diff options
Diffstat (limited to 'src/fftw3/rdft/dht-rader.c')
-rw-r--r-- | src/fftw3/rdft/dht-rader.c | 344 |
1 files changed, 0 insertions, 344 deletions
diff --git a/src/fftw3/rdft/dht-rader.c b/src/fftw3/rdft/dht-rader.c deleted file mode 100644 index b9a2a74..0000000 --- a/src/fftw3/rdft/dht-rader.c +++ /dev/null @@ -1,344 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -#include "rdft.h" - -/* - * Compute DHTs of prime sizes using Rader's trick: turn them - * into convolutions of size n - 1, which we then perform via a pair - * of FFTs. (We can then do prime real FFTs via rdft-dht.c.) - */ - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - - plan *cld1, *cld2; - R *omega; - int n, g, ginv; - int is, os; - plan *cld_omega; -} P; - -static rader_tl *omegas = 0; - -/***************************************************************************/ - -/* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution - purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC. - This requires a few more operations, but allows us to share the same - plan/codelets for both Rader children. */ -#define R2HC_ONLY_CONV 1 - -static void apply(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int r = ego->n; - int is = ego->is, os; - int k, gpower, g; - R *buf, *omega; - R r0; - - buf = (R *) MALLOC(sizeof(R) * (r - 1), BUFFERS); - - /* First, permute the input, storing in buf: */ - g = ego->g; - for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - buf[k] = I[gpower * is]; - } - /* gpower == g^(r-1) mod r == 1 */; - - os = ego->os; - - /* compute RDFT of buf, storing in output (except DC): */ - { - plan_rdft *cld = (plan_rdft *) ego->cld1; - cld->apply((plan *) cld, buf, O + os); - } - - /* set output DC component: */ - O[0] = (r0 = I[0]) + O[os]; - - /* now, multiply by omega: */ - omega = ego->omega; - - O[(0 + 1) * os] *= omega[0]; -#if R2HC_ONLY_CONV - for (k = 1; k < (r - 1)/2; ++k) { - E rB, iB, rW, iW, a, b; - rW = omega[k]; - iW = omega[(r-1) - k]; - rB = O[(k + 1) * os]; - iB = O[((r-1) - k + 1) * os]; - a = rW * rB - iW * iB; - b = rW * iB + iW * rB; - O[(k + 1) * os] = a + b; - O[((r-1) - k + 1) * os] = a - b; - } -#else - for (k = 1; k < (r - 1)/2; ++k) { - E rB, iB, rW, iW; - rW = omega[k]; - iW = omega[(r-1) - k]; - rB = O[(k + 1) * os]; - iB = O[((r-1) - k + 1) * os]; - O[(k + 1) * os] = rW * rB - iW * iB; - O[((r-1) - k + 1) * os] = rW * iB + iW * rB; - } -#endif - /* Nyquist component: */ - O[(k + 1) * os] *= omega[k]; /* k == (r-1)/2, since r-1 is even */ - - /* this will add input[0] to all of the outputs after the ifft */ - O[os] += r0; - - /* inverse FFT: */ - { - plan_rdft *cld = (plan_rdft *) ego->cld2; - cld->apply((plan *) cld, O + os, buf); - } - - /* do inverse permutation to unshuffle the output: */ - A(gpower == 1); -#if R2HC_ONLY_CONV - O[os] = buf[0]; - gpower = g = ego->ginv; - for (k = 1; k < (r - 1)/2; ++k, gpower = MULMOD(gpower, g, r)) { - O[gpower * os] = buf[k] + buf[r - 1 - k]; - } - O[gpower * os] = buf[k]; - ++k, gpower = MULMOD(gpower, g, r); - for (; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - O[gpower * os] = buf[r - 1 - k] - buf[k]; - } -#else - g = ego->ginv; - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - O[gpower * os] = buf[k]; - } -#endif - A(gpower == 1); - - X(ifree)(buf); -} - -static R *mkomega(plan *p_, int n, int ginv) -{ - plan_rdft *p = (plan_rdft *) p_; - R *omega; - int i, gpower; - trigreal scale; - - if ((omega = X(rader_tl_find)(n, n, ginv, omegas))) - return omega; - - omega = (R *)MALLOC(sizeof(R) * (n - 1), TWIDDLES); - - scale = n - 1.0; /* normalization for convolution */ - - for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) { - omega[i] = (X(cos2pi)(gpower, n) + X(sin2pi)(gpower, n)) / scale; - } - A(gpower == 1); - - AWAKE(p_, 1); - p->apply(p_, omega, omega); - AWAKE(p_, 0); - - X(rader_tl_insert)(n, n, ginv, omega, &omegas); - return omega; -} - -static void free_omega(R *omega) -{ - X(rader_tl_delete)(omega, &omegas); -} - -/***************************************************************************/ - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - - AWAKE(ego->cld1, flg); - AWAKE(ego->cld2, flg); - - if (flg) { - if (!ego->omega) - ego->omega = mkomega(ego->cld_omega,ego->n,ego->ginv); - } else { - free_omega(ego->omega); - ego->omega = 0; - } -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld_omega); - X(plan_destroy_internal)(ego->cld2); - X(plan_destroy_internal)(ego->cld1); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - - p->print(p, "(dht-rader-%d%ois=%oos=%(%p%)", - ego->n, ego->is, ego->os, ego->cld1); - if (ego->cld2 != ego->cld1) - p->print(p, "%(%p%)", ego->cld2); - if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2) - p->print(p, "%(%p%)", ego->cld_omega); - p->putchr(p, ')'); -} - -static int applicable0(const problem *p_) -{ - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk == 0 - && p->kind[0] == DHT - && X(is_prime)(p->sz->dims[0].n) - && p->sz->dims[0].n > 2 - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - UNUSED(ego); - return (!NO_UGLYP(plnr) && applicable0(p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - const problem_rdft *p = (const problem_rdft *) p_; - P *pln; - int n; - int is, os; - plan *cld1 = (plan *) 0; - plan *cld2 = (plan *) 0; - plan *cld_omega = (plan *) 0; - R *buf = (R *) 0; - R *O; - problem *cldp; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *) 0; - - n = p->sz->dims[0].n; - is = p->sz->dims[0].is; - os = p->sz->dims[0].os; - O = p->O; - - /* initial allocation for the purpose of planning */ - buf = (R *) MALLOC(sizeof(R) * (n - 1), BUFFERS); - - cld1 = X(mkplan_d)(plnr, - X(mkproblem_rdft_1_d)(X(mktensor_1d)(n - 1, 1, os), - X(mktensor_1d)(1, 0, 0), - buf, - O + os, - R2HC)); - if (!cld1) goto nada; - - cldp = - X(mkproblem_rdft_1_d)( - X(mktensor_1d)(n - 1, os, 1), - X(mktensor_1d)(1, 0, 0), - O + os, - buf, -#if R2HC_ONLY_CONV - R2HC -#else - HC2R -#endif - ); - if (!(cld2 = X(mkplan_d)(plnr, cldp))) goto nada; - - - /* plan for omega */ - plnr->planner_flags |= ESTIMATE; - cld_omega = X(mkplan_d)(plnr, - X(mkproblem_rdft_1_d)(X(mktensor_1d)(n - 1, 1, 1), - X(mktensor_1d)(1, 0, 0), - buf, buf, R2HC)); - if (!cld_omega) goto nada; - - /* deallocate buffers; let awake() or apply() allocate them for real */ - X(ifree)(buf); - buf = 0; - - pln = MKPLAN_RDFT(P, &padt, apply); - pln->cld1 = cld1; - pln->cld2 = cld2; - pln->cld_omega = cld_omega; - pln->omega = 0; - pln->n = n; - pln->is = is; - pln->os = os; - pln->g = X(find_generator)(n); - pln->ginv = X(power_mod)(pln->g, n - 2, n); - A(MULMOD(pln->g, pln->ginv, n) == 1); - - X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); - pln->super.super.ops.other += (n - 3) * 3 + (n - 2) * 2 + 5; - pln->super.super.ops.add += (n - 3) * 1; - pln->super.super.ops.mul += (n - 3) * 2 + 2; -#if R2HC_ONLY_CONV - pln->super.super.ops.other += (n - 2) + 4; - pln->super.super.ops.add += (n - 3) * 1 + (n - 2) * 1; -#endif - - return &(pln->super.super); - - nada: - X(ifree0)(buf); - X(plan_destroy_internal)(cld_omega); - X(plan_destroy_internal)(cld2); - X(plan_destroy_internal)(cld1); - return 0; -} - -/* constructors */ - -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(dht_rader_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} |