summaryrefslogtreecommitdiff
path: root/src/fftw3/rdft/rader-hc2hc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/rdft/rader-hc2hc.c')
-rw-r--r--src/fftw3/rdft/rader-hc2hc.c513
1 files changed, 0 insertions, 513 deletions
diff --git a/src/fftw3/rdft/rader-hc2hc.c b/src/fftw3/rdft/rader-hc2hc.c
deleted file mode 100644
index f1b6f34..0000000
--- a/src/fftw3/rdft/rader-hc2hc.c
+++ /dev/null
@@ -1,513 +0,0 @@
-/*
- * Copyright (c) 2003 Matteo Frigo
- * Copyright (c) 2003 Massachusetts Institute of Technology
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- */
-
-#include "rdft.h"
-#include "dft.h"
-
-/*
- * Compute transforms with large prime factors using Rader's trick:
- * turn the factors into convolutions of size n - 1, which you then
- * perform via a pair of FFTs. This file contains only twiddle hc2hc
- * transforms, which are actually ordinary complex transforms in a
- * slightly funny order.
- */
-
-typedef struct {
- solver super;
- rdft_kind kind;
-} S;
-
-typedef struct {
- plan_rdft super;
-
- plan *cldr, *cldr0;
- plan *cld;
- R *W;
- R *omega;
- int m, r, g, ginv;
- int os, ios;
- rdft_kind kind;
-} P;
-
-static rader_tl *twiddles = 0;
-
-/***************************************************************************/
-
-/* Below, we extensively use the identity that fft(x*)* = ifft(x) in
- order to share data between forward and backward transforms and to
- obviate the necessity of having separate forward and backward
- plans. */
-
-static void apply_aux(int r, plan_dft *cldr, const R *omega,
- R *buf, R *ro, R i0, R *io)
-{
- R r0;
- int k;
-
- /* compute DFT of buf, operating in-place */
- cldr->apply((plan *) cldr, buf, buf+1, buf, buf+1);
-
- /* set output DC component: */
- ro[0] = (r0 = ro[0]) + buf[0];
- io[0] = i0 + buf[1];
-
- /* now, multiply by omega: */
- for (k = 0; k < r - 1; ++k) {
- R rB, iB, rW, iW;
- rW = omega[2*k];
- iW = omega[2*k+1];
- rB = buf[2*k];
- iB = buf[2*k+1];
- buf[2*k] = rW * rB - iW * iB;
- buf[2*k+1] = -(rW * iB + iW * rB);
- }
-
- /* this will add input[0] to all of the outputs after the ifft */
- buf[0] += r0;
- buf[1] -= i0;
-
- /* inverse FFT: */
- cldr->apply((plan *) cldr, buf, buf+1, buf, buf+1);
-}
-
-static void apply_dit(const plan *ego_, R *I, R *O)
-{
- const P *ego = (const P *) ego_;
- plan_dft *cldr;
- int os, ios;
- int j, k, gpower, g, ginv, r, m;
- R *buf, *rio, *ii, *io;
- const R *omega, *W;
-
- /* size-m child transforms: */
- {
- plan_rdft *cld = (plan_rdft *) ego->cld;
- cld->apply((plan *) cld, I, O);
- }
-
- /* 0th twiddle transform is just size-r (prime) R2HC: */
- {
- plan_rdft *cldr0 = (plan_rdft *) ego->cldr0;
- cldr0->apply((plan *) cldr0, O, O);
- }
-
- cldr = (plan_dft *) ego->cldr;
- r = ego->r;
- m = ego->m;
- g = ego->g;
- ginv = ego->ginv;
- omega = ego->omega;
- W = ego->W;
- os = ego->os;
- ios = ego->ios;
- gpower = 1;
- rio = O + os;
- ii = O + (m - 1) * os;
- io = O + (r * m - 1) * os;
-
- buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
-
- for (j = 2; j < m; j += 2, rio += os, ii -= os, io -= os, W += 2*(r-1)) {
- /* First, permute the input and multiply by W, storing in buf: */
- A(gpower == 1);
- for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
- R rA, iA, rW, iW;
- rA = rio[gpower * ios];
- iA = ii[gpower * ios];
- rW = W[2*k];
- iW = W[2*k+1];
- buf[2*k] = rW * rA - iW * iA;
- buf[2*k+1] = rW * iA + iW * rA;
- }
- /* gpower == g^(r-1) mod r == 1 */;
-
- apply_aux(r, cldr, omega, buf, rio, ii[0], io);
-
- /* finally, do inverse permutation to unshuffle the output: */
- A(gpower == 1);
- for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
- rio[gpower * ios] = buf[2*k];
- io[-gpower * ios] = -buf[2*k+1];
- }
- A(gpower == 1);
-
- /* second half of array must be fiddled to get real/imag
- parts in correct spots: */
- for (k = (r+1)/2; k < r; ++k) {
- R t;
- t = rio[k * ios];
- rio[k * ios] = -io[-k * ios];
- io[-k * ios] = t;
- }
- }
-
- /* Avoid funny m/2-th iter by requiring m odd. This always
- happens anyway because all the factors of 2 get divided out
- first by codelets (Rader is UGLY for small factors). */
-
- X(ifree)(buf);
-}
-
-static void apply_dif(const plan *ego_, R *I, R *O)
-{
- const P *ego = (const P *) ego_;
- plan_dft *cldr;
- int is, ios;
- int j, k, gpower, g, ginv, r, m;
- R *buf, *rio, *ii, *io;
- const R *omega, *W;
-
- /* 0th twiddle transform is just size-r (prime) HC2R: */
- {
- plan_rdft *cldr0 = (plan_rdft *) ego->cldr0;
- cldr0->apply((plan *) cldr0, I, I);
- }
-
- cldr = (plan_dft *) ego->cldr;
- r = ego->r;
- m = ego->m;
- g = ego->g;
- ginv = ego->ginv;
- omega = ego->omega;
- W = ego->W + 2*(r-1); /* simplify reverse indexing of W */
- is = ego->os;
- ios = ego->ios;
- gpower = 1;
- rio = I + is;
- io = I + (m - 1) * is;
- ii = I + (r * m - 1) * is;
-
- buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
-
- for (j = 2; j < m; j += 2, rio += is, ii -= is, io -= is, W += 2*(r-1)) {
- /* second half of array must be unfiddled to get real/imag
- parts from correct spots: */
- for (k = (r+1)/2; k < r; ++k) {
- R t;
- t = rio[k * ios];
- rio[k * ios] = ii[-k * ios];
- ii[-k * ios] = -t;
- }
-
- /* First, permute the input, storing in buf: */
- A(gpower == 1);
- for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
- buf[2*k] = rio[gpower * ios];
- buf[2*k+1] = -ii[-gpower * ios];
- }
- /* gpower == g^(r-1) mod r == 1 */;
- A(gpower == 1);
-
- apply_aux(r, cldr, omega, buf, rio, -ii[0], io);
- io[0] = -io[0];
-
- /* finally, do inverse permutation to unshuffle the output,
- also multiplying by the inverse twiddle factors W*.
- The twiddle factors are accessed in reverse order W[-k],
- because here we exponentiating ginv and not g as in
- mktwiddle. */
- { /* W[-0] = W[0] case must be handled specially */
- R rA, iA, rW, iW;
- rA = buf[0]; iA = buf[1];
- rW = W[-2*(r-1)]; iW = W[-2*(r-1) + 1];
- rio[ios] = rA * rW + iA * iW;
- io[ios] = iA * rW - rA * iW;
- }
- gpower = ginv;
- for (k = 1; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
- R rA, iA, rW, iW;
- rA = buf[2*k]; iA = buf[2*k+1];
- rW = W[-2*k]; iW = W[-2*k+1];
- rio[gpower * ios] = rA * rW + iA * iW;
- io[gpower * ios] = iA * rW - rA * iW;
- }
- A(gpower == 1);
- }
-
- /* Avoid funny m/2-th iter by requiring m odd. This always
- happens anyway because all the factors of 2 get divided out
- first by codelets (Rader is UGLY for small factors). */
-
- X(ifree)(buf);
-
- /* size-m child transforms: */
- {
- plan_rdft *cld = (plan_rdft *) ego->cld;
- cld->apply((plan *) cld, I, O);
- }
-}
-
-static R *mktwiddle(int m, int r, int g)
-{
- int i, j, gpower;
- int n = r * m;
- R *W;
-
- if ((W = X(rader_tl_find)(m, r, g, twiddles)))
- return W;
-
- W = (R *)MALLOC(sizeof(R) * (r - 1) * ((m-1)/2) * 2, TWIDDLES);
- for (i = 1; i < (m+1)/2; ++i) {
- for (gpower = 1, j = 0; j < r - 1;
- ++j, gpower = MULMOD(gpower, g, r)) {
- int k = (i - 1) * (r - 1) + j;
- W[2*k] = X(cos2pi)(i * gpower, n);
- W[2*k+1] = FFT_SIGN * X(sin2pi)(i * gpower, n);
- }
- A(gpower == 1);
- }
-
- X(rader_tl_insert)(m, r, g, W, &twiddles);
- return W;
-}
-
-static void free_twiddle(R *twiddle)
-{
- X(rader_tl_delete)(twiddle, &twiddles);
-}
-
-/***************************************************************************/
-
-static void awake(plan *ego_, int flg)
-{
- P *ego = (P *) ego_;
-
- AWAKE(ego->cldr0, flg);
- AWAKE(ego->cldr, flg);
- AWAKE(ego->cld, flg);
-
- if (flg) {
- if (!ego->omega)
- ego->omega =
- X(dft_rader_mkomega)(ego->cldr, ego->r, ego->ginv);
- if (!ego->W)
- ego->W = mktwiddle(ego->m, ego->r, ego->g);
- } else {
- X(dft_rader_free_omega)(&ego->omega);
- free_twiddle(ego->W);
- ego->W = 0;
- }
-}
-
-static void destroy(plan *ego_)
-{
- P *ego = (P *) ego_;
- X(plan_destroy_internal)(ego->cld);
- X(plan_destroy_internal)(ego->cldr);
- X(plan_destroy_internal)(ego->cldr0);
-}
-
-static void print(const plan *ego_, printer *p)
-{
- const P *ego = (const P *) ego_;
-
- p->print(p, "(rdft-rader-%s-%d%(%p%)%(%p%)%(%p%))",
- ego->kind == R2HC ? "r2hc-dit" : "hc2r-dif",
- ego->r, ego->cldr0, ego->cldr, ego->cld);
-}
-
-static int applicable0(const solver *ego_, const problem *p_)
-{
- if (RDFTP(p_)) {
- const S *ego = (const S *) ego_;
- const problem_rdft *p = (const problem_rdft *) p_;
- return (1
- && p->sz->rnk == 1
- && p->vecsz->rnk == 0
- && p->sz->dims[0].n > 1
- && p->sz->dims[0].n % 4 /* make sure n / r = m is odd */
- && p->kind[0] == ego->kind
- && !X(is_prime)(p->sz->dims[0].n) /* avoid inf. loops planning cldr0 */
- );
- }
-
- return 0;
-}
-
-static int applicable(const solver *ego_, const problem *p_,
- const planner *plnr)
-{
- return (!NO_UGLYP(plnr) && applicable0(ego_, p_));
-}
-
-static int mkP(P *pln, int r, R *O, int ios, rdft_kind kind, planner *plnr)
-{
- plan *cldr = (plan *) 0;
- plan *cldr0 = (plan *) 0;
- R *buf = (R *) 0;
-
- cldr0 = X(mkplan_d)(plnr,
- X(mkproblem_rdft_1_d)(X(mktensor_1d)(r, ios, ios),
- X(mktensor_1d)(1, 0, 0),
- O, O, kind));
- if (!cldr0) goto nada;
-
- /* initial allocation for the purpose of planning */
- buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
-
- cldr = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(mktensor_1d)(r - 1, 2, 2),
- X(mktensor_1d)(1, 0, 0),
- buf, buf + 1, buf, buf + 1));
- if (!cldr) goto nada;
-
- X(ifree)(buf);
-
- pln->cldr = cldr;
- pln->cldr0 = cldr0;
- pln->omega = 0;
- pln->r = r;
- pln->g = X(find_generator)(r);
- pln->ginv = X(power_mod)(pln->g, r - 2, r);
- pln->kind = kind;
- A(MULMOD(pln->g, pln->ginv, r) == 1);
-
- X(ops_add)(&cldr->ops, &cldr->ops, &pln->super.super.ops);
- pln->super.super.ops.other += (r - 1) * (4 * 2 + 6) + 6;
- pln->super.super.ops.add += 2 * (r - 1) * 2 + 4;
- pln->super.super.ops.mul += 2 * (r - 1) * 4;
-
- return 1;
-
- nada:
- X(ifree0)(buf);
- X(plan_destroy_internal)(cldr);
- X(plan_destroy_internal)(cldr0);
- return 0;
-}
-
-static plan *mkplan_dit(const solver *ego, const problem *p_, planner *plnr)
-{
- const problem_rdft *p = (const problem_rdft *) p_;
- P *pln = 0;
- int n, is, os, r, m;
- plan *cld = (plan *) 0;
-
- static const plan_adt padt = {
- X(rdft_solve), awake, print, destroy
- };
-
- if (!applicable(ego, p_, plnr))
- goto nada;
-
- n = p->sz->dims[0].n;
- is = p->sz->dims[0].is;
- os = p->sz->dims[0].os;
-
- r = X(first_divisor)(n);
- m = n / r;
-
-
- cld = X(mkplan_d)(plnr,
- X(mkproblem_rdft_d)(X(mktensor_1d)(m, r * is, os),
- X(mktensor_1d)(r, is, m * os),
- p->I, p->O, p->kind));
- if (!cld) goto nada;
-
- pln = MKPLAN_RDFT(P, &padt, apply_dit);
- if (!mkP(pln, r, p->O, os*m, p->kind[0], plnr))
- goto nada;
-
- pln->ios = os*m;
- pln->os = os;
- pln->m = m;
- pln->cld = cld;
- pln->W = 0;
-
- X(ops_madd)((m - 1)/2, &pln->super.super.ops, &cld->ops,
- &pln->super.super.ops);
-
- return &(pln->super.super);
-
- nada:
- X(plan_destroy_internal)(cld);
- X(ifree0)(pln);
- return (plan *) 0;
-}
-
-static plan *mkplan_dif(const solver *ego, const problem *p_, planner *plnr)
-{
- const problem_rdft *p = (const problem_rdft *) p_;
- P *pln = 0;
- int n, is, os, r, m;
- plan *cld = (plan *) 0;
-
- static const plan_adt padt = {
- X(rdft_solve), awake, print, destroy
- };
-
- if (!applicable(ego, p_, plnr))
- goto nada;
-
- n = p->sz->dims[0].n;
- is = p->sz->dims[0].is;
- os = p->sz->dims[0].os;
-
- r = X(first_divisor)(n);
- m = n / r;
-
- cld = X(mkplan_d)(plnr,
- X(mkproblem_rdft_d)(X(mktensor_1d)(m, is, r * os),
- X(mktensor_1d)(r, m * is, os),
- p->I, p->O, p->kind));
- if (!cld) goto nada;
-
- pln = MKPLAN_RDFT(P, &padt, apply_dif);
- if (!mkP(pln, r, p->I, is*m, p->kind[0], plnr)) goto nada;
-
- pln->ios = is*m;
- pln->os = is;
- pln->m = m;
- pln->cld = cld;
- pln->W = 0;
-
- X(ops_madd)((m - 1)/2, &pln->super.super.ops, &cld->ops,
- &pln->super.super.ops);
-
- return &(pln->super.super);
-
- nada:
- X(plan_destroy_internal)(cld);
- X(ifree0)(pln);
- return (plan *) 0;
-}
-
-/* constructors */
-
-static solver *mksolver_dit(void)
-{
- static const solver_adt sadt = { mkplan_dit };
- S *slv = MKSOLVER(S, &sadt);
- slv->kind = R2HC;
- return &(slv->super);
-}
-
-static solver *mksolver_dif(void)
-{
- static const solver_adt sadt = { mkplan_dif };
- S *slv = MKSOLVER(S, &sadt);
- slv->kind = HC2R;
- return &(slv->super);
-}
-
-void X(rdft_rader_hc2hc_register)(planner *p)
-{
- REGISTER_SOLVER(p, mksolver_dit());
- REGISTER_SOLVER(p, mksolver_dif());
-}