summaryrefslogtreecommitdiff
path: root/src/fftw3/rdft/rbuffered.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/fftw3/rdft/rbuffered.c')
-rw-r--r--src/fftw3/rdft/rbuffered.c299
1 files changed, 299 insertions, 0 deletions
diff --git a/src/fftw3/rdft/rbuffered.c b/src/fftw3/rdft/rbuffered.c
new file mode 100644
index 0000000..19ccc7b
--- /dev/null
+++ b/src/fftw3/rdft/rbuffered.c
@@ -0,0 +1,299 @@
+/*
+ * Copyright (c) 2003 Matteo Frigo
+ * Copyright (c) 2003 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ */
+
+/* $Id: rbuffered.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */
+
+#include "rdft.h"
+
+typedef struct {
+ int nbuf;
+ int maxbufsz;
+ int skew_alignment;
+ int skew;
+ const char *nam;
+} bufadt;
+
+typedef struct {
+ solver super;
+ const bufadt *adt;
+} S;
+
+typedef struct {
+ plan_rdft super;
+
+ plan *cld, *cldcpy, *cldrest;
+ int n, vl, nbuf, bufdist;
+ int ivs, ovs;
+
+ const S *slv;
+} P;
+
+/* transform a vector input with the help of bufs */
+static void apply(const plan *ego_, R *I, R *O)
+{
+ const P *ego = (const P *) ego_;
+ plan_rdft *cld = (plan_rdft *) ego->cld;
+ plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
+ plan_rdft *cldrest;
+ int i, vl = ego->vl, nbuf = ego->nbuf;
+ int ivs = ego->ivs, ovs = ego->ovs;
+ R *bufs;
+
+ bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
+
+ for (i = nbuf; i <= vl; i += nbuf) {
+ /* transform to bufs: */
+ cld->apply((plan *) cld, I, bufs);
+ I += ivs;
+
+ /* copy back */
+ cldcpy->apply((plan *) cldcpy, bufs, O);
+ O += ovs;
+ }
+
+ /* Do the remaining transforms, if any: */
+ cldrest = (plan_rdft *) ego->cldrest;
+ cldrest->apply((plan *) cldrest, I, O);
+
+ X(ifree)(bufs);
+}
+
+
+static void awake(plan *ego_, int flg)
+{
+ P *ego = (P *) ego_;
+
+ AWAKE(ego->cld, flg);
+ AWAKE(ego->cldcpy, flg);
+ AWAKE(ego->cldrest, flg);
+}
+
+static void destroy(plan *ego_)
+{
+ P *ego = (P *) ego_;
+ X(plan_destroy_internal)(ego->cldrest);
+ X(plan_destroy_internal)(ego->cldcpy);
+ X(plan_destroy_internal)(ego->cld);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+ const P *ego = (const P *) ego_;
+ p->print(p, "(%s-%d%v/%d-%d%(%p%)%(%p%)%(%p%))",
+ ego->slv->adt->nam,
+ ego->n, ego->nbuf,
+ ego->vl, ego->bufdist % ego->n,
+ ego->cld, ego->cldcpy, ego->cldrest);
+}
+
+
+static int compute_nbuf(int n, int vl, const S *ego)
+{
+ return X(compute_nbuf)(n, vl, ego->adt->nbuf, ego->adt->maxbufsz);
+}
+
+static int toobig(int n, const S *ego)
+{
+ return (n > ego->adt->maxbufsz);
+}
+
+static int applicable0(const problem *p_, const S *ego, const planner *plnr)
+{
+ if (RDFTP(p_)) {
+ const problem_rdft *p = (const problem_rdft *) p_;
+ iodim *d = p->sz->dims;
+
+ if (1
+ && p->vecsz->rnk <= 1
+ && p->sz->rnk == 1
+ ) {
+
+ if (toobig(p->sz->dims[0].n, ego) && CONSERVE_MEMORYP(plnr))
+ return 0;
+
+ /*
+ In principle, the buffered transforms might be useful
+ when working out of place. However, in order to
+ prevent infinite loops in the planner, we require
+ that the output stride of the buffered transforms be
+ greater than 1.
+ */
+ if (p->I != p->O)
+ return (d[0].os > 1);
+
+ /* We can always do a single transform in-place */
+ if (p->vecsz->rnk == 0)
+ return 1;
+
+ /*
+ * If the problem is in place, the input/output strides must
+ * be the same or the whole thing must fit in the buffer.
+ */
+ return ((X(tensor_inplace_strides2)(p->sz, p->vecsz))
+ || (compute_nbuf(d[0].n, p->vecsz->dims[0].n, ego)
+ == p->vecsz->dims[0].n));
+ }
+ }
+ return 0;
+}
+
+static int applicable(const problem *p_, const S *ego, const planner *plnr)
+{
+ const problem_rdft *p;
+
+ if (NO_BUFFERINGP(plnr)) return 0;
+ if (!applicable0(p_, ego, plnr)) return 0;
+
+ p = (const problem_rdft *) p_;
+ if (NO_UGLYP(plnr)) {
+ if (p->I != p->O) return 0;
+ if (toobig(p->sz->dims[0].n, ego)) return 0;
+ }
+ return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+ const S *ego = (const S *) ego_;
+ const bufadt *adt = ego->adt;
+ P *pln;
+ plan *cld = (plan *) 0;
+ plan *cldcpy = (plan *) 0;
+ plan *cldrest = (plan *) 0;
+ const problem_rdft *p = (const problem_rdft *) p_;
+ R *bufs = (R *) 0;
+ int nbuf = 0, bufdist, n, vl;
+ int ivs, ovs;
+
+ static const plan_adt padt = {
+ X(rdft_solve), awake, print, destroy
+ };
+
+
+ if (!applicable(p_, ego, plnr))
+ goto nada;
+
+ n = X(tensor_sz)(p->sz);
+ X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
+
+ nbuf = compute_nbuf(n, vl, ego);
+ A(nbuf > 0);
+
+ /*
+ * Determine BUFDIST, the offset between successive array bufs.
+ * bufdist = n + skew, where skew is chosen such that bufdist %
+ * skew_alignment = skew.
+ */
+ if (vl == 1) {
+ bufdist = n;
+ } else {
+ bufdist =
+ n + ((adt->skew_alignment + adt->skew - n % adt->skew_alignment)
+ % adt->skew_alignment);
+ A(p->vecsz->rnk == 1);
+ }
+
+ /* initial allocation for the purpose of planning */
+ bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
+
+ cld = X(mkplan_d)(plnr,
+ X(mkproblem_rdft_d)(
+ X(mktensor_1d)(n, p->sz->dims[0].is, 1),
+ X(mktensor_1d)(nbuf, ivs, bufdist),
+ TAINT(p->I, ivs * nbuf), bufs, p->kind));
+ if (!cld) goto nada;
+
+ /* copying back from the buffer is a rank-0 transform: */
+ cldcpy = X(mkplan_d)(plnr,
+ X(mkproblem_rdft_d)(
+ X(mktensor_0d)(),
+ X(mktensor_2d)(nbuf, bufdist, ovs,
+ n, 1, p->sz->dims[0].os),
+ bufs, TAINT(p->O, ovs * nbuf),
+ (rdft_kind *) 0));
+ if (!cldcpy) goto nada;
+
+ /* deallocate buffers, let apply() allocate them for real */
+ X(ifree)(bufs);
+ bufs = 0;
+
+ /* plan the leftover transforms (cldrest): */
+ {
+ int id = ivs * (nbuf * (vl / nbuf));
+ int od = ovs * (nbuf * (vl / nbuf));
+ cldrest = X(mkplan_d)(plnr,
+ X(mkproblem_rdft_d)(
+ X(tensor_copy)(p->sz),
+ X(mktensor_1d)(vl % nbuf, ivs, ovs),
+ p->I + id, p->O + od, p->kind));
+ }
+ if (!cldrest) goto nada;
+
+ pln = MKPLAN_RDFT(P, &padt, apply);
+ pln->cld = cld;
+ pln->cldcpy = cldcpy;
+ pln->cldrest = cldrest;
+ pln->slv = ego;
+ pln->n = n;
+ pln->vl = vl;
+ pln->ivs = ivs * nbuf;
+ pln->ovs = ovs * nbuf;
+
+ pln->nbuf = nbuf;
+ pln->bufdist = bufdist;
+
+ {
+ opcnt t;
+ X(ops_add)(&cld->ops, &cldcpy->ops, &t);
+ X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
+ }
+
+ return &(pln->super.super);
+
+ nada:
+ X(ifree0)(bufs);
+ X(plan_destroy_internal)(cldrest);
+ X(plan_destroy_internal)(cldcpy);
+ X(plan_destroy_internal)(cld);
+ return (plan *) 0;
+}
+
+static solver *mksolver(const bufadt *adt)
+{
+ static const solver_adt sadt = { mkplan };
+ S *slv = MKSOLVER(S, &sadt);
+ slv->adt = adt;
+ return &(slv->super);
+}
+
+
+void X(rdft_buffered_register)(planner *p)
+{
+ /* FIXME: what are good defaults? */
+ static const bufadt adt = {
+ /* nbuf */ 8,
+ /* maxbufsz */ (65536 / sizeof(R)),
+ /* skew_alignment */ 8,
+ /* skew */ 5,
+ /* nam */ "rdft-buffered"
+ };
+
+ REGISTER_SOLVER(p, mksolver(&adt));
+}