diff options
Diffstat (limited to 'src/fftw3/rdft/rdft-dht.c')
-rw-r--r-- | src/fftw3/rdft/rdft-dht.c | 223 |
1 files changed, 223 insertions, 0 deletions
diff --git a/src/fftw3/rdft/rdft-dht.c b/src/fftw3/rdft/rdft-dht.c new file mode 100644 index 0000000..f384fef --- /dev/null +++ b/src/fftw3/rdft/rdft-dht.c @@ -0,0 +1,223 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* $Id: rdft-dht.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ + +/* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This + is mainly useful because we can use Rader to compute DHTs of prime + sizes. It also allows us to express hc2r problems in terms of r2hc + (via dht-r2hc), and to do hc2r problems without destroying the input. */ + +#include "rdft.h" + +typedef struct { + solver super; +} S; + +typedef struct { + plan_rdft super; + plan *cld; + int is, os; + int n; +} P; + +static void apply_r2hc(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + int os; + int i, n; + + { + plan_rdft *cld = (plan_rdft *) ego->cld; + cld->apply((plan *) cld, I, O); + } + + n = ego->n; + os = ego->os; + for (i = 1; i < n - i; ++i) { + E a, b; + a = K(0.5) * O[os * i]; + b = K(0.5) * O[os * (n - i)]; + O[os * i] = a + b; +#if FFT_SIGN == -1 + O[os * (n - i)] = b - a; +#else + O[os * (n - i)] = a - b; +#endif + } +} + +/* hc2r, destroying input as usual */ +static void apply_hc2r(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + int is = ego->is; + int i, n = ego->n; + + for (i = 1; i < n - i; ++i) { + E a, b; + a = I[is * i]; + b = I[is * (n - i)]; +#if FFT_SIGN == -1 + I[is * i] = a - b; + I[is * (n - i)] = a + b; +#else + I[is * i] = a + b; + I[is * (n - i)] = a - b; +#endif + } + + { + plan_rdft *cld = (plan_rdft *) ego->cld; + cld->apply((plan *) cld, I, O); + } +} + +/* hc2r, without destroying input */ +static void apply_hc2r_save(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + int is = ego->is, os = ego->os; + int i, n = ego->n; + + O[0] = I[0]; + for (i = 1; i < n - i; ++i) { + E a, b; + a = I[is * i]; + b = I[is * (n - i)]; +#if FFT_SIGN == -1 + O[os * i] = a - b; + O[os * (n - i)] = a + b; +#else + O[os * i] = a + b; + O[os * (n - i)] = a - b; +#endif + } + if (i == n - i) + O[os * i] = I[is * i]; + + { + plan_rdft *cld = (plan_rdft *) ego->cld; + cld->apply((plan *) cld, O, O); + } +} + +static void awake(plan *ego_, int flg) +{ + P *ego = (P *) ego_; + AWAKE(ego->cld, flg); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(%s-dht-%d%(%p%))", + ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", + ego->n, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ + UNUSED(ego_); + if (RDFTP(p_)) { + const problem_rdft *p = (const problem_rdft *) p_; + return (1 + && p->sz->rnk == 1 + && p->vecsz->rnk == 0 + && (p->kind[0] == R2HC || p->kind[0] == HC2R) + + /* hack: size-2 DHT etc. are defined as being equivalent + to size-2 R2HC in problem.c, so we need this to prevent + infinite loops for size 2 in EXHAUSTIVE mode: */ + && p->sz->dims[0].n > 2 + ); + } + return 0; +} + +static int applicable(const solver *ego, const problem *p_, + const planner *plnr) +{ + return (!NO_UGLYP(plnr) && applicable0(ego, p_)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + P *pln; + const problem_rdft *p; + problem *cldp; + plan *cld; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr)) + return (plan *)0; + + p = (const problem_rdft *) p_; + + if (p->kind[0] == R2HC || DESTROY_INPUTP(plnr)) + cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); + else { + tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); + cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); + X(tensor_destroy)(sz); + } + cld = X(mkplan_d)(plnr, cldp); + if (!cld) return (plan *)0; + + pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? + apply_r2hc : (DESTROY_INPUTP(plnr) ? + apply_hc2r : apply_hc2r_save)); + pln->n = p->sz->dims[0].n; + pln->is = p->sz->dims[0].is; + pln->os = p->sz->dims[0].os; + pln->cld = cld; + + pln->super.super.ops = cld->ops; + pln->super.super.ops.other += 4 * ((pln->n - 1)/2); + pln->super.super.ops.add += 2 * ((pln->n - 1)/2); + if (p->kind[0] == R2HC) + pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); + if (pln->super.apply == apply_hc2r_save) + pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); + + return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ + static const solver_adt sadt = { mkplan }; + S *slv = MKSOLVER(S, &sadt); + return &(slv->super); +} + +void X(rdft_dht_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +} |