;
+ T8U = T8A - T8x;
+ T8E = FMA(KP382683432, T8v, KP923879532 * T8w);
+ T8F = FNMS(KP382683432, T8y, KP923879532 * T8z);
+ T8G = T8E + T8F;
+ T8R = T8E - T8F;
+ }
+ {
+ E T8C, T8K, T8r, T8D;
+ T8C = T8u + T8B;
+ T8K = T8G + T8J;
+ T8r = W[6];
+ T8D = W[7];
+ rio[WS(ios, 4)] = FNMS(T8D, T8K, T8r * T8C);
+ iio[-WS(ios, 59)] = FMA(T8D, T8C, T8r * T8K);
+ }
+ {
+ E T8Y, T90, T8X, T8Z;
+ T8Y = T8Q - T8R;
+ T90 = T8V - T8U;
+ T8X = W[38];
+ T8Z = W[39];
+ rio[WS(ios, 20)] = FNMS(T8Z, T90, T8X * T8Y);
+ iio[-WS(ios, 43)] = FMA(T8Z, T8Y, T8X * T90);
+ }
+ {
+ E T8M, T8O, T8L, T8N;
+ T8M = T8u - T8B;
+ T8O = T8J - T8G;
+ T8L = W[70];
+ T8N = W[71];
+ rio[WS(ios, 36)] = FNMS(T8N, T8O, T8L * T8M);
+ iio[-WS(ios, 27)] = FMA(T8N, T8M, T8L * T8O);
+ }
+ {
+ E T8S, T8W, T8P, T8T;
+ T8S = T8Q + T8R;
+ T8W = T8U + T8V;
+ T8P = W[102];
+ T8T = W[103];
+ rio[WS(ios, 52)] = FNMS(T8T, T8W, T8P * T8S);
+ iio[-WS(ios, 11)] = FMA(T8T, T8S, T8P * T8W);
+ }
+ }
+ {
+ E T7y, T8g, T89, T8l, T7V, T8k, T80, T8h;
+ {
+ E T7m, T7x, T83, T88;
+ T7m = T7i + T7l;
+ T7x = KP707106781 * (T7r + T7w);
+ T7y = T7m + T7x;
+ T8g = T7m - T7x;
+ T83 = KP707106781 * (T81 + T82);
+ T88 = T84 + T87;
+ T89 = T83 + T88;
+ T8l = T88 - T83;
+ }
+ {
+ E T7J, T7U, T7Y, T7Z;
+ T7J = FMA(KP923879532, T7D, KP382683432 * T7I);
+ T7U = FNMS(KP382683432, T7T, KP923879532 * T7O);
+ T7V = T7J + T7U;
+ T8k = T7J - T7U;
+ T7Y = FNMS(KP382683432, T7D, KP923879532 * T7I);
+ T7Z = FMA(KP382683432, T7O, KP923879532 * T7T);
+ T80 = T7Y + T7Z;
+ T8h = T7Z - T7Y;
+ }
+ {
+ E T7W, T8a, T7h, T7X;
+ T7W = T7y + T7V;
+ T8a = T80 + T89;
+ T7h = W[118];
+ T7X = W[119];
+ rio[WS(ios, 60)] = FNMS(T7X, T8a, T7h * T7W);
+ iio[-WS(ios, 3)] = FMA(T7X, T7W, T7h * T8a);
+ }
+ {
+ E T8o, T8q, T8n, T8p;
+ T8o = T8g - T8h;
+ T8q = T8l - T8k;
+ T8n = W[86];
+ T8p = W[87];
+ rio[WS(ios, 44)] = FNMS(T8p, T8q, T8n * T8o);
+ iio[-WS(ios, 19)] = FMA(T8p, T8o, T8n * T8q);
+ }
+ {
+ E T8c, T8e, T8b, T8d;
+ T8c = T7y - T7V;
+ T8e = T89 - T80;
+ T8b = W[54];
+ T8d = W[55];
+ rio[WS(ios, 28)] = FNMS(T8d, T8e, T8b * T8c);
+ iio[-WS(ios, 35)] = FMA(T8d, T8c, T8b * T8e);
+ }
+ {
+ E T8i, T8m, T8f, T8j;
+ T8i = T8g + T8h;
+ T8m = T8k + T8l;
+ T8f = W[22];
+ T8j = W[23];
+ rio[WS(ios, 12)] = FNMS(T8j, T8m, T8f * T8i);
+ iio[-WS(ios, 51)] = FMA(T8j, T8i, T8f * T8m);
+ }
+ }
+ {
+ E T6K, T76, T6Z, T7b, T6R, T7a, T6W, T77;
+ {
+ E T6I, T6J, T6X, T6Y;
+ T6I = T5O - T5P;
+ T6J = T6j - T6k;
+ T6K = T6I + T6J;
+ T76 = T6I - T6J;
+ T6X = T5W - T5T;
+ T6Y = T6n - T6m;
+ T6Z = T6X + T6Y;
+ T7b = T6Y - T6X;
+ {
+ E T6N, T6U, T6Q, T6V;
+ {
+ E T6L, T6M, T6O, T6P;
+ T6L = T5Z - T60;
+ T6M = T63 - T62;
+ T6N = FMA(KP831469612, T6L, KP555570233 * T6M);
+ T6U = FNMS(KP555570233, T6L, KP831469612 * T6M);
+ T6O = T66 - T67;
+ T6P = T6a - T69;
+ T6Q = FNMS(KP555570233, T6P, KP831469612 * T6O);
+ T6V = FMA(KP555570233, T6O, KP831469612 * T6P);
+ }
+ T6R = T6N + T6Q;
+ T7a = T6N - T6Q;
+ T6W = T6U + T6V;
+ T77 = T6V - T6U;
+ }
+ }
+ {
+ E T6S, T70, T6H, T6T;
+ T6S = T6K + T6R;
+ T70 = T6W + T6Z;
+ T6H = W[114];
+ T6T = W[115];
+ rio[WS(ios, 58)] = FNMS(T6T, T70, T6H * T6S);
+ iio[-WS(ios, 5)] = FMA(T6T, T6S, T6H * T70);
+ }
+ {
+ E T7e, T7g, T7d, T7f;
+ T7e = T76 - T77;
+ T7g = T7b - T7a;
+ T7d = W[82];
+ T7f = W[83];
+ rio[WS(ios, 42)] = FNMS(T7f, T7g, T7d * T7e);
+ iio[-WS(ios, 21)] = FMA(T7f, T7e, T7d * T7g);
+ }
+ {
+ E T72, T74, T71, T73;
+ T72 = T6K - T6R;
+ T74 = T6Z - T6W;
+ T71 = W[50];
+ T73 = W[51];
+ rio[WS(ios, 26)] = FNMS(T73, T74, T71 * T72);
+ iio[-WS(ios, 37)] = FMA(T73, T72, T71 * T74);
+ }
+ {
+ E T78, T7c, T75, T79;
+ T78 = T76 + T77;
+ T7c = T7a + T7b;
+ T75 = W[18];
+ T79 = W[19];
+ rio[WS(ios, 10)] = FNMS(T79, T7c, T75 * T78);
+ iio[-WS(ios, 53)] = FMA(T79, T78, T75 * T7c);
+ }
+ }
+ {
+ E T3a, T52, T4V, T57, T4z, T56, T4E, T53;
+ {
+ E T2w, T39, T4H, T4U;
+ T2w = T2c + T2v;
+ T39 = T2P + T38;
+ T3a = T2w + T39;
+ T52 = T2w - T39;
+ T4H = T4F + T4G;
+ T4U = T4K + T4T;
+ T4V = T4H + T4U;
+ T57 = T4U - T4H;
+ {
+ E T3R, T4C, T4y, T4D;
+ {
+ E T3D, T3Q, T4k, T4x;
+ T3D = T3j + T3C;
+ T3Q = T3G + T3P;
+ T3R = FMA(KP980785280, T3D, KP195090322 * T3Q);
+ T4C = FNMS(KP195090322, T3D, KP980785280 * T3Q);
+ T4k = T40 + T4j;
+ T4x = T4n + T4w;
+ T4y = FNMS(KP195090322, T4x, KP980785280 * T4k);
+ T4D = FMA(KP195090322, T4k, KP980785280 * T4x);
+ }
+ T4z = T3R + T4y;
+ T56 = T3R - T4y;
+ T4E = T4C + T4D;
+ T53 = T4D - T4C;
+ }
+ }
+ {
+ E T4A, T4W, T23, T4B;
+ T4A = T3a + T4z;
+ T4W = T4E + T4V;
+ T23 = W[122];
+ T4B = W[123];
+ rio[WS(ios, 62)] = FNMS(T4B, T4W, T23 * T4A);
+ iio[-WS(ios, 1)] = FMA(T4B, T4A, T23 * T4W);
+ }
+ {
+ E T5a, T5c, T59, T5b;
+ T5a = T52 - T53;
+ T5c = T57 - T56;
+ T59 = W[90];
+ T5b = W[91];
+ rio[WS(ios, 46)] = FNMS(T5b, T5c, T59 * T5a);
+ iio[-WS(ios, 17)] = FMA(T5b, T5a, T59 * T5c);
+ }
+ {
+ E T4Y, T50, T4X, T4Z;
+ T4Y = T3a - T4z;
+ T50 = T4V - T4E;
+ T4X = W[58];
+ T4Z = W[59];
+ rio[WS(ios, 30)] = FNMS(T4Z, T50, T4X * T4Y);
+ iio[-WS(ios, 33)] = FMA(T4Z, T4Y, T4X * T50);
+ }
+ {
+ E T54, T58, T51, T55;
+ T54 = T52 + T53;
+ T58 = T56 + T57;
+ T51 = W[26];
+ T55 = W[27];
+ rio[WS(ios, 14)] = FNMS(T55, T58, T51 * T54);
+ iio[-WS(ios, 49)] = FMA(T55, T54, T51 * T58);
+ }
+ }
+ {
+ E T5g, T5C, T5v, T5H, T5n, T5G, T5s, T5D;
+ {
+ E T5e, T5f, T5t, T5u;
+ T5e = T2c - T2v;
+ T5f = T4G - T4F;
+ T5g = T5e + T5f;
+ T5C = T5e - T5f;
+ T5t = T2P - T38;
+ T5u = T4T - T4K;
+ T5v = T5t + T5u;
+ T5H = T5u - T5t;
+ {
+ E T5j, T5q, T5m, T5r;
+ {
+ E T5h, T5i, T5k, T5l;
+ T5h = T3j - T3C;
+ T5i = T3P - T3G;
+ T5j = FNMS(KP555570233, T5i, KP831469612 * T5h);
+ T5q = FMA(KP555570233, T5h, KP831469612 * T5i);
+ T5k = T40 - T4j;
+ T5l = T4w - T4n;
+ T5m = FMA(KP831469612, T5k, KP555570233 * T5l);
+ T5r = FNMS(KP555570233, T5k, KP831469612 * T5l);
+ }
+ T5n = T5j + T5m;
+ T5G = T5m - T5j;
+ T5s = T5q + T5r;
+ T5D = T5q - T5r;
+ }
+ }
+ {
+ E T5o, T5w, T5d, T5p;
+ T5o = T5g + T5n;
+ T5w = T5s + T5v;
+ T5d = W[10];
+ T5p = W[11];
+ rio[WS(ios, 6)] = FNMS(T5p, T5w, T5d * T5o);
+ iio[-WS(ios, 57)] = FMA(T5p, T5o, T5d * T5w);
+ }
+ {
+ E T5K, T5M, T5J, T5L;
+ T5K = T5C - T5D;
+ T5M = T5H - T5G;
+ T5J = W[42];
+ T5L = W[43];
+ rio[WS(ios, 22)] = FNMS(T5L, T5M, T5J * T5K);
+ iio[-WS(ios, 41)] = FMA(T5L, T5K, T5J * T5M);
+ }
+ {
+ E T5y, T5A, T5x, T5z;
+ T5y = T5g - T5n;
+ T5A = T5v - T5s;
+ T5x = W[74];
+ T5z = W[75];
+ rio[WS(ios, 38)] = FNMS(T5z, T5A, T5x * T5y);
+ iio[-WS(ios, 25)] = FMA(T5z, T5y, T5x * T5A);
+ }
+ {
+ E T5E, T5I, T5B, T5F;
+ T5E = T5C + T5D;
+ T5I = T5G + T5H;
+ T5B = W[106];
+ T5F = W[107];
+ rio[WS(ios, 54)] = FNMS(T5F, T5I, T5B * T5E);
+ iio[-WS(ios, 9)] = FMA(T5F, T5E, T5B * T5I);
+ }
+ }
+ {
+ E T5Y, T6w, T6p, T6B, T6d, T6A, T6i, T6x;
+ {
+ E T5Q, T5X, T6l, T6o;
+ T5Q = T5O + T5P;
+ T5X = T5T + T5W;
+ T5Y = T5Q + T5X;
+ T6w = T5Q - T5X;
+ T6l = T6j + T6k;
+ T6o = T6m + T6n;
+ T6p = T6l + T6o;
+ T6B = T6o - T6l;
+ {
+ E T65, T6g, T6c, T6h;
+ {
+ E T61, T64, T68, T6b;
+ T61 = T5Z + T60;
+ T64 = T62 + T63;
+ T65 = FNMS(KP195090322, T64, KP980785280 * T61);
+ T6g = FMA(KP195090322, T61, KP980785280 * T64);
+ T68 = T66 + T67;
+ T6b = T69 + T6a;
+ T6c = FMA(KP980785280, T68, KP195090322 * T6b);
+ T6h = FNMS(KP195090322, T68, KP980785280 * T6b);
+ }
+ T6d = T65 + T6c;
+ T6A = T6c - T65;
+ T6i = T6g + T6h;
+ T6x = T6g - T6h;
+ }
+ }
+ {
+ E T6e, T6q, T5N, T6f;
+ T6e = T5Y + T6d;
+ T6q = T6i + T6p;
+ T5N = W[2];
+ T6f = W[3];
+ rio[WS(ios, 2)] = FNMS(T6f, T6q, T5N * T6e);
+ iio[-WS(ios, 61)] = FMA(T6f, T6e, T5N * T6q);
+ }
+ {
+ E T6E, T6G, T6D, T6F;
+ T6E = T6w - T6x;
+ T6G = T6B - T6A;
+ T6D = W[34];
+ T6F = W[35];
+ rio[WS(ios, 18)] = FNMS(T6F, T6G, T6D * T6E);
+ iio[-WS(ios, 45)] = FMA(T6F, T6E, T6D * T6G);
+ }
+ {
+ E T6s, T6u, T6r, T6t;
+ T6s = T5Y - T6d;
+ T6u = T6p - T6i;
+ T6r = W[66];
+ T6t = W[67];
+ rio[WS(ios, 34)] = FNMS(T6t, T6u, T6r * T6s);
+ iio[-WS(ios, 29)] = FMA(T6t, T6s, T6r * T6u);
+ }
+ {
+ E T6y, T6C, T6v, T6z;
+ T6y = T6w + T6x;
+ T6C = T6A + T6B;
+ T6v = W[98];
+ T6z = W[99];
+ rio[WS(ios, 50)] = FNMS(T6z, T6C, T6v * T6y);
+ iio[-WS(ios, 13)] = FMA(T6z, T6y, T6v * T6C);
+ }
+ }
+ {
+ E TdO, Tf1, Teq, TeH, Tef, TeW, Ten, TeM, Te3, Ter, Te8, Tem, TeE, Tf0, TeP;
+ E TeX;
+ {
+ E TdG, TeG, TdN, TeF, TdJ, TdM;
+ TdG = TdE + TdF;
+ TeG = Ted - Tec;
+ TdJ = FNMS(KP555570233, TdI, KP831469612 * TdH);
+ TdM = FMA(KP831469612, TdK, KP555570233 * TdL);
+ TdN = TdJ + TdM;
+ TeF = TdM - TdJ;
+ TdO = TdG + TdN;
+ Tf1 = TeG - TeF;
+ Teq = TdG - TdN;
+ TeH = TeF + TeG;
+ }
+ {
+ E Tee, TeK, Teb, TeL, Te9, Tea;
+ Tee = Tec + Ted;
+ TeK = TdE - TdF;
+ Te9 = FMA(KP555570233, TdH, KP831469612 * TdI);
+ Tea = FNMS(KP555570233, TdK, KP831469612 * TdL);
+ Teb = Te9 + Tea;
+ TeL = Te9 - Tea;
+ Tef = Teb + Tee;
+ TeW = TeK - TeL;
+ Ten = Tee - Teb;
+ TeM = TeK + TeL;
+ }
+ {
+ E TdV, Te6, Te2, Te7;
+ {
+ E TdR, TdU, TdY, Te1;
+ TdR = TdP + TdQ;
+ TdU = TdS + TdT;
+ TdV = FNMS(KP290284677, TdU, KP956940335 * TdR);
+ Te6 = FMA(KP290284677, TdR, KP956940335 * TdU);
+ TdY = TdW + TdX;
+ Te1 = TdZ + Te0;
+ Te2 = FMA(KP956940335, TdY, KP290284677 * Te1);
+ Te7 = FNMS(KP290284677, TdY, KP956940335 * Te1);
+ }
+ Te3 = TdV + Te2;
+ Ter = Te6 - Te7;
+ Te8 = Te6 + Te7;
+ Tem = Te2 - TdV;
+ }
+ {
+ E TeA, TeN, TeD, TeO;
+ {
+ E Tey, Tez, TeB, TeC;
+ Tey = TdT - TdS;
+ Tez = TdP - TdQ;
+ TeA = FNMS(KP471396736, Tez, KP881921264 * Tey);
+ TeN = FMA(KP881921264, Tez, KP471396736 * Tey);
+ TeB = TdW - TdX;
+ TeC = Te0 - TdZ;
+ TeD = FMA(KP471396736, TeB, KP881921264 * TeC);
+ TeO = FNMS(KP471396736, TeC, KP881921264 * TeB);
+ }
+ TeE = TeA + TeD;
+ Tf0 = TeN - TeO;
+ TeP = TeN + TeO;
+ TeX = TeD - TeA;
+ }
+ {
+ E Te4, Teg, TdD, Te5;
+ Te4 = TdO + Te3;
+ Teg = Te8 + Tef;
+ TdD = W[120];
+ Te5 = W[121];
+ iio[-WS(ios, 2)] = FMA(TdD, Te4, Te5 * Teg);
+ rio[WS(ios, 61)] = FNMS(Te5, Te4, TdD * Teg);
+ }
+ {
+ E TeY, Tf2, TeV, TeZ;
+ TeY = TeW + TeX;
+ Tf2 = Tf0 + Tf1;
+ TeV = W[104];
+ TeZ = W[105];
+ iio[-WS(ios, 10)] = FMA(TeV, TeY, TeZ * Tf2);
+ rio[WS(ios, 53)] = FNMS(TeZ, TeY, TeV * Tf2);
+ }
+ {
+ E Tf4, Tf6, Tf3, Tf5;
+ Tf4 = Tf1 - Tf0;
+ Tf6 = TeW - TeX;
+ Tf3 = W[40];
+ Tf5 = W[41];
+ rio[WS(ios, 21)] = FNMS(Tf5, Tf6, Tf3 * Tf4);
+ iio[-WS(ios, 42)] = FMA(Tf3, Tf6, Tf5 * Tf4);
+ }
+ {
+ E Tei, Tek, Teh, Tej;
+ Tei = Tef - Te8;
+ Tek = TdO - Te3;
+ Teh = W[56];
+ Tej = W[57];
+ rio[WS(ios, 29)] = FNMS(Tej, Tek, Teh * Tei);
+ iio[-WS(ios, 34)] = FMA(Teh, Tek, Tej * Tei);
+ }
+ {
+ E Teo, Tes, Tel, Tep;
+ Teo = Tem + Ten;
+ Tes = Teq + Ter;
+ Tel = W[24];
+ Tep = W[25];
+ rio[WS(ios, 13)] = FNMS(Tep, Tes, Tel * Teo);
+ iio[-WS(ios, 50)] = FMA(Tel, Tes, Tep * Teo);
+ }
+ {
+ E TeI, TeQ, Tex, TeJ;
+ TeI = TeE + TeH;
+ TeQ = TeM + TeP;
+ Tex = W[8];
+ TeJ = W[9];
+ rio[WS(ios, 5)] = FNMS(TeJ, TeQ, Tex * TeI);
+ iio[-WS(ios, 58)] = FMA(Tex, TeQ, TeJ * TeI);
+ }
+ {
+ E TeS, TeU, TeR, TeT;
+ TeS = TeM - TeP;
+ TeU = TeH - TeE;
+ TeR = W[72];
+ TeT = W[73];
+ iio[-WS(ios, 26)] = FMA(TeR, TeS, TeT * TeU);
+ rio[WS(ios, 37)] = FNMS(TeT, TeS, TeR * TeU);
+ }
+ {
+ E Teu, Tew, Tet, Tev;
+ Teu = Teq - Ter;
+ Tew = Ten - Tem;
+ Tet = W[88];
+ Tev = W[89];
+ iio[-WS(ios, 18)] = FMA(Tet, Teu, Tev * Tew);
+ rio[WS(ios, 45)] = FNMS(Tev, Teu, Tet * Tew);
+ }
+ }
+ {
+ E Tcr, Tdw, TcX, Td6, TcI, Tdt, TcS, Tdl, Tbm, TcW, TcL, TcT, Tdd, Tdx, Tdi;
+ E Tds;
+ {
+ E Tcq, Td4, TbZ, Td5, TbF, TbY;
+ Tcq = Tce + Tcp;
+ Td4 = TcA - TcD;
+ TbF = FNMS(KP195090322, TbE, KP980785280 * Tbx);
+ TbY = FMA(KP195090322, TbQ, KP980785280 * TbX);
+ TbZ = TbF + TbY;
+ Td5 = TbY - TbF;
+ Tcr = TbZ + Tcq;
+ Tdw = Td4 - Td5;
+ TcX = Tcq - TbZ;
+ Td6 = Td4 + Td5;
+ }
+ {
+ E TcE, Tdk, TcH, Tdj, TcF, TcG;
+ TcE = TcA + TcD;
+ Tdk = Tcp - Tce;
+ TcF = FMA(KP980785280, TbE, KP195090322 * Tbx);
+ TcG = FNMS(KP195090322, TbX, KP980785280 * TbQ);
+ TcH = TcF + TcG;
+ Tdj = TcF - TcG;
+ TcI = TcE + TcH;
+ Tdt = Tdk - Tdj;
+ TcS = TcE - TcH;
+ Tdl = Tdj + Tdk;
+ }
+ {
+ E TaI, TcJ, Tbl, TcK;
+ {
+ E Taw, TaH, Tb9, Tbk;
+ Taw = Tak + Tav;
+ TaH = TaD + TaG;
+ TaI = FNMS(KP098017140, TaH, KP995184726 * Taw);
+ TcJ = FMA(KP995184726, TaH, KP098017140 * Taw);
+ Tb9 = TaT + Tb8;
+ Tbk = Tbc + Tbj;
+ Tbl = FMA(KP098017140, Tb9, KP995184726 * Tbk);
+ TcK = FNMS(KP098017140, Tbk, KP995184726 * Tb9);
+ }
+ Tbm = TaI + Tbl;
+ TcW = TcJ - TcK;
+ TcL = TcJ + TcK;
+ TcT = Tbl - TaI;
+ }
+ {
+ E Td9, Tdg, Tdc, Tdh;
+ {
+ E Td7, Td8, Tda, Tdb;
+ Td7 = TaD - TaG;
+ Td8 = Tav - Tak;
+ Td9 = FNMS(KP634393284, Td8, KP773010453 * Td7);
+ Tdg = FMA(KP634393284, Td7, KP773010453 * Td8);
+ Tda = TaT - Tb8;
+ Tdb = Tbj - Tbc;
+ Tdc = FMA(KP773010453, Tda, KP634393284 * Tdb);
+ Tdh = FNMS(KP634393284, Tda, KP773010453 * Tdb);
+ }
+ Tdd = Td9 + Tdc;
+ Tdx = Tdg - Tdh;
+ Tdi = Tdg + Tdh;
+ Tds = Tdc - Td9;
+ }
+ {
+ E Tcs, TcM, Ta5, Tct;
+ Tcs = Tbm + Tcr;
+ TcM = TcI + TcL;
+ Ta5 = W[0];
+ Tct = W[1];
+ rio[WS(ios, 1)] = FNMS(Tct, TcM, Ta5 * Tcs);
+ iio[-WS(ios, 62)] = FMA(Ta5, TcM, Tct * Tcs);
+ }
+ {
+ E Tdu, Tdy, Tdr, Tdv;
+ Tdu = Tds + Tdt;
+ Tdy = Tdw + Tdx;
+ Tdr = W[16];
+ Tdv = W[17];
+ rio[WS(ios, 9)] = FNMS(Tdv, Tdy, Tdr * Tdu);
+ iio[-WS(ios, 54)] = FMA(Tdr, Tdy, Tdv * Tdu);
+ }
+ {
+ E TdA, TdC, Tdz, TdB;
+ TdA = Tdw - Tdx;
+ TdC = Tdt - Tds;
+ Tdz = W[80];
+ TdB = W[81];
+ iio[-WS(ios, 22)] = FMA(Tdz, TdA, TdB * TdC);
+ rio[WS(ios, 41)] = FNMS(TdB, TdA, Tdz * TdC);
+ }
+ {
+ E TcO, TcQ, TcN, TcP;
+ TcO = TcI - TcL;
+ TcQ = Tcr - Tbm;
+ TcN = W[64];
+ TcP = W[65];
+ iio[-WS(ios, 30)] = FMA(TcN, TcO, TcP * TcQ);
+ rio[WS(ios, 33)] = FNMS(TcP, TcO, TcN * TcQ);
+ }
+ {
+ E TcU, TcY, TcR, TcV;
+ TcU = TcS + TcT;
+ TcY = TcW + TcX;
+ TcR = W[96];
+ TcV = W[97];
+ iio[-WS(ios, 14)] = FMA(TcR, TcU, TcV * TcY);
+ rio[WS(ios, 49)] = FNMS(TcV, TcU, TcR * TcY);
+ }
+ {
+ E Tde, Tdm, Td3, Tdf;
+ Tde = Td6 + Tdd;
+ Tdm = Tdi + Tdl;
+ Td3 = W[112];
+ Tdf = W[113];
+ iio[-WS(ios, 6)] = FMA(Td3, Tde, Tdf * Tdm);
+ rio[WS(ios, 57)] = FNMS(Tdf, Tde, Td3 * Tdm);
+ }
+ {
+ E Tdo, Tdq, Tdn, Tdp;
+ Tdo = Tdl - Tdi;
+ Tdq = Td6 - Tdd;
+ Tdn = W[48];
+ Tdp = W[49];
+ rio[WS(ios, 25)] = FNMS(Tdp, Tdq, Tdn * Tdo);
+ iio[-WS(ios, 38)] = FMA(Tdn, Tdq, Tdp * Tdo);
+ }
+ {
+ E Td0, Td2, TcZ, Td1;
+ Td0 = TcX - TcW;
+ Td2 = TcS - TcT;
+ TcZ = W[32];
+ Td1 = W[33];
+ rio[WS(ios, 17)] = FNMS(Td1, Td2, TcZ * Td0);
+ iio[-WS(ios, 46)] = FMA(TcZ, Td2, Td1 * Td0);
+ }
+ }
+ {
+ E Tfy, Thd, TgC, TgT, Tgr, Th8, Tgz, TgY, Tgb, TgD, Tgg, Tgy, TgQ, Thc, Th1;
+ E Th9;
+ {
+ E Tfi, TgS, Tfx, TgR, Tfp, Tfw;
+ Tfi = Tfa + Tfh;
+ TgS = Tgp - Tgm;
+ Tfp = FNMS(KP195090322, Tfo, KP980785280 * Tfl);
+ Tfw = FMA(KP980785280, Tfs, KP195090322 * Tfv);
+ Tfx = Tfp + Tfw;
+ TgR = Tfw - Tfp;
+ Tfy = Tfi + Tfx;
+ Thd = TgS - TgR;
+ TgC = Tfi - Tfx;
+ TgT = TgR + TgS;
+ }
+ {
+ E Tgq, TgW, Tgj, TgX, Tgh, Tgi;
+ Tgq = Tgm + Tgp;
+ TgW = Tfa - Tfh;
+ Tgh = FMA(KP195090322, Tfl, KP980785280 * Tfo);
+ Tgi = FNMS(KP195090322, Tfs, KP980785280 * Tfv);
+ Tgj = Tgh + Tgi;
+ TgX = Tgh - Tgi;
+ Tgr = Tgj + Tgq;
+ Th8 = TgW - TgX;
+ Tgz = Tgq - Tgj;
+ TgY = TgW + TgX;
+ }
+ {
+ E TfR, Tge, Tga, Tgf;
+ {
+ E TfJ, TfQ, Tg2, Tg9;
+ TfJ = TfB + TfI;
+ TfQ = TfM + TfP;
+ TfR = FNMS(KP098017140, TfQ, KP995184726 * TfJ);
+ Tge = FMA(KP098017140, TfJ, KP995184726 * TfQ);
+ Tg2 = TfU + Tg1;
+ Tg9 = Tg5 + Tg8;
+ Tga = FMA(KP995184726, Tg2, KP098017140 * Tg9);
+ Tgf = FNMS(KP098017140, Tg2, KP995184726 * Tg9);
+ }
+ Tgb = TfR + Tga;
+ TgD = Tge - Tgf;
+ Tgg = Tge + Tgf;
+ Tgy = Tga - TfR;
+ }
+ {
+ E TgM, TgZ, TgP, Th0;
+ {
+ E TgK, TgL, TgN, TgO;
+ TgK = TfP - TfM;
+ TgL = TfB - TfI;
+ TgM = FNMS(KP634393284, TgL, KP773010453 * TgK);
+ TgZ = FMA(KP773010453, TgL, KP634393284 * TgK);
+ TgN = TfU - Tg1;
+ TgO = Tg8 - Tg5;
+ TgP = FMA(KP634393284, TgN, KP773010453 * TgO);
+ Th0 = FNMS(KP634393284, TgO, KP773010453 * TgN);
+ }
+ TgQ = TgM + TgP;
+ Thc = TgZ - Th0;
+ Th1 = TgZ + Th0;
+ Th9 = TgP - TgM;
+ }
+ {
+ E Tgc, Tgs, Tf7, Tgd;
+ Tgc = Tfy + Tgb;
+ Tgs = Tgg + Tgr;
+ Tf7 = W[124];
+ Tgd = W[125];
+ iio[0] = FMA(Tf7, Tgc, Tgd * Tgs);
+ rio[WS(ios, 63)] = FNMS(Tgd, Tgc, Tf7 * Tgs);
+ }
+ {
+ E Tha, The, Th7, Thb;
+ Tha = Th8 + Th9;
+ The = Thc + Thd;
+ Th7 = W[108];
+ Thb = W[109];
+ iio[-WS(ios, 8)] = FMA(Th7, Tha, Thb * The);
+ rio[WS(ios, 55)] = FNMS(Thb, Tha, Th7 * The);
+ }
+ {
+ E Thg, Thi, Thf, Thh;
+ Thg = Thd - Thc;
+ Thi = Th8 - Th9;
+ Thf = W[44];
+ Thh = W[45];
+ rio[WS(ios, 23)] = FNMS(Thh, Thi, Thf * Thg);
+ iio[-WS(ios, 40)] = FMA(Thf, Thi, Thh * Thg);
+ }
+ {
+ E Tgu, Tgw, Tgt, Tgv;
+ Tgu = Tgr - Tgg;
+ Tgw = Tfy - Tgb;
+ Tgt = W[60];
+ Tgv = W[61];
+ rio[WS(ios, 31)] = FNMS(Tgv, Tgw, Tgt * Tgu);
+ iio[-WS(ios, 32)] = FMA(Tgt, Tgw, Tgv * Tgu);
+ }
+ {
+ E TgA, TgE, Tgx, TgB;
+ TgA = Tgy + Tgz;
+ TgE = TgC + TgD;
+ Tgx = W[28];
+ TgB = W[29];
+ rio[WS(ios, 15)] = FNMS(TgB, TgE, Tgx * TgA);
+ iio[-WS(ios, 48)] = FMA(Tgx, TgE, TgB * TgA);
+ }
+ {
+ E TgU, Th2, TgJ, TgV;
+ TgU = TgQ + TgT;
+ Th2 = TgY + Th1;
+ TgJ = W[12];
+ TgV = W[13];
+ rio[WS(ios, 7)] = FNMS(TgV, Th2, TgJ * TgU);
+ iio[-WS(ios, 56)] = FMA(TgJ, Th2, TgV * TgU);
+ }
+ {
+ E Th4, Th6, Th3, Th5;
+ Th4 = TgY - Th1;
+ Th6 = TgT - TgQ;
+ Th3 = W[76];
+ Th5 = W[77];
+ iio[-WS(ios, 24)] = FMA(Th3, Th4, Th5 * Th6);
+ rio[WS(ios, 39)] = FNMS(Th5, Th4, Th3 * Th6);
+ }
+ {
+ E TgG, TgI, TgF, TgH;
+ TgG = TgC - TgD;
+ TgI = Tgz - Tgy;
+ TgF = W[92];
+ TgH = W[93];
+ iio[-WS(ios, 16)] = FMA(TgF, TgG, TgH * TgI);
+ rio[WS(ios, 47)] = FNMS(TgH, TgG, TgF * TgI);
+ }
+ }
+ {
+ E ThJ, TiG, Ti7, Tig, ThS, TiD, Ti2, Tiv, Thy, Ti6, ThV, Ti3, Tin, TiH, Tis;
+ E TiC;
+ {
+ E ThI, Tie, ThF, Tif, ThB, ThE;
+ ThI = ThG + ThH;
+ Tie = ThM - ThN;
+ ThB = FNMS(KP555570233, ThA, KP831469612 * Thz);
+ ThE = FNMS(KP555570233, ThD, KP831469612 * ThC);
+ ThF = ThB + ThE;
+ Tif = ThE - ThB;
+ ThJ = ThF + ThI;
+ TiG = Tie - Tif;
+ Ti7 = ThI - ThF;
+ Tig = Tie + Tif;
+ }
+ {
+ E ThO, Tiu, ThR, Tit, ThP, ThQ;
+ ThO = ThM + ThN;
+ Tiu = ThH - ThG;
+ ThP = FMA(KP831469612, ThA, KP555570233 * Thz);
+ ThQ = FMA(KP831469612, ThD, KP555570233 * ThC);
+ ThR = ThP - ThQ;
+ Tit = ThP + ThQ;
+ ThS = ThO + ThR;
+ TiD = Tiu - Tit;
+ Ti2 = ThO - ThR;
+ Tiv = Tit + Tiu;
+ }
+ {
+ E Thq, ThT, Thx, ThU;
+ {
+ E Thm, Thp, Tht, Thw;
+ Thm = Thk + Thl;
+ Thp = Thn + Tho;
+ Thq = FNMS(KP290284677, Thp, KP956940335 * Thm);
+ ThT = FMA(KP956940335, Thp, KP290284677 * Thm);
+ Tht = Thr - Ths;
+ Thw = Thu + Thv;
+ Thx = FMA(KP290284677, Tht, KP956940335 * Thw);
+ ThU = FNMS(KP290284677, Thw, KP956940335 * Tht);
+ }
+ Thy = Thq + Thx;
+ Ti6 = ThT - ThU;
+ ThV = ThT + ThU;
+ Ti3 = Thx - Thq;
+ }
+ {
+ E Tij, Tiq, Tim, Tir;
+ {
+ E Tih, Tii, Tik, Til;
+ Tih = Thn - Tho;
+ Tii = Thl - Thk;
+ Tij = FNMS(KP471396736, Tii, KP881921264 * Tih);
+ Tiq = FMA(KP471396736, Tih, KP881921264 * Tii);
+ Tik = Thv - Thu;
+ Til = Ths + Thr;
+ Tim = FNMS(KP881921264, Til, KP471396736 * Tik);
+ Tir = FMA(KP471396736, Til, KP881921264 * Tik);
+ }
+ Tin = Tij + Tim;
+ TiH = Tiq - Tir;
+ Tis = Tiq + Tir;
+ TiC = Tim - Tij;
+ }
+ {
+ E ThK, ThW, Thj, ThL;
+ ThK = Thy + ThJ;
+ ThW = ThS + ThV;
+ Thj = W[4];
+ ThL = W[5];
+ rio[WS(ios, 3)] = FNMS(ThL, ThW, Thj * ThK);
+ iio[-WS(ios, 60)] = FMA(Thj, ThW, ThL * ThK);
+ }
+ {
+ E TiE, TiI, TiB, TiF;
+ TiE = TiC + TiD;
+ TiI = TiG + TiH;
+ TiB = W[20];
+ TiF = W[21];
+ rio[WS(ios, 11)] = FNMS(TiF, TiI, TiB * TiE);
+ iio[-WS(ios, 52)] = FMA(TiB, TiI, TiF * TiE);
+ }
+ {
+ E TiK, TiM, TiJ, TiL;
+ TiK = TiG - TiH;
+ TiM = TiD - TiC;
+ TiJ = W[84];
+ TiL = W[85];
+ iio[-WS(ios, 20)] = FMA(TiJ, TiK, TiL * TiM);
+ rio[WS(ios, 43)] = FNMS(TiL, TiK, TiJ * TiM);
+ }
+ {
+ E ThY, Ti0, ThX, ThZ;
+ ThY = ThS - ThV;
+ Ti0 = ThJ - Thy;
+ ThX = W[68];
+ ThZ = W[69];
+ iio[-WS(ios, 28)] = FMA(ThX, ThY, ThZ * Ti0);
+ rio[WS(ios, 35)] = FNMS(ThZ, ThY, ThX * Ti0);
+ }
+ {
+ E Ti4, Ti8, Ti1, Ti5;
+ Ti4 = Ti2 + Ti3;
+ Ti8 = Ti6 + Ti7;
+ Ti1 = W[100];
+ Ti5 = W[101];
+ iio[-WS(ios, 12)] = FMA(Ti1, Ti4, Ti5 * Ti8);
+ rio[WS(ios, 51)] = FNMS(Ti5, Ti4, Ti1 * Ti8);
+ }
+ {
+ E Tio, Tiw, Tid, Tip;
+ Tio = Tig + Tin;
+ Tiw = Tis + Tiv;
+ Tid = W[116];
+ Tip = W[117];
+ iio[-WS(ios, 4)] = FMA(Tid, Tio, Tip * Tiw);
+ rio[WS(ios, 59)] = FNMS(Tip, Tio, Tid * Tiw);
+ }
+ {
+ E Tiy, TiA, Tix, Tiz;
+ Tiy = Tiv - Tis;
+ TiA = Tig - Tin;
+ Tix = W[52];
+ Tiz = W[53];
+ rio[WS(ios, 27)] = FNMS(Tiz, TiA, Tix * Tiy);
+ iio[-WS(ios, 36)] = FMA(Tix, TiA, Tiz * Tiy);
+ }
+ {
+ E Tia, Tic, Ti9, Tib;
+ Tia = Ti7 - Ti6;
+ Tic = Ti2 - Ti3;
+ Ti9 = W[36];
+ Tib = W[37];
+ rio[WS(ios, 19)] = FNMS(Tib, Tic, Ti9 * Tia);
+ iio[-WS(ios, 44)] = FMA(Ti9, Tic, Tib * Tia);
+ }
+ }
+ }
+ return W;
+}
+
+static const tw_instr twinstr[] = {
+ {TW_FULL, 0, 64},
+ {TW_NEXT, 1, 0}
+};
+
+static const hc2hc_desc desc = { 64, "hb_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 };
+
+void X(codelet_hb_64) (planner *p) {
+ X(khc2hc_dif_register) (p, hb_64, &desc);
+}