diff options
Diffstat (limited to 'src/fftw3/reodft/reodft11e-radix2.c')
-rw-r--r-- | src/fftw3/reodft/reodft11e-radix2.c | 515 |
1 files changed, 0 insertions, 515 deletions
diff --git a/src/fftw3/reodft/reodft11e-radix2.c b/src/fftw3/reodft/reodft11e-radix2.c deleted file mode 100644 index 674f7b4..0000000 --- a/src/fftw3/reodft/reodft11e-radix2.c +++ /dev/null @@ -1,515 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft11e-radix2.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems - of half the size, plus some pre/post-processing. Use a trick from: - - Zhongde Wang, "On computing the discrete Fourier and cosine transforms," - IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985). - - to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our - implementation looks quite a bit different from the algorithm described - in the paper because we combined the paper's pre/post-processing with - the pre/post-processing used to turn REDFT01 into R2HC. (Also, the - paper uses a DCT/DST pair, but we turn the DST into a DCT via the - usual reordering/sign-flip trick. We additionally combined a couple - of the matrices/transformations of the paper into a single pass.) - - NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho - that turned out to have numerical problems; see reodft11e-r2hc.c. - - (For odd sizes, see reodft11e-r2hc-odd.c.) -*/ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td, *td2; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *W2; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = K(2.0) * I[0]; - buf[n2] = K(2.0) * I[is * (n - 1)]; - for (i = 1; i + i < n2; ++i) { - int k = i + i; - E a, b, a2, b2; - { - E u, v; - u = I[is * (k - 1)]; - v = I[is * k]; - a = u + v; - b2 = u - v; - } - { - E u, v; - u = I[is * (n - k - 1)]; - v = I[is * (n - k)]; - b = u + v; - a2 = u - v; - } - { - E wa, wb; - wa = W[2*i]; - wb = W[2*i + 1]; - { - E apb, amb; - apb = a + b; - amb = a - b; - buf[i] = wa * amb + wb * apb; - buf[n2 - i] = wa * apb - wb * amb; - } - { - E apb, amb; - apb = a2 + b2; - amb = a2 - b2; - buf[n2 + i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - } - } - if (i + i == n2) { - E u, v; - u = I[is * (n2 - 1)]; - v = I[is * n2]; - buf[i] = K(2.0) * (u + v) * W[2*i]; - buf[n - i] = K(2.0) * (u - v) * W[2*i]; - } - - - /* child plan: two r2hc's of size n/2 */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W2 = ego->td2->W; - { /* i == 0 case */ - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[0]; - b = buf[n2]; - O[0] = wa * a + wb * b; - O[os * (n - 1)] = wb * a - wa * b; - } - W2 += 2; - for (i = 1; i + i < n2; ++i, W2 += 2) { - int k; - E u, v, u2, v2; - u = buf[i]; - v = buf[n2 - i]; - u2 = buf[n2 + i]; - v2 = buf[n - i]; - k = (i + i) - 1; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = u - v; - b = v2 - u2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wb * a - wa * b; - } - ++k; - W2 += 2; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = u + v; - b = u2 + v2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wb * a - wa * b; - } - } - if (i + i == n2) { - int k = (i + i) - 1; - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[i]; - b = buf[n2 + i]; - O[os * k] = wa * a - wb * b; - O[os * (n - 1 - k)] = wb * a + wa * b; - } - } - - X(ifree)(buf); -} - -#if 0 - -/* This version of apply_re11 uses REDFT01 child plans, more similar - to the original paper by Z. Wang. We keep it around for reference - (it is simpler) and because it may become more efficient if we - ever implement REDFT01 codelets. */ - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = K(2.0) * I[0]; - buf[n/2] = K(2.0) * I[is * (n - 1)]; - for (i = 1; i + i < n; ++i) { - int k = i + i; - E a, b; - a = I[is * (k - 1)]; - b = I[is * k]; - buf[i] = a + b; - buf[n - i] = a - b; - } - - /* child plan: two redft01's (DCT-III) */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W = ego->td2->W; - for (i = 0; i + 1 < n/2; ++i, W += 2) { - { - E wa, wb; - E a, b; - wa = W[0]; /* cos */ - wb = W[1]; /* sin */ - a = buf[i]; - b = buf[n/2 + i]; - O[os * i] = wa * a + wb * b; - O[os * (n - 1 - i)] = wb * a - wa * b; - } - ++i; - W += 2; - { - E wa, wb; - E a, b; - wa = W[0]; /* cos */ - wb = W[1]; /* sin */ - a = buf[i]; - b = buf[n/2 + i]; - O[os * i] = wa * a - wb * b; - O[os * (n - 1 - i)] = wb * a + wa * b; - } - } - if (i < n/2) { - E wa, wb; - E a, b; - wa = W[0]; /* cos */ - wb = W[1]; /* sin */ - a = buf[i]; - b = buf[n/2 + i]; - O[os * i] = wa * a + wb * b; - O[os * (n - 1 - i)] = wb * a - wa * b; - } - } - - X(ifree)(buf); -} - -#endif /* 0 */ - -/* like for rodft01, rodft11 is obtained from redft11 by - reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *W2; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = K(2.0) * I[is * (n - 1)]; - buf[n2] = K(2.0) * I[0]; - for (i = 1; i + i < n2; ++i) { - int k = i + i; - E a, b, a2, b2; - { - E u, v; - u = I[is * (n - k)]; - v = I[is * (n - 1 - k)]; - a = u + v; - b2 = u - v; - } - { - E u, v; - u = I[is * (k)]; - v = I[is * (k - 1)]; - b = u + v; - a2 = u - v; - } - { - E wa, wb; - wa = W[2*i]; - wb = W[2*i + 1]; - { - E apb, amb; - apb = a + b; - amb = a - b; - buf[i] = wa * amb + wb * apb; - buf[n2 - i] = wa * apb - wb * amb; - } - { - E apb, amb; - apb = a2 + b2; - amb = a2 - b2; - buf[n2 + i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - } - } - if (i + i == n2) { - E u, v; - u = I[is * n2]; - v = I[is * (n2 - 1)]; - buf[i] = K(2.0) * (u + v) * W[2*i]; - buf[n - i] = K(2.0) * (u - v) * W[2*i]; - } - - - /* child plan: two r2hc's of size n/2 */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W2 = ego->td2->W; - { /* i == 0 case */ - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[0]; - b = buf[n2]; - O[0] = wa * a + wb * b; - O[os * (n - 1)] = wa * b - wb * a; - } - W2 += 2; - for (i = 1; i + i < n2; ++i, W2 += 2) { - int k; - E u, v, u2, v2; - u = buf[i]; - v = buf[n2 - i]; - u2 = buf[n2 + i]; - v2 = buf[n - i]; - k = (i + i) - 1; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = v - u; - b = u2 - v2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wa * b - wb * a; - } - ++k; - W2 += 2; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = u + v; - b = u2 + v2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wa * b - wb * a; - } - } - if (i + i == n2) { - int k = (i + i) - 1; - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[i]; - b = buf[n2 + i]; - O[os * k] = wb * b - wa * a; - O[os * (n - 1 - k)] = wa * b + wb * a; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr reodft010e_tw[] = { - { TW_COS, 0, 1 }, - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - static const tw_instr reodft11e_tw[] = { - { TW_COS, 1, 1 }, - { TW_SIN, 1, 1 }, - { TW_NEXT, 2, 0 } - }; - - AWAKE(ego->cld, flg); - - X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 2*ego->n, 1, ego->n/4+1); - X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-radix2-r2hc-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->sz->dims[0].n % 2 == 0 - && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1), - X(mktensor_1d)(2, n/2, n/2), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = pln->td2 = 0; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.add = 2 + (n/2 - 1)/2 * 20; - ops.mul = 6 + (n/2 - 1)/2 * 16; - ops.other = 4*n + 2 + (n/2 - 1)/2 * 6; - if ((n/2) % 2 == 0) { - ops.add += 4; - ops.mul += 8; - ops.other += 4; - } - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft11e_radix2_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} |