diff options
Diffstat (limited to 'src/fftw3/rdft/rader-hc2hc.c')
-rw-r--r-- | src/fftw3/rdft/rader-hc2hc.c | 513 |
1 files changed, 0 insertions, 513 deletions
diff --git a/src/fftw3/rdft/rader-hc2hc.c b/src/fftw3/rdft/rader-hc2hc.c deleted file mode 100644 index f1b6f34..0000000 --- a/src/fftw3/rdft/rader-hc2hc.c +++ /dev/null @@ -1,513 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -#include "rdft.h" -#include "dft.h" - -/* - * Compute transforms with large prime factors using Rader's trick: - * turn the factors into convolutions of size n - 1, which you then - * perform via a pair of FFTs. This file contains only twiddle hc2hc - * transforms, which are actually ordinary complex transforms in a - * slightly funny order. - */ - -typedef struct { - solver super; - rdft_kind kind; -} S; - -typedef struct { - plan_rdft super; - - plan *cldr, *cldr0; - plan *cld; - R *W; - R *omega; - int m, r, g, ginv; - int os, ios; - rdft_kind kind; -} P; - -static rader_tl *twiddles = 0; - -/***************************************************************************/ - -/* Below, we extensively use the identity that fft(x*)* = ifft(x) in - order to share data between forward and backward transforms and to - obviate the necessity of having separate forward and backward - plans. */ - -static void apply_aux(int r, plan_dft *cldr, const R *omega, - R *buf, R *ro, R i0, R *io) -{ - R r0; - int k; - - /* compute DFT of buf, operating in-place */ - cldr->apply((plan *) cldr, buf, buf+1, buf, buf+1); - - /* set output DC component: */ - ro[0] = (r0 = ro[0]) + buf[0]; - io[0] = i0 + buf[1]; - - /* now, multiply by omega: */ - for (k = 0; k < r - 1; ++k) { - R rB, iB, rW, iW; - rW = omega[2*k]; - iW = omega[2*k+1]; - rB = buf[2*k]; - iB = buf[2*k+1]; - buf[2*k] = rW * rB - iW * iB; - buf[2*k+1] = -(rW * iB + iW * rB); - } - - /* this will add input[0] to all of the outputs after the ifft */ - buf[0] += r0; - buf[1] -= i0; - - /* inverse FFT: */ - cldr->apply((plan *) cldr, buf, buf+1, buf, buf+1); -} - -static void apply_dit(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - plan_dft *cldr; - int os, ios; - int j, k, gpower, g, ginv, r, m; - R *buf, *rio, *ii, *io; - const R *omega, *W; - - /* size-m child transforms: */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, I, O); - } - - /* 0th twiddle transform is just size-r (prime) R2HC: */ - { - plan_rdft *cldr0 = (plan_rdft *) ego->cldr0; - cldr0->apply((plan *) cldr0, O, O); - } - - cldr = (plan_dft *) ego->cldr; - r = ego->r; - m = ego->m; - g = ego->g; - ginv = ego->ginv; - omega = ego->omega; - W = ego->W; - os = ego->os; - ios = ego->ios; - gpower = 1; - rio = O + os; - ii = O + (m - 1) * os; - io = O + (r * m - 1) * os; - - buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); - - for (j = 2; j < m; j += 2, rio += os, ii -= os, io -= os, W += 2*(r-1)) { - /* First, permute the input and multiply by W, storing in buf: */ - A(gpower == 1); - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - R rA, iA, rW, iW; - rA = rio[gpower * ios]; - iA = ii[gpower * ios]; - rW = W[2*k]; - iW = W[2*k+1]; - buf[2*k] = rW * rA - iW * iA; - buf[2*k+1] = rW * iA + iW * rA; - } - /* gpower == g^(r-1) mod r == 1 */; - - apply_aux(r, cldr, omega, buf, rio, ii[0], io); - - /* finally, do inverse permutation to unshuffle the output: */ - A(gpower == 1); - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { - rio[gpower * ios] = buf[2*k]; - io[-gpower * ios] = -buf[2*k+1]; - } - A(gpower == 1); - - /* second half of array must be fiddled to get real/imag - parts in correct spots: */ - for (k = (r+1)/2; k < r; ++k) { - R t; - t = rio[k * ios]; - rio[k * ios] = -io[-k * ios]; - io[-k * ios] = t; - } - } - - /* Avoid funny m/2-th iter by requiring m odd. This always - happens anyway because all the factors of 2 get divided out - first by codelets (Rader is UGLY for small factors). */ - - X(ifree)(buf); -} - -static void apply_dif(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - plan_dft *cldr; - int is, ios; - int j, k, gpower, g, ginv, r, m; - R *buf, *rio, *ii, *io; - const R *omega, *W; - - /* 0th twiddle transform is just size-r (prime) HC2R: */ - { - plan_rdft *cldr0 = (plan_rdft *) ego->cldr0; - cldr0->apply((plan *) cldr0, I, I); - } - - cldr = (plan_dft *) ego->cldr; - r = ego->r; - m = ego->m; - g = ego->g; - ginv = ego->ginv; - omega = ego->omega; - W = ego->W + 2*(r-1); /* simplify reverse indexing of W */ - is = ego->os; - ios = ego->ios; - gpower = 1; - rio = I + is; - io = I + (m - 1) * is; - ii = I + (r * m - 1) * is; - - buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); - - for (j = 2; j < m; j += 2, rio += is, ii -= is, io -= is, W += 2*(r-1)) { - /* second half of array must be unfiddled to get real/imag - parts from correct spots: */ - for (k = (r+1)/2; k < r; ++k) { - R t; - t = rio[k * ios]; - rio[k * ios] = ii[-k * ios]; - ii[-k * ios] = -t; - } - - /* First, permute the input, storing in buf: */ - A(gpower == 1); - for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) { - buf[2*k] = rio[gpower * ios]; - buf[2*k+1] = -ii[-gpower * ios]; - } - /* gpower == g^(r-1) mod r == 1 */; - A(gpower == 1); - - apply_aux(r, cldr, omega, buf, rio, -ii[0], io); - io[0] = -io[0]; - - /* finally, do inverse permutation to unshuffle the output, - also multiplying by the inverse twiddle factors W*. - The twiddle factors are accessed in reverse order W[-k], - because here we exponentiating ginv and not g as in - mktwiddle. */ - { /* W[-0] = W[0] case must be handled specially */ - R rA, iA, rW, iW; - rA = buf[0]; iA = buf[1]; - rW = W[-2*(r-1)]; iW = W[-2*(r-1) + 1]; - rio[ios] = rA * rW + iA * iW; - io[ios] = iA * rW - rA * iW; - } - gpower = ginv; - for (k = 1; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) { - R rA, iA, rW, iW; - rA = buf[2*k]; iA = buf[2*k+1]; - rW = W[-2*k]; iW = W[-2*k+1]; - rio[gpower * ios] = rA * rW + iA * iW; - io[gpower * ios] = iA * rW - rA * iW; - } - A(gpower == 1); - } - - /* Avoid funny m/2-th iter by requiring m odd. This always - happens anyway because all the factors of 2 get divided out - first by codelets (Rader is UGLY for small factors). */ - - X(ifree)(buf); - - /* size-m child transforms: */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, I, O); - } -} - -static R *mktwiddle(int m, int r, int g) -{ - int i, j, gpower; - int n = r * m; - R *W; - - if ((W = X(rader_tl_find)(m, r, g, twiddles))) - return W; - - W = (R *)MALLOC(sizeof(R) * (r - 1) * ((m-1)/2) * 2, TWIDDLES); - for (i = 1; i < (m+1)/2; ++i) { - for (gpower = 1, j = 0; j < r - 1; - ++j, gpower = MULMOD(gpower, g, r)) { - int k = (i - 1) * (r - 1) + j; - W[2*k] = X(cos2pi)(i * gpower, n); - W[2*k+1] = FFT_SIGN * X(sin2pi)(i * gpower, n); - } - A(gpower == 1); - } - - X(rader_tl_insert)(m, r, g, W, &twiddles); - return W; -} - -static void free_twiddle(R *twiddle) -{ - X(rader_tl_delete)(twiddle, &twiddles); -} - -/***************************************************************************/ - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - - AWAKE(ego->cldr0, flg); - AWAKE(ego->cldr, flg); - AWAKE(ego->cld, flg); - - if (flg) { - if (!ego->omega) - ego->omega = - X(dft_rader_mkomega)(ego->cldr, ego->r, ego->ginv); - if (!ego->W) - ego->W = mktwiddle(ego->m, ego->r, ego->g); - } else { - X(dft_rader_free_omega)(&ego->omega); - free_twiddle(ego->W); - ego->W = 0; - } -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); - X(plan_destroy_internal)(ego->cldr); - X(plan_destroy_internal)(ego->cldr0); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - - p->print(p, "(rdft-rader-%s-%d%(%p%)%(%p%)%(%p%))", - ego->kind == R2HC ? "r2hc-dit" : "hc2r-dif", - ego->r, ego->cldr0, ego->cldr, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - if (RDFTP(p_)) { - const S *ego = (const S *) ego_; - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk == 0 - && p->sz->dims[0].n > 1 - && p->sz->dims[0].n % 4 /* make sure n / r = m is odd */ - && p->kind[0] == ego->kind - && !X(is_prime)(p->sz->dims[0].n) /* avoid inf. loops planning cldr0 */ - ); - } - - return 0; -} - -static int applicable(const solver *ego_, const problem *p_, - const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego_, p_)); -} - -static int mkP(P *pln, int r, R *O, int ios, rdft_kind kind, planner *plnr) -{ - plan *cldr = (plan *) 0; - plan *cldr0 = (plan *) 0; - R *buf = (R *) 0; - - cldr0 = X(mkplan_d)(plnr, - X(mkproblem_rdft_1_d)(X(mktensor_1d)(r, ios, ios), - X(mktensor_1d)(1, 0, 0), - O, O, kind)); - if (!cldr0) goto nada; - - /* initial allocation for the purpose of planning */ - buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS); - - cldr = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(mktensor_1d)(r - 1, 2, 2), - X(mktensor_1d)(1, 0, 0), - buf, buf + 1, buf, buf + 1)); - if (!cldr) goto nada; - - X(ifree)(buf); - - pln->cldr = cldr; - pln->cldr0 = cldr0; - pln->omega = 0; - pln->r = r; - pln->g = X(find_generator)(r); - pln->ginv = X(power_mod)(pln->g, r - 2, r); - pln->kind = kind; - A(MULMOD(pln->g, pln->ginv, r) == 1); - - X(ops_add)(&cldr->ops, &cldr->ops, &pln->super.super.ops); - pln->super.super.ops.other += (r - 1) * (4 * 2 + 6) + 6; - pln->super.super.ops.add += 2 * (r - 1) * 2 + 4; - pln->super.super.ops.mul += 2 * (r - 1) * 4; - - return 1; - - nada: - X(ifree0)(buf); - X(plan_destroy_internal)(cldr); - X(plan_destroy_internal)(cldr0); - return 0; -} - -static plan *mkplan_dit(const solver *ego, const problem *p_, planner *plnr) -{ - const problem_rdft *p = (const problem_rdft *) p_; - P *pln = 0; - int n, is, os, r, m; - plan *cld = (plan *) 0; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego, p_, plnr)) - goto nada; - - n = p->sz->dims[0].n; - is = p->sz->dims[0].is; - os = p->sz->dims[0].os; - - r = X(first_divisor)(n); - m = n / r; - - - cld = X(mkplan_d)(plnr, - X(mkproblem_rdft_d)(X(mktensor_1d)(m, r * is, os), - X(mktensor_1d)(r, is, m * os), - p->I, p->O, p->kind)); - if (!cld) goto nada; - - pln = MKPLAN_RDFT(P, &padt, apply_dit); - if (!mkP(pln, r, p->O, os*m, p->kind[0], plnr)) - goto nada; - - pln->ios = os*m; - pln->os = os; - pln->m = m; - pln->cld = cld; - pln->W = 0; - - X(ops_madd)((m - 1)/2, &pln->super.super.ops, &cld->ops, - &pln->super.super.ops); - - return &(pln->super.super); - - nada: - X(plan_destroy_internal)(cld); - X(ifree0)(pln); - return (plan *) 0; -} - -static plan *mkplan_dif(const solver *ego, const problem *p_, planner *plnr) -{ - const problem_rdft *p = (const problem_rdft *) p_; - P *pln = 0; - int n, is, os, r, m; - plan *cld = (plan *) 0; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego, p_, plnr)) - goto nada; - - n = p->sz->dims[0].n; - is = p->sz->dims[0].is; - os = p->sz->dims[0].os; - - r = X(first_divisor)(n); - m = n / r; - - cld = X(mkplan_d)(plnr, - X(mkproblem_rdft_d)(X(mktensor_1d)(m, is, r * os), - X(mktensor_1d)(r, m * is, os), - p->I, p->O, p->kind)); - if (!cld) goto nada; - - pln = MKPLAN_RDFT(P, &padt, apply_dif); - if (!mkP(pln, r, p->I, is*m, p->kind[0], plnr)) goto nada; - - pln->ios = is*m; - pln->os = is; - pln->m = m; - pln->cld = cld; - pln->W = 0; - - X(ops_madd)((m - 1)/2, &pln->super.super.ops, &cld->ops, - &pln->super.super.ops); - - return &(pln->super.super); - - nada: - X(plan_destroy_internal)(cld); - X(ifree0)(pln); - return (plan *) 0; -} - -/* constructors */ - -static solver *mksolver_dit(void) -{ - static const solver_adt sadt = { mkplan_dit }; - S *slv = MKSOLVER(S, &sadt); - slv->kind = R2HC; - return &(slv->super); -} - -static solver *mksolver_dif(void) -{ - static const solver_adt sadt = { mkplan_dif }; - S *slv = MKSOLVER(S, &sadt); - slv->kind = HC2R; - return &(slv->super); -} - -void X(rdft_rader_hc2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver_dit()); - REGISTER_SOLVER(p, mksolver_dif()); -} |