diff options
Diffstat (limited to 'src/fftw3/reodft/reodft11e-r2hc-odd.c')
-rw-r--r-- | src/fftw3/reodft/reodft11e-r2hc-odd.c | 304 |
1 files changed, 0 insertions, 304 deletions
diff --git a/src/fftw3/reodft/reodft11e-r2hc-odd.c b/src/fftw3/reodft/reodft11e-r2hc-odd.c deleted file mode 100644 index 471f7ca..0000000 --- a/src/fftw3/reodft/reodft11e-r2hc-odd.c +++ /dev/null @@ -1,304 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft11e-r2hc-odd.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size, - with some permutations and post-processing, as described in: - - S. C. Chan and K. L. Ho, "Fast algorithms for computing the - discrete cosine transform," IEEE Trans. Circuits Systems II: - Analog & Digital Sig. Proc. 39 (3), 185--190 (1992). - - (For even sizes, see reodft11e-radix2.c.) - - This algorithm is related to the 8 x n prime-factor-algorithm (PFA) - decomposition of the size 8n "logical" DFT corresponding to the - R{EO}DFT11. - - Aside from very confusing notation (several symbols are redefined - from one line to the next), be aware that this paper has some - errors. In particular, the signs are wrong in Eqs. (34-35). Also, - Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly - for S (or, equivalently, the second cases should have 2*N - 2*k - 1 - instead of N - k - 1). Note also that in their definition of the - DFT, similarly to FFTW's, the exponent's sign is -1, but they - forgot to correspondingly multiply S (the sine terms) by -1. -*/ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769); - -#define SGN_SET(x, i) ((i) % 2 ? -(x) : (x)) - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - { - int m; - for (i = 0, m = n2; m < n; ++i, m += 4) - buf[i] = I[is * m]; - for (; m < 2 * n; ++i, m += 4) - buf[i] = -I[is * (2*n - m - 1)]; - for (; m < 3 * n; ++i, m += 4) - buf[i] = -I[is * (m - 2*n)]; - for (; m < 4 * n; ++i, m += 4) - buf[i] = I[is * (4*n - m - 1)]; - m -= 4 * n; - for (; i < n; ++i, m += 4) - buf[i] = I[is * m]; - } - - { /* child plan: R2HC of size n */ - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ - for (i = 0; i + i + 1 < n2; ++i) { - int k = i + i + 1; - E c1, s1; - E c2, s2; - c1 = buf[k]; - c2 = buf[k + 1]; - s2 = buf[n - (k + 1)]; - s1 = buf[n - k]; - - O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) + - SGN_SET(s1, i/2)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) - - SGN_SET(s1, (n-(i+1))/2)); - - O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) - - SGN_SET(s2, (n2-(i+1))/2)); - O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) + - SGN_SET(s2, (n2+(i+1))/2)); - } - if (i + i + 1 == n2) { - E c, s; - c = buf[n2]; - s = buf[n - n2]; - O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) + - SGN_SET(s, i/2)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) + - SGN_SET(s, (i+1)/2)); - } - O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2); - } - - X(ifree)(buf); -} - -/* like for rodft01, rodft11 is obtained from redft11 by - reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - { - int m; - for (i = 0, m = n2; m < n; ++i, m += 4) - buf[i] = I[is * (n - 1 - m)]; - for (; m < 2 * n; ++i, m += 4) - buf[i] = -I[is * (m - n)]; - for (; m < 3 * n; ++i, m += 4) - buf[i] = -I[is * (3*n - 1 - m)]; - for (; m < 4 * n; ++i, m += 4) - buf[i] = I[is * (m - 3*n)]; - m -= 4 * n; - for (; i < n; ++i, m += 4) - buf[i] = I[is * (n - 1 - m)]; - } - - { /* child plan: R2HC of size n */ - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ - for (i = 0; i + i + 1 < n2; ++i) { - int k = i + i + 1; - int j; - E c1, s1; - E c2, s2; - c1 = buf[k]; - c2 = buf[k + 1]; - s2 = buf[n - (k + 1)]; - s1 = buf[n - k]; - - O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) + - SGN_SET(s1, i/2 + i)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) - - SGN_SET(s1, (n-(i+1))/2 + i)); - - j = n2 - (i+1); - O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) - - SGN_SET(s2, (n2-(i+1))/2 + j)); - O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) + - SGN_SET(s2, (n2+(i+1))/2 + j)); - } - if (i + i + 1 == n2) { - E c, s; - c = buf[n2]; - s = buf[n - n2]; - O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) + - SGN_SET(s, i/2 + i)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) + - SGN_SET(s, (i+1)/2 + i)); - } - O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2); - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - AWAKE(ego->cld, flg); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-r2hc-odd-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->sz->dims[0].n % 2 == 1 - && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.add = n - 1; - ops.mul = n; - ops.other = 4*n; - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft11e_r2hc_odd_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} |