diff options
Diffstat (limited to 'src/fftw3/rdft/rrank-geq2.c')
-rw-r--r-- | src/fftw3/rdft/rrank-geq2.c | 216 |
1 files changed, 216 insertions, 0 deletions
diff --git a/src/fftw3/rdft/rrank-geq2.c b/src/fftw3/rdft/rrank-geq2.c new file mode 100644 index 0000000..78f359f --- /dev/null +++ b/src/fftw3/rdft/rrank-geq2.c @@ -0,0 +1,216 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + */ + +/* $Id: rrank-geq2.c,v 1.1 2008/10/17 06:11:29 scuri Exp $ */ + +/* plans for RDFT of rank >= 2 (multidimensional) */ + +/* FIXME: this solver cannot strictly be applied to multidimensional + DHTs, since the latter are not separable...up to rnk-1 additional + post-processing passes may be required. See also: + + R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast + two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). + + H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm + using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). +*/ + +#include "rdft.h" + +typedef struct { + solver super; + int spltrnk; + const int *buddies; + int nbuddies; +} S; + +typedef struct { + plan_rdft super; + + plan *cld1, *cld2; + const S *solver; +} P; + +/* Compute multi-dimensional RDFT by applying the two cld plans + (lower-rnk RDFTs). */ +static void apply(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + plan_rdft *cld1, *cld2; + + cld1 = (plan_rdft *) ego->cld1; + cld1->apply(ego->cld1, I, O); + + cld2 = (plan_rdft *) ego->cld2; + cld2->apply(ego->cld2, O, O); +} + + +static void awake(plan *ego_, int flg) +{ + P *ego = (P *) ego_; + AWAKE(ego->cld1, flg); + AWAKE(ego->cld2, flg); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + const S *s = ego->solver; + p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", + s->spltrnk, ego->cld1, ego->cld2); +} + +static int picksplit(const S *ego, const tensor *sz, int *rp) +{ + A(sz->rnk > 1); /* cannot split rnk <= 1 */ + if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) + return 0; + *rp += 1; /* convert from dim. index to rank */ + if (*rp >= sz->rnk) /* split must reduce rank */ + return 0; + return 1; +} + +static int applicable0(const solver *ego_, const problem *p_, int *rp) +{ + if (RDFTP(p_)) { + const problem_rdft *p = (const problem_rdft *) p_; + const S *ego = (const S *)ego_; + return (1 + && p->sz->rnk >= 2 + && picksplit(ego, p->sz, rp) + ); + } + + return 0; +} + +/* TODO: revise this. */ +static int applicable(const solver *ego_, const problem *p_, + const planner *plnr, int *rp) +{ + const S *ego = (const S *)ego_; + + if (!applicable0(ego_, p_, rp)) return 0; + + /* fixed spltrnk (unlike fftw2's spltrnk=1, default buddies[0] is + spltrnk=0, which is an asymptotic "theoretical optimum" for + an ideal cache; it's equivalent to spltrnk=1 for rnk < 4). */ + if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) + return 0; + + if (NO_UGLYP(plnr)) { + /* Heuristic: if the vector stride is greater than the transform + sz, don't use (prefer to do the vector loop first with a + vrank-geq1 plan). */ + const problem_rdft *p = (const problem_rdft *) p_; + + if (p->vecsz->rnk > 0 && + X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) + return 0; + } + + return 1; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_rdft *p; + P *pln; + plan *cld1 = 0, *cld2 = 0; + tensor *sz1, *sz2, *vecszi, *sz2i; + int spltrnk; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr, &spltrnk)) + return (plan *) 0; + + p = (const problem_rdft *) p_; + X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); + vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); + sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); + + cld1 = X(mkplan_d)(plnr, + X(mkproblem_rdft_d)(X(tensor_copy)(sz2), + X(tensor_append)(p->vecsz, sz1), + p->I, p->O, p->kind + spltrnk)); + if (!cld1) goto nada; + + cld2 = X(mkplan_d)(plnr, + X(mkproblem_rdft_d)( + X(tensor_copy_inplace)(sz1, INPLACE_OS), + X(tensor_append)(vecszi, sz2i), + p->O, p->O, p->kind)); + if (!cld2) goto nada; + + pln = MKPLAN_RDFT(P, &padt, apply); + + pln->cld1 = cld1; + pln->cld2 = cld2; + + pln->solver = ego; + X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); + + X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); + + return &(pln->super.super); + + nada: + X(plan_destroy_internal)(cld2); + X(plan_destroy_internal)(cld1); + X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); + return (plan *) 0; +} + +static solver *mksolver(int spltrnk, const int *buddies, int nbuddies) +{ + static const solver_adt sadt = { mkplan }; + S *slv = MKSOLVER(S, &sadt); + slv->spltrnk = spltrnk; + slv->buddies = buddies; + slv->nbuddies = nbuddies; + return &(slv->super); +} + +void X(rdft_rank_geq2_register)(planner *p) +{ + int i; + static const int buddies[] = { 0, 1, -2 }; + + const int nbuddies = sizeof(buddies) / sizeof(buddies[0]); + + for (i = 0; i < nbuddies; ++i) + REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); + + /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ +} |