diff options
Diffstat (limited to 'src/fftw3/reodft')
| -rw-r--r-- | src/fftw3/reodft/redft00e-r2hc-pad.c | 201 | ||||
| -rw-r--r-- | src/fftw3/reodft/redft00e-r2hc.c | 216 | ||||
| -rw-r--r-- | src/fftw3/reodft/reoconf.c | 42 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft.h | 41 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft010e-r2hc.c | 409 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft11e-r2hc-odd.c | 304 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft11e-r2hc.c | 295 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft11e-radix2.c | 515 | ||||
| -rw-r--r-- | src/fftw3/reodft/rodft00e-r2hc-pad.c | 200 | ||||
| -rw-r--r-- | src/fftw3/reodft/rodft00e-r2hc.c | 212 | 
10 files changed, 2435 insertions, 0 deletions
diff --git a/src/fftw3/reodft/redft00e-r2hc-pad.c b/src/fftw3/reodft/redft00e-r2hc-pad.c new file mode 100644 index 0000000..ec3fa35 --- /dev/null +++ b/src/fftw3/reodft/redft00e-r2hc-pad.c @@ -0,0 +1,201 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: redft00e-r2hc-pad.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do a REDFT00 problem via an R2HC problem, padded symmetrically to +   twice the size.  This is asymptotically a factor of ~2 worse than +   redft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical +   Recipes), but we abandoned the latter after we discovered that it +   has intrinsic accuracy problems. */ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld, *cldcpy; +     int is; +     int n; +     int vl; +     int ivs, ovs; +} P; + +static void apply(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = I[0]; +	  for (i = 1; i < n; ++i) { +	       R a = I[i * is]; +	       buf[i] = a; +	       buf[2*n - i] = a; +	  } +	  buf[i] = I[i * is]; /* i == n, Nyquist */ +	   +	  /* r2hc transform of size 2*n */ +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  /* copy n+1 real numbers (real parts of hc array) from buf to O */ +	  { +	       plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; +	       cldcpy->apply((plan *) cldcpy, buf, O); +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     AWAKE(ego->cld, flg); +     AWAKE(ego->cldcpy, flg); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cldcpy); +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(redft00e-r2hc-pad-%d%v%(%p%)%(%p%))",  +	      ego->n + 1, ego->vl, ego->cld, ego->cldcpy); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && p->kind[0] == REDFT00 +		  && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */ +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld = (plan *) 0, *cldcpy; +     R *buf = (R *) 0; +     int n; +     int vl, ivs, ovs; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +	  goto nada; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n - 1; +     A(n > 0); +     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); + +     cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1),  +						  X(mktensor_0d)(),  +						  buf, buf, R2HC)); +     if (!cld) +	  goto nada; + +     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); +     cldcpy = +	  X(mkplan_d)(plnr, +		      X(mkproblem_rdft_1_d)(X(mktensor_0d)(), +					    X(mktensor_1d)(n+1,1, +							   p->sz->dims[0].os),  +					    buf, TAINT(p->O, ovs), R2HC)); +     if (!cldcpy) +	  goto nada; + +     X(ifree)(buf); + +     pln = MKPLAN_RDFT(P, &padt, apply); + +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->cld = cld; +     pln->cldcpy = cldcpy; +     pln->vl = vl; +     pln->ivs = ivs; +     pln->ovs = ovs; +      +     X(ops_zero)(&ops); +     ops.other = n + 2*n; /* loads + stores (input -> buf) */ + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); + +     return &(pln->super.super); + + nada: +     X(ifree0)(buf); +     if (cld) +	  X(plan_destroy_internal)(cld);   +     return (plan *)0; +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(redft00e_r2hc_pad_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/redft00e-r2hc.c b/src/fftw3/reodft/redft00e-r2hc.c new file mode 100644 index 0000000..0cd742f --- /dev/null +++ b/src/fftw3/reodft/redft00e-r2hc.c @@ -0,0 +1,216 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: redft00e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing. + +   This code uses the trick from FFTPACK, also documented in a similar +   form by Numerical Recipes.  Unfortunately, this algorithm seems to +   have intrinsic numerical problems (similar to those in +   reodft11e-r2hc.c), possibly due to the fact that it multiplies its +   input by a cosine, causing a loss of precision near the zero.  For +   transforms of 16k points, it has already lost three or four decimal +   places of accuracy, which we deem unacceptable. + +   So, we have abandoned this algorithm in favor of the one in +   redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. +   The only other alternative in the literature that does not have +   similar numerical difficulties seems to be the direct adaptation of +   the Cooley-Tukey decomposition for symmetric data, but this would +   require a whole new set of codelets and it's not clear that it's +   worth it at this point. */ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld; +     twid *td; +     int is, os; +     int n; +     int vl; +     int ivs, ovs; +} P; + +static void apply(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *buf; +     E csum; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = I[0] + I[is * n]; +	  csum = I[0] - I[is * n]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, apb, amb; +	       a = I[is * i]; +	       b = I[is * (n - i)]; +	       csum += W[2*i] * (amb = K(2.0)*(a - b)); +	       amb = W[2*i+1] * amb; +	       apb = (a + b); +	       buf[i] = apb - amb; +	       buf[n - i] = apb + amb; +	  } +	  if (i == n - i) { +	       buf[i] = K(2.0) * I[is * i]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  /* FIXME: use recursive/cascade summation for better stability? */ +	  O[0] = buf[0]; +	  O[os] = csum; +	  for (i = 1; i + i < n; ++i) { +	       int k = i + i; +	       O[os * k] = buf[i]; +	       O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i]; +	  } +	  if (i + i == n) { +	       O[os * n] = buf[i]; +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     static const tw_instr redft00e_tw[] = { +          { TW_COS, 0, 1 }, +          { TW_SIN, 0, 1 }, +          { TW_NEXT, 1, 0 } +     }; + +     AWAKE(ego->cld, flg); +     X(twiddle_awake)(flg, &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(redft00e-r2hc-%d%v%(%p%))", ego->n + 1, ego->vl, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && p->kind[0] == REDFT00 +		  && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */ +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld; +     R *buf; +     int n; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +          return (plan *)0; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n - 1; +     A(n > 0); +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),  +						   X(mktensor_0d)(),  +						   buf, buf, R2HC)); +     X(ifree)(buf); +     if (!cld) +          return (plan *)0; + +     pln = MKPLAN_RDFT(P, &padt, apply); + +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->os = p->sz->dims[0].os; +     pln->cld = cld; +     pln->td = 0; + +     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); +      +     X(ops_zero)(&ops); +     ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5; +     ops.add = 2 + (n-1)/2 * 5; +     ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1; + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + +     return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(redft00e_r2hc_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/reoconf.c b/src/fftw3/reodft/reoconf.c new file mode 100644 index 0000000..1cd41b6 --- /dev/null +++ b/src/fftw3/reodft/reoconf.c @@ -0,0 +1,42 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: reoconf.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +#include "reodft.h" + +static const solvtab s = +{ +     /* SOLVTAB(X(redft00e_r2hc_register)), +	SOLVTAB(X(rodft00e_r2hc_register)), */ +     SOLVTAB(X(redft00e_r2hc_pad_register)), +     SOLVTAB(X(rodft00e_r2hc_pad_register)), +     SOLVTAB(X(reodft010e_r2hc_register)), +     /* SOLVTAB(X(reodft11e_r2hc_register)), */ +     SOLVTAB(X(reodft11e_radix2_r2hc_register)), +     SOLVTAB(X(reodft11e_r2hc_odd_register)), + +     SOLVTAB_END +}; + +void X(reodft_conf_standard)(planner *p) +{ +     X(solvtab_exec)(s, p); +} diff --git a/src/fftw3/reodft/reodft.h b/src/fftw3/reodft/reodft.h new file mode 100644 index 0000000..8c67144 --- /dev/null +++ b/src/fftw3/reodft/reodft.h @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +#ifndef __REODFT_H__ +#define __REODFT_H__ + +#include "ifftw.h" +#include "rdft.h" + +#define REODFT_KINDP(k) ((k) >= REDFT00 && (k) <= RODFT11) + +void X(redft00e_r2hc_register)(planner *p); +void X(redft00e_r2hc_pad_register)(planner *p); +void X(rodft00e_r2hc_register)(planner *p); +void X(rodft00e_r2hc_pad_register)(planner *p); +void X(reodft010e_r2hc_register)(planner *p); +void X(reodft11e_r2hc_register)(planner *p); +void X(reodft11e_radix2_r2hc_register)(planner *p); +void X(reodft11e_r2hc_odd_register)(planner *p); + +/* configurations */ +void X(reodft_conf_standard)(planner *p); + +#endif /* __REODFT_H__ */ diff --git a/src/fftw3/reodft/reodft010e-r2hc.c b/src/fftw3/reodft/reodft010e-r2hc.c new file mode 100644 index 0000000..ace14de --- /dev/null +++ b/src/fftw3/reodft/reodft010e-r2hc.c @@ -0,0 +1,409 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: reodft010e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some +   pre/post-processing ala FFTPACK. */ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld; +     twid *td; +     int is, os; +     int n; +     int vl; +     int ivs, ovs; +     rdft_kind kind; +} P; + +/* A real-even-01 DFT operates logically on a size-4N array: +                   I 0 -r(I*) -I 0 r(I*), +   where r denotes reversal and * denotes deletion of the 0th element. +   To compute the transform of this, we imagine performing a radix-4 +   (real-input) DIF step, which turns the size-4N DFT into 4 size-N +   (contiguous) DFTs, two of which are zero and two of which are +   conjugates.  The non-redundant size-N DFT has halfcomplex input, so +   we can do it with a size-N hc2r transform.  (In order to share +   plans with the re10 (inverse) transform, however, we use the DHT +   trick to re-express the hc2r problem as r2hc.  This has little cost +   since we are already pre- and post-processing the data in {i,n-i} +   order.)  Finally, we have to write out the data in the correct +   order...the two size-N redundant (conjugate) hc2r DFTs correspond +   to the even and odd outputs in O (i.e. the usual interleaved output +   of DIF transforms); since this data has even symmetry, we only +   write the first half of it. + +   The real-even-10 DFT is just the reverse of these steps, i.e. a +   radix-4 DIT transform.  There, however, we just use the r2hc +   transform naturally without resorting to the DHT trick. + +   A real-odd-01 DFT is very similar, except that the input is +   0 I (rI)* 0 -I -(rI)*.  This format, however, can be transformed +   into precisely the real-even-01 format above by sending I -> rI +   and shifting the array by N.  The former swap is just another +   transformation on the input during preprocessing; the latter +   multiplies the even/odd outputs by i/-i, which combines with +   the factor of -i (to take the imaginary part) to simply flip +   the sign of the odd outputs.  Vice-versa for real-odd-10. + +   The FFTPACK source code was very helpful in working this out. +   (They do unnecessary passes over the array, though.) + +   Note that Numerical Recipes suggests a different algorithm that +   requires more operations and uses trig. functions for both the pre- +   and post-processing passes. +*/ + +static void apply_re01(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = I[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, apb, amb, wa, wb; +	       a = I[is * i]; +	       b = I[is * (n - i)]; +	       apb = a + b; +	       amb = a - b; +	       wa = W[2*i]; +	       wb = W[2*i + 1]; +	       buf[i] = wa * amb + wb * apb;  +	       buf[n - i] = wa * apb - wb * amb;  +	  } +	  if (i == n - i) { +	       buf[i] = K(2.0) * I[is * i] * W[2*i]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  O[0] = buf[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b; +	       int k; +	       a = buf[i]; +	       b = buf[n - i]; +	       k = i + i; +	       O[os * (k - 1)] = a - b; +	       O[os * k] = a + b; +	  } +	  if (i == n - i) { +	       O[os * (n - 1)] = buf[i]; +	  } +     } + +     X(ifree)(buf); +} + +/* ro01 is same as re01, but with i <-> n - 1 - i in the input and +   the sign of the odd output elements flipped. */ +static void apply_ro01(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = I[is * (n - 1)]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, apb, amb, wa, wb; +	       a = I[is * (n - 1 - i)]; +	       b = I[is * (i - 1)]; +	       apb = a + b; +	       amb = a - b; +	       wa = W[2*i]; +	       wb = W[2*i+1]; +	       buf[i] = wa * amb + wb * apb;  +	       buf[n - i] = wa * apb - wb * amb;  +	  } +	  if (i == n - i) { +	       buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  O[0] = buf[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b; +	       int k; +	       a = buf[i]; +	       b = buf[n - i]; +	       k = i + i; +	       O[os * (k - 1)] = b - a; +	       O[os * k] = a + b; +	  } +	  if (i == n - i) { +	       O[os * (n - 1)] = -buf[i]; +	  } +     } + +     X(ifree)(buf); +} + +static void apply_re10(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = I[0]; +	  for (i = 1; i < n - i; ++i) { +	       E u, v; +	       int k = i + i; +	       u = I[is * (k - 1)]; +	       v = I[is * k]; +	       buf[n - i] = u; +	       buf[i] = v; +	  } +	  if (i == n - i) { +	       buf[i] = I[is * (n - 1)]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  O[0] = K(2.0) * buf[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, wa, wb; +	       a = K(2.0) * buf[i]; +	       b = K(2.0) * buf[n - i]; +	       wa = W[2*i]; +	       wb = W[2*i + 1]; +	       O[os * i] = wa * a + wb * b; +	       O[os * (n - i)] = wb * a - wa * b; +	  } +	  if (i == n - i) { +	       O[os * i] = K(2.0) * buf[i] * W[2*i]; +	  } +     } + +     X(ifree)(buf); +} + +/* ro10 is same as re10, but with i <-> n - 1 - i in the output and +   the sign of the odd input elements flipped. */ +static void apply_ro10(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = I[0]; +	  for (i = 1; i < n - i; ++i) { +	       E u, v; +	       int k = i + i; +	       u = -I[is * (k - 1)]; +	       v = I[is * k]; +	       buf[n - i] = u; +	       buf[i] = v; +	  } +	  if (i == n - i) { +	       buf[i] = -I[is * (n - 1)]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  O[os * (n - 1)] = K(2.0) * buf[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, wa, wb; +	       a = K(2.0) * buf[i]; +	       b = K(2.0) * buf[n - i]; +	       wa = W[2*i]; +	       wb = W[2*i + 1]; +	       O[os * (n - 1 - i)] = wa * a + wb * b; +	       O[os * (i - 1)] = wb * a - wa * b; +	  } +	  if (i == n - i) { +	       O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     static const tw_instr reodft010e_tw[] = { +          { TW_COS, 0, 1 }, +          { TW_SIN, 0, 1 }, +          { TW_NEXT, 1, 0 } +     }; + +     AWAKE(ego->cld, flg); + +     X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(%se-r2hc-%d%v%(%p%))", +	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 +		      || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld; +     R *buf; +     int n; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +          return (plan *)0; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n; +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), +                                                   X(mktensor_0d)(), +                                                   buf, buf, R2HC)); +     X(ifree)(buf); +     if (!cld) +          return (plan *)0; + +     switch (p->kind[0]) { +	 case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; +	 case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; +	 case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; +	 case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; +	 default: A(0); return (plan*)0; +     } + +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->os = p->sz->dims[0].os; +     pln->cld = cld; +     pln->td = 0; +     pln->kind = p->kind[0]; +      +     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); +      +     X(ops_zero)(&ops); +     ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; +     if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { +	  ops.add = (n-1)/2 * 6; +	  ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; +     } +     else { /* 10 transforms */ +	  ops.add = (n-1)/2 * 2; +	  ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; +     } +      +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + +     return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(reodft010e_r2hc_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/reodft11e-r2hc-odd.c b/src/fftw3/reodft/reodft11e-r2hc-odd.c new file mode 100644 index 0000000..471f7ca --- /dev/null +++ b/src/fftw3/reodft/reodft11e-r2hc-odd.c @@ -0,0 +1,304 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: reodft11e-r2hc-odd.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size, +   with some permutations and post-processing, as described in: + +     S. C. Chan and K. L. Ho, "Fast algorithms for computing the +     discrete cosine transform," IEEE Trans. Circuits Systems II: +     Analog & Digital Sig. Proc. 39 (3), 185--190 (1992). + +   (For even sizes, see reodft11e-radix2.c.)   + +   This algorithm is related to the 8 x n prime-factor-algorithm (PFA) +   decomposition of the size 8n "logical" DFT corresponding to the +   R{EO}DFT11. + +   Aside from very confusing notation (several symbols are redefined +   from one line to the next), be aware that this paper has some +   errors.  In particular, the signs are wrong in Eqs. (34-35).  Also, +   Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly +   for S (or, equivalently, the second cases should have 2*N - 2*k - 1 +   instead of N - k - 1).  Note also that in their definition of the +   DFT, similarly to FFTW's, the exponent's sign is -1, but they +   forgot to correspondingly multiply S (the sine terms) by -1. +*/ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld; +     int is, os; +     int n; +     int vl; +     int ivs, ovs; +     rdft_kind kind; +} P; + +static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769); + +#define SGN_SET(x, i) ((i) % 2 ? -(x) : (x)) + +static void apply_re11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n, n2 = n/2; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  { +	       int m; +	       for (i = 0, m = n2; m < n; ++i, m += 4) +		    buf[i] = I[is * m]; +	       for (; m < 2 * n; ++i, m += 4) +		    buf[i] = -I[is * (2*n - m - 1)]; +	       for (; m < 3 * n; ++i, m += 4) +		    buf[i] = -I[is * (m - 2*n)]; +	       for (; m < 4 * n; ++i, m += 4) +		    buf[i] = I[is * (4*n - m - 1)]; +	       m -= 4 * n; +	       for (; i < n; ++i, m += 4) +		    buf[i] = I[is * m]; +	  } + +	  { /* child plan: R2HC of size n */ +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ +	  for (i = 0; i + i + 1 < n2; ++i) { +	       int k = i + i + 1; +	       E c1, s1; +	       E c2, s2; +	       c1 = buf[k]; +	       c2 = buf[k + 1]; +	       s2 = buf[n - (k + 1)]; +	       s1 = buf[n - k]; +	        +	       O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) + +				    SGN_SET(s1, i/2)); +	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) - +					      SGN_SET(s1, (n-(i+1))/2)); +	        +	       O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) - +					       SGN_SET(s2, (n2-(i+1))/2)); +	       O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) + +					       SGN_SET(s2, (n2+(i+1))/2)); +	  } +	  if (i + i + 1 == n2) { +	       E c, s; +	       c = buf[n2]; +	       s = buf[n - n2]; +	       O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) + +				    SGN_SET(s, i/2)); +	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) + +					      SGN_SET(s, (i+1)/2)); +	  } +	  O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2); +     } + +     X(ifree)(buf); +} + +/* like for rodft01, rodft11 is obtained from redft11 by +   reversing the input and flipping the sign of every other output. */ +static void apply_ro11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n, n2 = n/2; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  { +	       int m; +	       for (i = 0, m = n2; m < n; ++i, m += 4) +		    buf[i] = I[is * (n - 1 - m)]; +	       for (; m < 2 * n; ++i, m += 4) +		    buf[i] = -I[is * (m - n)]; +	       for (; m < 3 * n; ++i, m += 4) +		    buf[i] = -I[is * (3*n - 1 - m)]; +	       for (; m < 4 * n; ++i, m += 4) +		    buf[i] = I[is * (m - 3*n)]; +	       m -= 4 * n; +	       for (; i < n; ++i, m += 4) +		    buf[i] = I[is * (n - 1 - m)]; +	  } + +	  { /* child plan: R2HC of size n */ +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ +	  for (i = 0; i + i + 1 < n2; ++i) { +	       int k = i + i + 1; +	       int j; +	       E c1, s1; +	       E c2, s2; +	       c1 = buf[k]; +	       c2 = buf[k + 1]; +	       s2 = buf[n - (k + 1)]; +	       s1 = buf[n - k]; +	        +	       O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) + +				    SGN_SET(s1, i/2 + i)); +	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) - +					      SGN_SET(s1, (n-(i+1))/2 + i)); +	        +	       j = n2 - (i+1); +	       O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) - +				    SGN_SET(s2, (n2-(i+1))/2 + j)); +	       O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) + +					       SGN_SET(s2, (n2+(i+1))/2 + j)); +	  } +	  if (i + i + 1 == n2) { +	       E c, s; +	       c = buf[n2]; +	       s = buf[n - n2]; +	       O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) + +				    SGN_SET(s, i/2 + i)); +	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) + +					      SGN_SET(s, (i+1)/2 + i)); +	  } +	  O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2); +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     AWAKE(ego->cld, flg); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(%se-r2hc-odd-%d%v%(%p%))", +	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && p->sz->dims[0].n % 2 == 1 +		  && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld; +     R *buf; +     int n; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +          return (plan *)0; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n; +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), +                                                   X(mktensor_0d)(), +                                                   buf, buf, R2HC)); +     X(ifree)(buf); +     if (!cld) +          return (plan *)0; + +     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->os = p->sz->dims[0].os; +     pln->cld = cld; +     pln->kind = p->kind[0]; +      +     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); +      +     X(ops_zero)(&ops); +     ops.add = n - 1; +     ops.mul = n; +     ops.other = 4*n; + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + +     return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(reodft11e_r2hc_odd_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/reodft11e-r2hc.c b/src/fftw3/reodft/reodft11e-r2hc.c new file mode 100644 index 0000000..d4366e3 --- /dev/null +++ b/src/fftw3/reodft/reodft11e-r2hc.c @@ -0,0 +1,295 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: reodft11e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do an R{E,O}DFT11 problem via an R2HC problem, with some +   pre/post-processing ala FFTPACK.  Use a trick from:  + +     S. C. Chan and K. L. Ho, "Direct methods for computing discrete +     sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). + +   to re-express as an REDFT01 (DCT-III) problem. + +   NOTE: We no longer use this algorithm, because it turns out to suffer +   a catastrophic loss of accuracy for certain inputs, apparently because +   its post-processing multiplies the output by a cosine.  Near the zero +   of the cosine, the REDFT01 must produce a near-singular output. +*/ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld; +     twid *td, *td2; +     int is, os; +     int n; +     int vl; +     int ivs, ovs; +     rdft_kind kind; +} P; + +static void apply_re11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W; +     R *buf; +     E cur; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  /* I wish that this didn't require an extra pass. */ +	  /* FIXME: use recursive/cascade summation for better stability? */ +	  buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; +	  for (i = n - 1; i > 0; --i) { +	       E curnew; +	       buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; +	       cur = curnew; +	  } +	   +	  W = ego->td->W; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, apb, amb, wa, wb; +	       a = buf[i]; +	       b = buf[n - i]; +	       apb = a + b; +	       amb = a - b; +	       wa = W[2*i]; +	       wb = W[2*i + 1]; +	       buf[i] = wa * amb + wb * apb;  +	       buf[n - i] = wa * apb - wb * amb;  +	  } +	  if (i == n - i) { +	       buf[i] = K(2.0) * buf[i] * W[2*i]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  W = ego->td2->W; +	  O[0] = W[0] * buf[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b; +	       int k; +	       a = buf[i]; +	       b = buf[n - i]; +	       k = i + i; +	       O[os * (k - 1)] = W[k - 1] * (a - b); +	       O[os * k] = W[k] * (a + b); +	  } +	  if (i == n - i) { +	       O[os * (n - 1)] = W[n - 1] * buf[i]; +	  } +     } + +     X(ifree)(buf); +} + +/* like for rodft01, rodft11 is obtained from redft11 by +   reversing the input and flipping the sign of every other output. */ +static void apply_ro11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W; +     R *buf; +     E cur; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  /* I wish that this didn't require an extra pass. */ +	  /* FIXME: use recursive/cascade summation for better stability? */ +	  buf[n - 1] = cur = K(2.0) * I[0]; +	  for (i = n - 1; i > 0; --i) { +	       E curnew; +	       buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; +	       cur = curnew; +	  } +	   +	  W = ego->td->W; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, apb, amb, wa, wb; +	       a = buf[i]; +	       b = buf[n - i]; +	       apb = a + b; +	       amb = a - b; +	       wa = W[2*i]; +	       wb = W[2*i + 1]; +	       buf[i] = wa * amb + wb * apb;  +	       buf[n - i] = wa * apb - wb * amb;  +	  } +	  if (i == n - i) { +	       buf[i] = K(2.0) * buf[i] * W[2*i]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  W = ego->td2->W; +	  O[0] = W[0] * buf[0]; +	  for (i = 1; i < n - i; ++i) { +	       E a, b; +	       int k; +	       a = buf[i]; +	       b = buf[n - i]; +	       k = i + i; +	       O[os * (k - 1)] = W[k - 1] * (b - a); +	       O[os * k] = W[k] * (a + b); +	  } +	  if (i == n - i) { +	       O[os * (n - 1)] = -W[n - 1] * buf[i]; +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     static const tw_instr reodft010e_tw[] = { +          { TW_COS, 0, 1 }, +          { TW_SIN, 0, 1 }, +          { TW_NEXT, 1, 0 } +     }; +     static const tw_instr reodft11e_tw[] = { +          { TW_COS, 1, 1 }, +          { TW_NEXT, 2, 0 } +     }; + +     AWAKE(ego->cld, flg); + +     X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); +     X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(%se-r2hc-%d%v%(%p%))", +	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld; +     R *buf; +     int n; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +          return (plan *)0; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n; +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), +                                                   X(mktensor_0d)(), +                                                   buf, buf, R2HC)); +     X(ifree)(buf); +     if (!cld) +          return (plan *)0; + +     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->os = p->sz->dims[0].os; +     pln->cld = cld; +     pln->td = pln->td2 = 0; +     pln->kind = p->kind[0]; +      +     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); +      +     X(ops_zero)(&ops); +     ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; +     ops.add = (n - 1) * 1 + (n-1)/2 * 6; +     ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + +     return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(reodft11e_r2hc_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/reodft11e-radix2.c b/src/fftw3/reodft/reodft11e-radix2.c new file mode 100644 index 0000000..674f7b4 --- /dev/null +++ b/src/fftw3/reodft/reodft11e-radix2.c @@ -0,0 +1,515 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: reodft11e-radix2.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems +   of half the size, plus some pre/post-processing.  Use a trick from: + +   Zhongde Wang, "On computing the discrete Fourier and cosine transforms," +   IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985). + +   to re-express as a pair of half-size REDFT01 (DCT-III) problems.  Our +   implementation looks quite a bit different from the algorithm described +   in the paper because we combined the paper's pre/post-processing with +   the pre/post-processing used to turn REDFT01 into R2HC.  (Also, the +   paper uses a DCT/DST pair, but we turn the DST into a DCT via the +   usual reordering/sign-flip trick.  We additionally combined a couple +   of the matrices/transformations of the paper into a single pass.) + +   NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho +   that turned out to have numerical problems; see reodft11e-r2hc.c. + +   (For odd sizes, see reodft11e-r2hc-odd.c.) +*/ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld; +     twid *td, *td2; +     int is, os; +     int n; +     int vl; +     int ivs, ovs; +     rdft_kind kind; +} P; + +static void apply_re11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n, n2 = n/2; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *W2; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = K(2.0) * I[0]; +	  buf[n2] = K(2.0) * I[is * (n - 1)]; +	  for (i = 1; i + i < n2; ++i) { +	       int k = i + i; +	       E a, b, a2, b2; +	       { +		    E u, v; +		    u = I[is * (k - 1)]; +		    v = I[is * k]; +		    a = u + v; +		    b2 = u - v; +	       } +	       { +		    E u, v; +		    u = I[is * (n - k - 1)]; +		    v = I[is * (n - k)]; +		    b = u + v; +		    a2 = u - v; +	       } +	       { +		    E wa, wb; +		    wa = W[2*i]; +		    wb = W[2*i + 1]; +		    { +			 E apb, amb; +			 apb = a + b; +			 amb = a - b; +			 buf[i] = wa * amb + wb * apb;  +			 buf[n2 - i] = wa * apb - wb * amb;  +		    } +		    { +			 E apb, amb; +			 apb = a2 + b2; +			 amb = a2 - b2; +			 buf[n2 + i] = wa * amb + wb * apb;  +			 buf[n - i] = wa * apb - wb * amb;  +		    } +	       } +	  } +	  if (i + i == n2) { +	       E u, v; +	       u = I[is * (n2 - 1)]; +	       v = I[is * n2]; +	       buf[i] = K(2.0) * (u + v) * W[2*i]; +	       buf[n - i] = K(2.0) * (u - v) * W[2*i]; +	  } + + +	  /* child plan: two r2hc's of size n/2 */ +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  W2 = ego->td2->W; +	  { /* i == 0 case */ +	       E wa, wb; +	       E a, b; +	       wa = W2[0]; /* cos */ +	       wb = W2[1]; /* sin */ +	       a = buf[0]; +	       b = buf[n2]; +	       O[0] = wa * a + wb * b; +	       O[os * (n - 1)] = wb * a - wa * b; +	  } +	  W2 += 2; +	  for (i = 1; i + i < n2; ++i, W2 += 2) { +	       int k; +	       E u, v, u2, v2; +	       u = buf[i]; +	       v = buf[n2 - i]; +	       u2 = buf[n2 + i]; +	       v2 = buf[n - i]; +	       k = (i + i) - 1; +	       { +                    E wa, wb; +                    E a, b; +                    wa = W2[0]; /* cos */ +                    wb = W2[1]; /* sin */ +                    a = u - v; +                    b = v2 - u2; +                    O[os * k] = wa * a + wb * b; +                    O[os * (n - 1 - k)] = wb * a - wa * b; +               } +	       ++k; +	       W2 += 2; +	       { +		    E wa, wb; +		    E a, b; +		    wa = W2[0]; /* cos */ +		    wb = W2[1]; /* sin */ +		    a = u + v; +		    b = u2 + v2; +		    O[os * k] = wa * a + wb * b; +		    O[os * (n - 1 - k)] = wb * a - wa * b; +	       } +	  } +	  if (i + i == n2) { +	       int k = (i + i) - 1; +	       E wa, wb; +	       E a, b; +	       wa = W2[0]; /* cos */ +	       wb = W2[1]; /* sin */ +	       a = buf[i]; +	       b = buf[n2 + i]; +	       O[os * k] = wa * a - wb * b; +	       O[os * (n - 1 - k)] = wb * a + wa * b; +	  } +     } + +     X(ifree)(buf); +} + +#if 0 + +/* This version of apply_re11 uses REDFT01 child plans, more similar +   to the original paper by Z. Wang.  We keep it around for reference +   (it is simpler) and because it may become more efficient if we +   ever implement REDFT01 codelets. */ + +static void apply_re11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = K(2.0) * I[0]; +	  buf[n/2] = K(2.0) * I[is * (n - 1)]; +	  for (i = 1; i + i < n; ++i) { +	       int k = i + i; +	       E a, b; +	       a = I[is * (k - 1)]; +	       b = I[is * k]; +	       buf[i] = a + b; +	       buf[n - i] = a - b; +	  } + +	  /* child plan: two redft01's (DCT-III) */ +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  W = ego->td2->W; +	  for (i = 0; i + 1 < n/2; ++i, W += 2) { +	       { +		    E wa, wb; +		    E a, b; +		    wa = W[0]; /* cos */ +		    wb = W[1]; /* sin */ +		    a = buf[i]; +		    b = buf[n/2 + i]; +		    O[os * i] = wa * a + wb * b; +		    O[os * (n - 1 - i)] = wb * a - wa * b; +	       } +	       ++i; +	       W += 2; +	       { +                    E wa, wb; +                    E a, b; +                    wa = W[0]; /* cos */ +                    wb = W[1]; /* sin */ +                    a = buf[i]; +                    b = buf[n/2 + i]; +                    O[os * i] = wa * a - wb * b; +                    O[os * (n - 1 - i)] = wb * a + wa * b; +               } +	  } +	  if (i < n/2) { +	       E wa, wb; +	       E a, b; +	       wa = W[0]; /* cos */ +	       wb = W[1]; /* sin */ +	       a = buf[i]; +	       b = buf[n/2 + i]; +	       O[os * i] = wa * a + wb * b; +	       O[os * (n - 1 - i)] = wb * a - wa * b; +	  } +     } + +     X(ifree)(buf); +} + +#endif /* 0 */ + +/* like for rodft01, rodft11 is obtained from redft11 by +   reversing the input and flipping the sign of every other output. */ +static void apply_ro11(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n, n2 = n/2; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *W2; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = K(2.0) * I[is * (n - 1)]; +	  buf[n2] = K(2.0) * I[0]; +	  for (i = 1; i + i < n2; ++i) { +	       int k = i + i; +	       E a, b, a2, b2; +	       { +		    E u, v; +		    u = I[is * (n - k)]; +		    v = I[is * (n - 1 - k)]; +		    a = u + v; +		    b2 = u - v; +	       } +	       { +		    E u, v; +		    u = I[is * (k)]; +		    v = I[is * (k - 1)]; +		    b = u + v; +		    a2 = u - v; +	       } +	       { +		    E wa, wb; +		    wa = W[2*i]; +		    wb = W[2*i + 1]; +		    { +			 E apb, amb; +			 apb = a + b; +			 amb = a - b; +			 buf[i] = wa * amb + wb * apb;  +			 buf[n2 - i] = wa * apb - wb * amb;  +		    } +		    { +			 E apb, amb; +			 apb = a2 + b2; +			 amb = a2 - b2; +			 buf[n2 + i] = wa * amb + wb * apb;  +			 buf[n - i] = wa * apb - wb * amb;  +		    } +	       } +	  } +	  if (i + i == n2) { +	       E u, v; +	       u = I[is * n2]; +	       v = I[is * (n2 - 1)]; +	       buf[i] = K(2.0) * (u + v) * W[2*i]; +	       buf[n - i] = K(2.0) * (u - v) * W[2*i]; +	  } + + +	  /* child plan: two r2hc's of size n/2 */ +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  W2 = ego->td2->W; +	  { /* i == 0 case */ +	       E wa, wb; +	       E a, b; +	       wa = W2[0]; /* cos */ +	       wb = W2[1]; /* sin */ +	       a = buf[0]; +	       b = buf[n2]; +	       O[0] = wa * a + wb * b; +	       O[os * (n - 1)] = wa * b - wb * a; +	  } +	  W2 += 2; +	  for (i = 1; i + i < n2; ++i, W2 += 2) { +	       int k; +	       E u, v, u2, v2; +	       u = buf[i]; +	       v = buf[n2 - i]; +	       u2 = buf[n2 + i]; +	       v2 = buf[n - i]; +	       k = (i + i) - 1; +	       { +                    E wa, wb; +                    E a, b; +                    wa = W2[0]; /* cos */ +                    wb = W2[1]; /* sin */ +                    a = v - u; +                    b = u2 - v2; +                    O[os * k] = wa * a + wb * b; +                    O[os * (n - 1 - k)] = wa * b - wb * a; +               } +	       ++k; +	       W2 += 2; +	       { +		    E wa, wb; +		    E a, b; +		    wa = W2[0]; /* cos */ +		    wb = W2[1]; /* sin */ +		    a = u + v; +		    b = u2 + v2; +		    O[os * k] = wa * a + wb * b; +		    O[os * (n - 1 - k)] = wa * b - wb * a; +	       } +	  } +	  if (i + i == n2) { +	       int k = (i + i) - 1; +	       E wa, wb; +	       E a, b; +	       wa = W2[0]; /* cos */ +	       wb = W2[1]; /* sin */ +	       a = buf[i]; +	       b = buf[n2 + i]; +	       O[os * k] = wb * b - wa * a; +	       O[os * (n - 1 - k)] = wa * b + wb * a; +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     static const tw_instr reodft010e_tw[] = { +          { TW_COS, 0, 1 }, +          { TW_SIN, 0, 1 }, +          { TW_NEXT, 1, 0 } +     }; +     static const tw_instr reodft11e_tw[] = { +          { TW_COS, 1, 1 }, +          { TW_SIN, 1, 1 }, +          { TW_NEXT, 2, 0 } +     }; + +     AWAKE(ego->cld, flg); + +     X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 2*ego->n, 1, ego->n/4+1); +     X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(%se-radix2-r2hc-%d%v%(%p%))", +	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && p->sz->dims[0].n % 2 == 0 +		  && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld; +     R *buf; +     int n; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +          return (plan *)0; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n; +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1), +                                                   X(mktensor_1d)(2, n/2, n/2), +                                                   buf, buf, R2HC)); +     X(ifree)(buf); +     if (!cld) +          return (plan *)0; + +     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->os = p->sz->dims[0].os; +     pln->cld = cld; +     pln->td = pln->td2 = 0; +     pln->kind = p->kind[0]; +      +     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); +      +     X(ops_zero)(&ops); +     ops.add = 2 + (n/2 - 1)/2 * 20; +     ops.mul = 6 + (n/2 - 1)/2 * 16; +     ops.other = 4*n + 2 + (n/2 - 1)/2 * 6; +     if ((n/2) % 2 == 0) { +	  ops.add += 4; +	  ops.mul += 8; +	  ops.other += 4; +     } + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + +     return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(reodft11e_radix2_r2hc_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/rodft00e-r2hc-pad.c b/src/fftw3/reodft/rodft00e-r2hc-pad.c new file mode 100644 index 0000000..0b48585 --- /dev/null +++ b/src/fftw3/reodft/rodft00e-r2hc-pad.c @@ -0,0 +1,200 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: rodft00e-r2hc-pad.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do a RODFT00 problem via an R2HC problem, padded antisymmetrically to +   twice the size.  This is asymptotically a factor of ~2 worse than +   rodft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical +   Recipes), but we abandoned the latter after we discovered that it +   has intrinsic accuracy problems. */ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld, *cldcpy; +     int is; +     int n; +     int vl; +     int ivs, ovs; +} P; + +static void apply(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = 0.0; +	  for (i = 1; i < n; ++i) { +	       R a = I[(i-1) * is]; +	       buf[i] = -a; +	       buf[2*n - i] = a; +	  } +	  buf[i] = 0.0; /* i == n, Nyquist */ +	   +	  /* r2hc transform of size 2*n */ +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  /* copy n-1 real numbers (imag. parts of hc array) from buf to O */ +	  { +	       plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; +	       cldcpy->apply((plan *) cldcpy, buf+2*n-1, O); +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     AWAKE(ego->cld, flg); +     AWAKE(ego->cldcpy, flg); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cldcpy); +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(rodft00e-r2hc-pad-%d%v%(%p%)%(%p%))",  +	      ego->n - 1, ego->vl, ego->cld, ego->cldcpy); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && p->kind[0] == RODFT00 +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld = (plan *) 0, *cldcpy; +     R *buf = (R *) 0; +     int n; +     int vl, ivs, ovs; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +	  goto nada; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n + 1; +     A(n > 0); +     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); + +     cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1),  +						  X(mktensor_0d)(),  +						  buf, buf, R2HC)); +     if (!cld) +	  goto nada; + +     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); +     cldcpy = +	  X(mkplan_d)(plnr, +		      X(mkproblem_rdft_1_d)(X(mktensor_0d)(), +					    X(mktensor_1d)(n-1,-1, +							   p->sz->dims[0].os),  +					    buf+2*n-1,TAINT(p->O, ovs), R2HC)); +     if (!cldcpy) +	  goto nada; + +     X(ifree)(buf); + +     pln = MKPLAN_RDFT(P, &padt, apply); + +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->cld = cld; +     pln->cldcpy = cldcpy; +     pln->vl = vl; +     pln->ivs = ivs; +     pln->ovs = ovs; +      +     X(ops_zero)(&ops); +     ops.other = n-1 + 2*n; /* loads + stores (input -> buf) */ + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); + +     return &(pln->super.super); + + nada: +     X(ifree0)(buf); +     if (cld) +	  X(plan_destroy_internal)(cld);   +     return (plan *)0; +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(rodft00e_r2hc_pad_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +} diff --git a/src/fftw3/reodft/rodft00e-r2hc.c b/src/fftw3/reodft/rodft00e-r2hc.c new file mode 100644 index 0000000..46bb299 --- /dev/null +++ b/src/fftw3/reodft/rodft00e-r2hc.c @@ -0,0 +1,212 @@ +/* + * Copyright (c) 2003 Matteo Frigo + * Copyright (c) 2003 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + * + */ + +/* $Id: rodft00e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ + +/* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing. + +   This code uses the trick from FFTPACK, also documented in a similar +   form by Numerical Recipes.  Unfortunately, this algorithm seems to +   have intrinsic numerical problems (similar to those in +   reodft11e-r2hc.c), possibly due to the fact that it multiplies its +   input by a sine, causing a loss of precision near the zero.  For +   transforms of 16k points, it has already lost three or four decimal +   places of accuracy, which we deem unacceptable. + +   So, we have abandoned this algorithm in favor of the one in +   rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. +   The only other alternative in the literature that does not have +   similar numerical difficulties seems to be the direct adaptation of +   the Cooley-Tukey decomposition for antisymmetric data, but this +   would require a whole new set of codelets and it's not clear that +   it's worth it at this point. */ + +#include "reodft.h" + +typedef struct { +     solver super; +} S; + +typedef struct { +     plan_rdft super; +     plan *cld; +     twid *td; +     int is, os; +     int n; +     int vl; +     int ivs, ovs; +} P; + +static void apply(const plan *ego_, R *I, R *O) +{ +     const P *ego = (const P *) ego_; +     int is = ego->is, os = ego->os; +     int i, n = ego->n; +     int iv, vl = ego->vl; +     int ivs = ego->ivs, ovs = ego->ovs; +     R *W = ego->td->W; +     R *buf; + +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { +	  buf[0] = 0; +	  for (i = 1; i < n - i; ++i) { +	       E a, b, apb, amb; +	       a = I[is * (i - 1)]; +	       b = I[is * ((n - i) - 1)]; +	       apb =  K(2.0) * W[i] * (a + b); +	       amb = (a - b); +	       buf[i] = apb + amb; +	       buf[n - i] = apb - amb; +	  } +	  if (i == n - i) { +	       buf[i] = K(4.0) * I[is * (i - 1)]; +	  } +	   +	  { +	       plan_rdft *cld = (plan_rdft *) ego->cld; +	       cld->apply((plan *) cld, buf, buf); +	  } +	   +	  /* FIXME: use recursive/cascade summation for better stability? */ +	  O[0] = buf[0] * 0.5; +	  for (i = 1; i + i < n - 1; ++i) { +	       int k = i + i; +	       O[os * (k - 1)] = -buf[n - i]; +	       O[os * k] = O[os * (k - 2)] + buf[i]; +	  } +	  if (i + i == n - 1) { +	       O[os * (n - 2)] = -buf[n - i]; +	  } +     } + +     X(ifree)(buf); +} + +static void awake(plan *ego_, int flg) +{ +     P *ego = (P *) ego_; +     static const tw_instr rodft00e_tw[] = { +          { TW_SIN, 0, 1 }, +          { TW_NEXT, 1, 0 } +     }; + +     AWAKE(ego->cld, flg); + +     X(twiddle_awake)(flg, &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2); +} + +static void destroy(plan *ego_) +{ +     P *ego = (P *) ego_; +     X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ +     const P *ego = (const P *) ego_; +     p->print(p, "(rodft00e-r2hc-%d%v%(%p%))", ego->n - 1, ego->vl, ego->cld); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ +     UNUSED(ego_); +     if (RDFTP(p_)) { +          const problem_rdft *p = (const problem_rdft *) p_; +          return (1 +		  && p->sz->rnk == 1 +		  && p->vecsz->rnk <= 1 +		  && p->kind[0] == RODFT00 +	       ); +     } + +     return 0; +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ +     return (!NO_UGLYP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ +     P *pln; +     const problem_rdft *p; +     plan *cld; +     R *buf; +     int n; +     opcnt ops; + +     static const plan_adt padt = { +	  X(rdft_solve), awake, print, destroy +     }; + +     if (!applicable(ego_, p_, plnr)) +          return (plan *)0; + +     p = (const problem_rdft *) p_; + +     n = p->sz->dims[0].n + 1; +     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); + +     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), +                                                   X(mktensor_0d)(), +                                                   buf, buf, R2HC)); +     X(ifree)(buf); +     if (!cld) +          return (plan *)0; + +     pln = MKPLAN_RDFT(P, &padt, apply); + +     pln->n = n; +     pln->is = p->sz->dims[0].is; +     pln->os = p->sz->dims[0].os; +     pln->cld = cld; +     pln->td = 0; +      +     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); +      +     X(ops_zero)(&ops); +     ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5; +     ops.add = (n-1)/2 * 4 + (n-2)/2 * 1; +     ops.mul = 1 + (n-1)/2 * 2; +     if (n % 2 == 0) +	  ops.mul += 1; + +     X(ops_zero)(&pln->super.super.ops); +     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); +     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + +     return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ +     static const solver_adt sadt = { mkplan }; +     S *slv = MKSOLVER(S, &sadt); +     return &(slv->super); +} + +void X(rodft00e_r2hc_register)(planner *p) +{ +     REGISTER_SOLVER(p, mksolver()); +}  | 
