diff options
Diffstat (limited to 'src/fftw3/rdft/dht-rader.c')
-rw-r--r-- | src/fftw3/rdft/dht-rader.c | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/src/fftw3/rdft/dht-rader.c b/src/fftw3/rdft/dht-rader.c new file mode 100644 index 0000000..b9a2a74 --- /dev/null +++ b/src/fftw3/rdft/dht-rader.c @@ -0,0 +1,344 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +#include "rdft.h" + +/* + * Compute DHTs of prime sizes using Rader's trick: turn them + * into convolutions of size n - 1, which we then perform via a pair + * of FFTs. (We can then do prime real FFTs via rdft-dht.c.) + */ + +typedef struct { + solver super; +} S; + +typedef struct { + plan_rdft super; + + plan *cld1, *cld2; + R *omega; + int n, g, ginv; + int is, os; + plan *cld_omega; +} P; + +static rader_tl *omegas = 0; + +/***************************************************************************/ + +/* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution + purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC. + This requires a few more operations, but allows us to share the same + plan/codelets for both Rader children. */ +#define R2HC_ONLY_CONV 1 + +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + int r = ego->n; + int is = ego->is, os; + int k, gpower, g; + R *buf, *omega; + R r0; + + buf = (R *) MALLOC(sizeof(R) * (r - 1), BUFFERS); + + /* First, permute the input, storing in buf: */ + g = ego->g; + for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { + buf[k] = I[gpower * is]; + } + /* gpower == g^(r-1) mod r == 1 */; + + os = ego->os; + + /* compute RDFT of buf, storing in output (except DC): */ + { + plan_rdft *cld = (plan_rdft *) ego->cld1; + cld->apply((plan *) cld, buf, O + os); + } + + /* set output DC component: */ + O[0] = (r0 = I[0]) + O[os]; + + /* now, multiply by omega: */ + omega = ego->omega; + + O[(0 + 1) * os] *= omega[0]; +#if R2HC_ONLY_CONV + for (k = 1; k < (r - 1)/2; ++k) { + E rB, iB, rW, iW, a, b; + rW = omega[k]; + iW = omega[(r-1) - k]; + rB = O[(k + 1) * os]; + iB = O[((r-1) - k + 1) * os]; + a = rW * rB - iW * iB; + b = rW * iB + iW * rB; + O[(k + 1) * os] = a + b; + O[((r-1) - k + 1) * os] = a - b; + } +#else + for (k = 1; k < (r - 1)/2; ++k) { + E rB, iB, rW, iW; + rW = omega[k]; + iW = omega[(r-1) - k]; + rB = O[(k + 1) * os]; + iB = O[((r-1) - k + 1) * os]; + O[(k + 1) * os] = rW * rB - iW * iB; + O[((r-1) - k + 1) * os] = rW * iB + iW * rB; + } +#endif + /* Nyquist component: */ + O[(k + 1) * os] *= omega[k]; /* k == (r-1)/2, since r-1 is even */ + + /* this will add input[0] to all of the outputs after the ifft */ + O[os] += r0; + + /* inverse FFT: */ + { + plan_rdft *cld = (plan_rdft *) ego->cld2; + cld->apply((plan *) cld, O + os, buf); + } + + /* do inverse permutation to unshuffle the output: */ + A(gpower == 1); +#if R2HC_ONLY_CONV + O[os] = buf[0]; + gpower = g = ego->ginv; + for (k = 1; k < (r - 1)/2; ++k, gpower = MULMOD(gpower, g, r)) { + O[gpower * os] = buf[k] + buf[r - 1 - k]; + } + O[gpower * os] = buf[k]; + ++k, gpower = MULMOD(gpower, g, r); + for (; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { + O[gpower * os] = buf[r - 1 - k] - buf[k]; + } +#else + g = ego->ginv; + for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { + O[gpower * os] = buf[k]; + } +#endif + A(gpower == 1); + + X(ifree)(buf); +} + +static R *mkomega(plan *p_, int n, int ginv) +{ + plan_rdft *p = (plan_rdft *) p_; + R *omega; + int i, gpower; + trigreal scale; + + if ((omega = X(rader_tl_find)(n, n, ginv, omegas))) + return omega; + + omega = (R *)MALLOC(sizeof(R) * (n - 1), TWIDDLES); + + scale = n - 1.0; /* normalization for convolution */ + + for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { + omega[i] = (X(cos2pi)(gpower, n) + X(sin2pi)(gpower, n)) / scale; + } + A(gpower == 1); + + AWAKE(p_, 1); + p->apply(p_, omega, omega); + AWAKE(p_, 0); + + X(rader_tl_insert)(n, n, ginv, omega, &omegas); + return omega; +} + +static void free_omega(R *omega) +{ + X(rader_tl_delete)(omega, &omegas); +} + +/***************************************************************************/ + +static void awake(plan *ego_, int flg) +{ + P *ego = (P *) ego_; + + AWAKE(ego->cld1, flg); + AWAKE(ego->cld2, flg); + + if (flg) { + if (!ego->omega) + ego->omega = mkomega(ego->cld_omega,ego->n,ego->ginv); + } else { + free_omega(ego->omega); + ego->omega = 0; + } +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld_omega); + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + + p->print(p, "(dht-rader-%d%ois=%oos=%(%p%)", + ego->n, ego->is, ego->os, ego->cld1); + if (ego->cld2 != ego->cld1) + p->print(p, "%(%p%)", ego->cld2); + if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) + p->print(p, "%(%p%)", ego->cld_omega); + p->putchr(p, ')'); +} + +static int applicable0(const problem *p_) +{ + if (RDFTP(p_)) { + const problem_rdft *p = (const problem_rdft *) p_; + return (1 + && p->sz->rnk == 1 + && p->vecsz->rnk == 0 + && p->kind[0] == DHT + && X(is_prime)(p->sz->dims[0].n) + && p->sz->dims[0].n > 2 + ); + } + + return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ + UNUSED(ego); + return (!NO_UGLYP(plnr) && applicable0(p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const problem_rdft *p = (const problem_rdft *) p_; + P *pln; + int n; + int is, os; + plan *cld1 = (plan *) 0; + plan *cld2 = (plan *) 0; + plan *cld_omega = (plan *) 0; + R *buf = (R *) 0; + R *O; + problem *cldp; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr)) + return (plan *) 0; + + n = p->sz->dims[0].n; + is = p->sz->dims[0].is; + os = p->sz->dims[0].os; + O = p->O; + + /* initial allocation for the purpose of planning */ + buf = (R *) MALLOC(sizeof(R) * (n - 1), BUFFERS); + + cld1 = X(mkplan_d)(plnr, + X(mkproblem_rdft_1_d)(X(mktensor_1d)(n - 1, 1, os), + X(mktensor_1d)(1, 0, 0), + buf, + O + os, + R2HC)); + if (!cld1) goto nada; + + cldp = + X(mkproblem_rdft_1_d)( + X(mktensor_1d)(n - 1, os, 1), + X(mktensor_1d)(1, 0, 0), + O + os, + buf, +#if R2HC_ONLY_CONV + R2HC +#else + HC2R +#endif + ); + if (!(cld2 = X(mkplan_d)(plnr, cldp))) goto nada; + + + /* plan for omega */ + plnr->planner_flags |= ESTIMATE; + cld_omega = X(mkplan_d)(plnr, + X(mkproblem_rdft_1_d)(X(mktensor_1d)(n - 1, 1, 1), + X(mktensor_1d)(1, 0, 0), + buf, buf, R2HC)); + if (!cld_omega) goto nada; + + /* deallocate buffers; let awake() or apply() allocate them for real */ + X(ifree)(buf); + buf = 0; + + pln = MKPLAN_RDFT(P, &padt, apply); + pln->cld1 = cld1; + pln->cld2 = cld2; + pln->cld_omega = cld_omega; + pln->omega = 0; + pln->n = n; + pln->is = is; + pln->os = os; + pln->g = X(find_generator)(n); + pln->ginv = X(power_mod)(pln->g, n - 2, n); + A(MULMOD(pln->g, pln->ginv, n) == 1); + + X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); + pln->super.super.ops.other += (n - 3) * 3 + (n - 2) * 2 + 5; + pln->super.super.ops.add += (n - 3) * 1; + pln->super.super.ops.mul += (n - 3) * 2 + 2; +#if R2HC_ONLY_CONV + pln->super.super.ops.other += (n - 2) + 4; + pln->super.super.ops.add += (n - 3) * 1 + (n - 2) * 1; +#endif + + return &(pln->super.super); + + nada: + X(ifree0)(buf); + X(plan_destroy_internal)(cld_omega); + X(plan_destroy_internal)(cld2); + X(plan_destroy_internal)(cld1); + return 0; +} + +/* constructors */ + +static solver *mksolver(void) +{ + static const solver_adt sadt = { mkplan }; + S *slv = MKSOLVER(S, &sadt); + return &(slv->super); +} + +void X(dht_rader_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +} |