diff options
Diffstat (limited to 'src/fftw3/reodft')
| -rw-r--r-- | src/fftw3/reodft/redft00e-r2hc-pad.c | 201 | ||||
| -rw-r--r-- | src/fftw3/reodft/redft00e-r2hc.c | 216 | ||||
| -rw-r--r-- | src/fftw3/reodft/reoconf.c | 42 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft.h | 41 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft010e-r2hc.c | 409 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft11e-r2hc-odd.c | 304 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft11e-r2hc.c | 295 | ||||
| -rw-r--r-- | src/fftw3/reodft/reodft11e-radix2.c | 515 | ||||
| -rw-r--r-- | src/fftw3/reodft/rodft00e-r2hc-pad.c | 200 | ||||
| -rw-r--r-- | src/fftw3/reodft/rodft00e-r2hc.c | 212 | 
10 files changed, 0 insertions, 2435 deletions
diff --git a/src/fftw3/reodft/redft00e-r2hc-pad.c b/src/fftw3/reodft/redft00e-r2hc-pad.c deleted file mode 100644 index ec3fa35..0000000 --- a/src/fftw3/reodft/redft00e-r2hc-pad.c +++ /dev/null @@ -1,201 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: redft00e-r2hc-pad.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a REDFT00 problem via an R2HC problem, padded symmetrically to -   twice the size.  This is asymptotically a factor of ~2 worse than -   redft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical -   Recipes), but we abandoned the latter after we discovered that it -   has intrinsic accuracy problems. */ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld, *cldcpy; -     int is; -     int n; -     int vl; -     int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = I[0]; -	  for (i = 1; i < n; ++i) { -	       R a = I[i * is]; -	       buf[i] = a; -	       buf[2*n - i] = a; -	  } -	  buf[i] = I[i * is]; /* i == n, Nyquist */ -	   -	  /* r2hc transform of size 2*n */ -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  /* copy n+1 real numbers (real parts of hc array) from buf to O */ -	  { -	       plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; -	       cldcpy->apply((plan *) cldcpy, buf, O); -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     AWAKE(ego->cld, flg); -     AWAKE(ego->cldcpy, flg); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cldcpy); -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(redft00e-r2hc-pad-%d%v%(%p%)%(%p%))",  -	      ego->n + 1, ego->vl, ego->cld, ego->cldcpy); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && p->kind[0] == REDFT00 -		  && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */ -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld = (plan *) 0, *cldcpy; -     R *buf = (R *) 0; -     int n; -     int vl, ivs, ovs; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -	  goto nada; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n - 1; -     A(n > 0); -     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - -     cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1),  -						  X(mktensor_0d)(),  -						  buf, buf, R2HC)); -     if (!cld) -	  goto nada; - -     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); -     cldcpy = -	  X(mkplan_d)(plnr, -		      X(mkproblem_rdft_1_d)(X(mktensor_0d)(), -					    X(mktensor_1d)(n+1,1, -							   p->sz->dims[0].os),  -					    buf, TAINT(p->O, ovs), R2HC)); -     if (!cldcpy) -	  goto nada; - -     X(ifree)(buf); - -     pln = MKPLAN_RDFT(P, &padt, apply); - -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->cld = cld; -     pln->cldcpy = cldcpy; -     pln->vl = vl; -     pln->ivs = ivs; -     pln->ovs = ovs; -      -     X(ops_zero)(&ops); -     ops.other = n + 2*n; /* loads + stores (input -> buf) */ - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); - -     return &(pln->super.super); - - nada: -     X(ifree0)(buf); -     if (cld) -	  X(plan_destroy_internal)(cld);   -     return (plan *)0; -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(redft00e_r2hc_pad_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/redft00e-r2hc.c b/src/fftw3/reodft/redft00e-r2hc.c deleted file mode 100644 index 0cd742f..0000000 --- a/src/fftw3/reodft/redft00e-r2hc.c +++ /dev/null @@ -1,216 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: redft00e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing. - -   This code uses the trick from FFTPACK, also documented in a similar -   form by Numerical Recipes.  Unfortunately, this algorithm seems to -   have intrinsic numerical problems (similar to those in -   reodft11e-r2hc.c), possibly due to the fact that it multiplies its -   input by a cosine, causing a loss of precision near the zero.  For -   transforms of 16k points, it has already lost three or four decimal -   places of accuracy, which we deem unacceptable. - -   So, we have abandoned this algorithm in favor of the one in -   redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. -   The only other alternative in the literature that does not have -   similar numerical difficulties seems to be the direct adaptation of -   the Cooley-Tukey decomposition for symmetric data, but this would -   require a whole new set of codelets and it's not clear that it's -   worth it at this point. */ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld; -     twid *td; -     int is, os; -     int n; -     int vl; -     int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *buf; -     E csum; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = I[0] + I[is * n]; -	  csum = I[0] - I[is * n]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, apb, amb; -	       a = I[is * i]; -	       b = I[is * (n - i)]; -	       csum += W[2*i] * (amb = K(2.0)*(a - b)); -	       amb = W[2*i+1] * amb; -	       apb = (a + b); -	       buf[i] = apb - amb; -	       buf[n - i] = apb + amb; -	  } -	  if (i == n - i) { -	       buf[i] = K(2.0) * I[is * i]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  /* FIXME: use recursive/cascade summation for better stability? */ -	  O[0] = buf[0]; -	  O[os] = csum; -	  for (i = 1; i + i < n; ++i) { -	       int k = i + i; -	       O[os * k] = buf[i]; -	       O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i]; -	  } -	  if (i + i == n) { -	       O[os * n] = buf[i]; -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     static const tw_instr redft00e_tw[] = { -          { TW_COS, 0, 1 }, -          { TW_SIN, 0, 1 }, -          { TW_NEXT, 1, 0 } -     }; - -     AWAKE(ego->cld, flg); -     X(twiddle_awake)(flg, &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(redft00e-r2hc-%d%v%(%p%))", ego->n + 1, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && p->kind[0] == REDFT00 -		  && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */ -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld; -     R *buf; -     int n; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -          return (plan *)0; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n - 1; -     A(n > 0); -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),  -						   X(mktensor_0d)(),  -						   buf, buf, R2HC)); -     X(ifree)(buf); -     if (!cld) -          return (plan *)0; - -     pln = MKPLAN_RDFT(P, &padt, apply); - -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->os = p->sz->dims[0].os; -     pln->cld = cld; -     pln->td = 0; - -     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); -      -     X(ops_zero)(&ops); -     ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5; -     ops.add = 2 + (n-1)/2 * 5; -     ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1; - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - -     return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(redft00e_r2hc_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reoconf.c b/src/fftw3/reodft/reoconf.c deleted file mode 100644 index 1cd41b6..0000000 --- a/src/fftw3/reodft/reoconf.c +++ /dev/null @@ -1,42 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: reoconf.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -#include "reodft.h" - -static const solvtab s = -{ -     /* SOLVTAB(X(redft00e_r2hc_register)), -	SOLVTAB(X(rodft00e_r2hc_register)), */ -     SOLVTAB(X(redft00e_r2hc_pad_register)), -     SOLVTAB(X(rodft00e_r2hc_pad_register)), -     SOLVTAB(X(reodft010e_r2hc_register)), -     /* SOLVTAB(X(reodft11e_r2hc_register)), */ -     SOLVTAB(X(reodft11e_radix2_r2hc_register)), -     SOLVTAB(X(reodft11e_r2hc_odd_register)), - -     SOLVTAB_END -}; - -void X(reodft_conf_standard)(planner *p) -{ -     X(solvtab_exec)(s, p); -} diff --git a/src/fftw3/reodft/reodft.h b/src/fftw3/reodft/reodft.h deleted file mode 100644 index 8c67144..0000000 --- a/src/fftw3/reodft/reodft.h +++ /dev/null @@ -1,41 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -#ifndef __REODFT_H__ -#define __REODFT_H__ - -#include "ifftw.h" -#include "rdft.h" - -#define REODFT_KINDP(k) ((k) >= REDFT00 && (k) <= RODFT11) - -void X(redft00e_r2hc_register)(planner *p); -void X(redft00e_r2hc_pad_register)(planner *p); -void X(rodft00e_r2hc_register)(planner *p); -void X(rodft00e_r2hc_pad_register)(planner *p); -void X(reodft010e_r2hc_register)(planner *p); -void X(reodft11e_r2hc_register)(planner *p); -void X(reodft11e_radix2_r2hc_register)(planner *p); -void X(reodft11e_r2hc_odd_register)(planner *p); - -/* configurations */ -void X(reodft_conf_standard)(planner *p); - -#endif /* __REODFT_H__ */ diff --git a/src/fftw3/reodft/reodft010e-r2hc.c b/src/fftw3/reodft/reodft010e-r2hc.c deleted file mode 100644 index ace14de..0000000 --- a/src/fftw3/reodft/reodft010e-r2hc.c +++ /dev/null @@ -1,409 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: reodft010e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some -   pre/post-processing ala FFTPACK. */ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld; -     twid *td; -     int is, os; -     int n; -     int vl; -     int ivs, ovs; -     rdft_kind kind; -} P; - -/* A real-even-01 DFT operates logically on a size-4N array: -                   I 0 -r(I*) -I 0 r(I*), -   where r denotes reversal and * denotes deletion of the 0th element. -   To compute the transform of this, we imagine performing a radix-4 -   (real-input) DIF step, which turns the size-4N DFT into 4 size-N -   (contiguous) DFTs, two of which are zero and two of which are -   conjugates.  The non-redundant size-N DFT has halfcomplex input, so -   we can do it with a size-N hc2r transform.  (In order to share -   plans with the re10 (inverse) transform, however, we use the DHT -   trick to re-express the hc2r problem as r2hc.  This has little cost -   since we are already pre- and post-processing the data in {i,n-i} -   order.)  Finally, we have to write out the data in the correct -   order...the two size-N redundant (conjugate) hc2r DFTs correspond -   to the even and odd outputs in O (i.e. the usual interleaved output -   of DIF transforms); since this data has even symmetry, we only -   write the first half of it. - -   The real-even-10 DFT is just the reverse of these steps, i.e. a -   radix-4 DIT transform.  There, however, we just use the r2hc -   transform naturally without resorting to the DHT trick. - -   A real-odd-01 DFT is very similar, except that the input is -   0 I (rI)* 0 -I -(rI)*.  This format, however, can be transformed -   into precisely the real-even-01 format above by sending I -> rI -   and shifting the array by N.  The former swap is just another -   transformation on the input during preprocessing; the latter -   multiplies the even/odd outputs by i/-i, which combines with -   the factor of -i (to take the imaginary part) to simply flip -   the sign of the odd outputs.  Vice-versa for real-odd-10. - -   The FFTPACK source code was very helpful in working this out. -   (They do unnecessary passes over the array, though.) - -   Note that Numerical Recipes suggests a different algorithm that -   requires more operations and uses trig. functions for both the pre- -   and post-processing passes. -*/ - -static void apply_re01(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = I[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, apb, amb, wa, wb; -	       a = I[is * i]; -	       b = I[is * (n - i)]; -	       apb = a + b; -	       amb = a - b; -	       wa = W[2*i]; -	       wb = W[2*i + 1]; -	       buf[i] = wa * amb + wb * apb;  -	       buf[n - i] = wa * apb - wb * amb;  -	  } -	  if (i == n - i) { -	       buf[i] = K(2.0) * I[is * i] * W[2*i]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  O[0] = buf[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b; -	       int k; -	       a = buf[i]; -	       b = buf[n - i]; -	       k = i + i; -	       O[os * (k - 1)] = a - b; -	       O[os * k] = a + b; -	  } -	  if (i == n - i) { -	       O[os * (n - 1)] = buf[i]; -	  } -     } - -     X(ifree)(buf); -} - -/* ro01 is same as re01, but with i <-> n - 1 - i in the input and -   the sign of the odd output elements flipped. */ -static void apply_ro01(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = I[is * (n - 1)]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, apb, amb, wa, wb; -	       a = I[is * (n - 1 - i)]; -	       b = I[is * (i - 1)]; -	       apb = a + b; -	       amb = a - b; -	       wa = W[2*i]; -	       wb = W[2*i+1]; -	       buf[i] = wa * amb + wb * apb;  -	       buf[n - i] = wa * apb - wb * amb;  -	  } -	  if (i == n - i) { -	       buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  O[0] = buf[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b; -	       int k; -	       a = buf[i]; -	       b = buf[n - i]; -	       k = i + i; -	       O[os * (k - 1)] = b - a; -	       O[os * k] = a + b; -	  } -	  if (i == n - i) { -	       O[os * (n - 1)] = -buf[i]; -	  } -     } - -     X(ifree)(buf); -} - -static void apply_re10(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = I[0]; -	  for (i = 1; i < n - i; ++i) { -	       E u, v; -	       int k = i + i; -	       u = I[is * (k - 1)]; -	       v = I[is * k]; -	       buf[n - i] = u; -	       buf[i] = v; -	  } -	  if (i == n - i) { -	       buf[i] = I[is * (n - 1)]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  O[0] = K(2.0) * buf[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, wa, wb; -	       a = K(2.0) * buf[i]; -	       b = K(2.0) * buf[n - i]; -	       wa = W[2*i]; -	       wb = W[2*i + 1]; -	       O[os * i] = wa * a + wb * b; -	       O[os * (n - i)] = wb * a - wa * b; -	  } -	  if (i == n - i) { -	       O[os * i] = K(2.0) * buf[i] * W[2*i]; -	  } -     } - -     X(ifree)(buf); -} - -/* ro10 is same as re10, but with i <-> n - 1 - i in the output and -   the sign of the odd input elements flipped. */ -static void apply_ro10(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = I[0]; -	  for (i = 1; i < n - i; ++i) { -	       E u, v; -	       int k = i + i; -	       u = -I[is * (k - 1)]; -	       v = I[is * k]; -	       buf[n - i] = u; -	       buf[i] = v; -	  } -	  if (i == n - i) { -	       buf[i] = -I[is * (n - 1)]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  O[os * (n - 1)] = K(2.0) * buf[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, wa, wb; -	       a = K(2.0) * buf[i]; -	       b = K(2.0) * buf[n - i]; -	       wa = W[2*i]; -	       wb = W[2*i + 1]; -	       O[os * (n - 1 - i)] = wa * a + wb * b; -	       O[os * (i - 1)] = wb * a - wa * b; -	  } -	  if (i == n - i) { -	       O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     static const tw_instr reodft010e_tw[] = { -          { TW_COS, 0, 1 }, -          { TW_SIN, 0, 1 }, -          { TW_NEXT, 1, 0 } -     }; - -     AWAKE(ego->cld, flg); - -     X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(%se-r2hc-%d%v%(%p%))", -	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 -		      || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld; -     R *buf; -     int n; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -          return (plan *)0; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n; -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), -                                                   X(mktensor_0d)(), -                                                   buf, buf, R2HC)); -     X(ifree)(buf); -     if (!cld) -          return (plan *)0; - -     switch (p->kind[0]) { -	 case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; -	 case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; -	 case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; -	 case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; -	 default: A(0); return (plan*)0; -     } - -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->os = p->sz->dims[0].os; -     pln->cld = cld; -     pln->td = 0; -     pln->kind = p->kind[0]; -      -     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); -      -     X(ops_zero)(&ops); -     ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; -     if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { -	  ops.add = (n-1)/2 * 6; -	  ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; -     } -     else { /* 10 transforms */ -	  ops.add = (n-1)/2 * 2; -	  ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; -     } -      -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - -     return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(reodft010e_r2hc_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reodft11e-r2hc-odd.c b/src/fftw3/reodft/reodft11e-r2hc-odd.c deleted file mode 100644 index 471f7ca..0000000 --- a/src/fftw3/reodft/reodft11e-r2hc-odd.c +++ /dev/null @@ -1,304 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: reodft11e-r2hc-odd.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size, -   with some permutations and post-processing, as described in: - -     S. C. Chan and K. L. Ho, "Fast algorithms for computing the -     discrete cosine transform," IEEE Trans. Circuits Systems II: -     Analog & Digital Sig. Proc. 39 (3), 185--190 (1992). - -   (For even sizes, see reodft11e-radix2.c.)   - -   This algorithm is related to the 8 x n prime-factor-algorithm (PFA) -   decomposition of the size 8n "logical" DFT corresponding to the -   R{EO}DFT11. - -   Aside from very confusing notation (several symbols are redefined -   from one line to the next), be aware that this paper has some -   errors.  In particular, the signs are wrong in Eqs. (34-35).  Also, -   Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly -   for S (or, equivalently, the second cases should have 2*N - 2*k - 1 -   instead of N - k - 1).  Note also that in their definition of the -   DFT, similarly to FFTW's, the exponent's sign is -1, but they -   forgot to correspondingly multiply S (the sine terms) by -1. -*/ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld; -     int is, os; -     int n; -     int vl; -     int ivs, ovs; -     rdft_kind kind; -} P; - -static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769); - -#define SGN_SET(x, i) ((i) % 2 ? -(x) : (x)) - -static void apply_re11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n, n2 = n/2; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  { -	       int m; -	       for (i = 0, m = n2; m < n; ++i, m += 4) -		    buf[i] = I[is * m]; -	       for (; m < 2 * n; ++i, m += 4) -		    buf[i] = -I[is * (2*n - m - 1)]; -	       for (; m < 3 * n; ++i, m += 4) -		    buf[i] = -I[is * (m - 2*n)]; -	       for (; m < 4 * n; ++i, m += 4) -		    buf[i] = I[is * (4*n - m - 1)]; -	       m -= 4 * n; -	       for (; i < n; ++i, m += 4) -		    buf[i] = I[is * m]; -	  } - -	  { /* child plan: R2HC of size n */ -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ -	  for (i = 0; i + i + 1 < n2; ++i) { -	       int k = i + i + 1; -	       E c1, s1; -	       E c2, s2; -	       c1 = buf[k]; -	       c2 = buf[k + 1]; -	       s2 = buf[n - (k + 1)]; -	       s1 = buf[n - k]; -	        -	       O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) + -				    SGN_SET(s1, i/2)); -	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) - -					      SGN_SET(s1, (n-(i+1))/2)); -	        -	       O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) - -					       SGN_SET(s2, (n2-(i+1))/2)); -	       O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) + -					       SGN_SET(s2, (n2+(i+1))/2)); -	  } -	  if (i + i + 1 == n2) { -	       E c, s; -	       c = buf[n2]; -	       s = buf[n - n2]; -	       O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) + -				    SGN_SET(s, i/2)); -	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) + -					      SGN_SET(s, (i+1)/2)); -	  } -	  O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2); -     } - -     X(ifree)(buf); -} - -/* like for rodft01, rodft11 is obtained from redft11 by -   reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n, n2 = n/2; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  { -	       int m; -	       for (i = 0, m = n2; m < n; ++i, m += 4) -		    buf[i] = I[is * (n - 1 - m)]; -	       for (; m < 2 * n; ++i, m += 4) -		    buf[i] = -I[is * (m - n)]; -	       for (; m < 3 * n; ++i, m += 4) -		    buf[i] = -I[is * (3*n - 1 - m)]; -	       for (; m < 4 * n; ++i, m += 4) -		    buf[i] = I[is * (m - 3*n)]; -	       m -= 4 * n; -	       for (; i < n; ++i, m += 4) -		    buf[i] = I[is * (n - 1 - m)]; -	  } - -	  { /* child plan: R2HC of size n */ -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ -	  for (i = 0; i + i + 1 < n2; ++i) { -	       int k = i + i + 1; -	       int j; -	       E c1, s1; -	       E c2, s2; -	       c1 = buf[k]; -	       c2 = buf[k + 1]; -	       s2 = buf[n - (k + 1)]; -	       s1 = buf[n - k]; -	        -	       O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) + -				    SGN_SET(s1, i/2 + i)); -	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) - -					      SGN_SET(s1, (n-(i+1))/2 + i)); -	        -	       j = n2 - (i+1); -	       O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) - -				    SGN_SET(s2, (n2-(i+1))/2 + j)); -	       O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) + -					       SGN_SET(s2, (n2+(i+1))/2 + j)); -	  } -	  if (i + i + 1 == n2) { -	       E c, s; -	       c = buf[n2]; -	       s = buf[n - n2]; -	       O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) + -				    SGN_SET(s, i/2 + i)); -	       O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) + -					      SGN_SET(s, (i+1)/2 + i)); -	  } -	  O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2); -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     AWAKE(ego->cld, flg); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(%se-r2hc-odd-%d%v%(%p%))", -	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && p->sz->dims[0].n % 2 == 1 -		  && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld; -     R *buf; -     int n; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -          return (plan *)0; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n; -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), -                                                   X(mktensor_0d)(), -                                                   buf, buf, R2HC)); -     X(ifree)(buf); -     if (!cld) -          return (plan *)0; - -     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->os = p->sz->dims[0].os; -     pln->cld = cld; -     pln->kind = p->kind[0]; -      -     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); -      -     X(ops_zero)(&ops); -     ops.add = n - 1; -     ops.mul = n; -     ops.other = 4*n; - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - -     return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(reodft11e_r2hc_odd_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reodft11e-r2hc.c b/src/fftw3/reodft/reodft11e-r2hc.c deleted file mode 100644 index d4366e3..0000000 --- a/src/fftw3/reodft/reodft11e-r2hc.c +++ /dev/null @@ -1,295 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: reodft11e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem via an R2HC problem, with some -   pre/post-processing ala FFTPACK.  Use a trick from:  - -     S. C. Chan and K. L. Ho, "Direct methods for computing discrete -     sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). - -   to re-express as an REDFT01 (DCT-III) problem. - -   NOTE: We no longer use this algorithm, because it turns out to suffer -   a catastrophic loss of accuracy for certain inputs, apparently because -   its post-processing multiplies the output by a cosine.  Near the zero -   of the cosine, the REDFT01 must produce a near-singular output. -*/ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld; -     twid *td, *td2; -     int is, os; -     int n; -     int vl; -     int ivs, ovs; -     rdft_kind kind; -} P; - -static void apply_re11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W; -     R *buf; -     E cur; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  /* I wish that this didn't require an extra pass. */ -	  /* FIXME: use recursive/cascade summation for better stability? */ -	  buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; -	  for (i = n - 1; i > 0; --i) { -	       E curnew; -	       buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; -	       cur = curnew; -	  } -	   -	  W = ego->td->W; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, apb, amb, wa, wb; -	       a = buf[i]; -	       b = buf[n - i]; -	       apb = a + b; -	       amb = a - b; -	       wa = W[2*i]; -	       wb = W[2*i + 1]; -	       buf[i] = wa * amb + wb * apb;  -	       buf[n - i] = wa * apb - wb * amb;  -	  } -	  if (i == n - i) { -	       buf[i] = K(2.0) * buf[i] * W[2*i]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  W = ego->td2->W; -	  O[0] = W[0] * buf[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b; -	       int k; -	       a = buf[i]; -	       b = buf[n - i]; -	       k = i + i; -	       O[os * (k - 1)] = W[k - 1] * (a - b); -	       O[os * k] = W[k] * (a + b); -	  } -	  if (i == n - i) { -	       O[os * (n - 1)] = W[n - 1] * buf[i]; -	  } -     } - -     X(ifree)(buf); -} - -/* like for rodft01, rodft11 is obtained from redft11 by -   reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W; -     R *buf; -     E cur; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  /* I wish that this didn't require an extra pass. */ -	  /* FIXME: use recursive/cascade summation for better stability? */ -	  buf[n - 1] = cur = K(2.0) * I[0]; -	  for (i = n - 1; i > 0; --i) { -	       E curnew; -	       buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; -	       cur = curnew; -	  } -	   -	  W = ego->td->W; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, apb, amb, wa, wb; -	       a = buf[i]; -	       b = buf[n - i]; -	       apb = a + b; -	       amb = a - b; -	       wa = W[2*i]; -	       wb = W[2*i + 1]; -	       buf[i] = wa * amb + wb * apb;  -	       buf[n - i] = wa * apb - wb * amb;  -	  } -	  if (i == n - i) { -	       buf[i] = K(2.0) * buf[i] * W[2*i]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  W = ego->td2->W; -	  O[0] = W[0] * buf[0]; -	  for (i = 1; i < n - i; ++i) { -	       E a, b; -	       int k; -	       a = buf[i]; -	       b = buf[n - i]; -	       k = i + i; -	       O[os * (k - 1)] = W[k - 1] * (b - a); -	       O[os * k] = W[k] * (a + b); -	  } -	  if (i == n - i) { -	       O[os * (n - 1)] = -W[n - 1] * buf[i]; -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     static const tw_instr reodft010e_tw[] = { -          { TW_COS, 0, 1 }, -          { TW_SIN, 0, 1 }, -          { TW_NEXT, 1, 0 } -     }; -     static const tw_instr reodft11e_tw[] = { -          { TW_COS, 1, 1 }, -          { TW_NEXT, 2, 0 } -     }; - -     AWAKE(ego->cld, flg); - -     X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); -     X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(%se-r2hc-%d%v%(%p%))", -	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld; -     R *buf; -     int n; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -          return (plan *)0; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n; -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), -                                                   X(mktensor_0d)(), -                                                   buf, buf, R2HC)); -     X(ifree)(buf); -     if (!cld) -          return (plan *)0; - -     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->os = p->sz->dims[0].os; -     pln->cld = cld; -     pln->td = pln->td2 = 0; -     pln->kind = p->kind[0]; -      -     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); -      -     X(ops_zero)(&ops); -     ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; -     ops.add = (n - 1) * 1 + (n-1)/2 * 6; -     ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - -     return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(reodft11e_r2hc_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reodft11e-radix2.c b/src/fftw3/reodft/reodft11e-radix2.c deleted file mode 100644 index 674f7b4..0000000 --- a/src/fftw3/reodft/reodft11e-radix2.c +++ /dev/null @@ -1,515 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: reodft11e-radix2.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems -   of half the size, plus some pre/post-processing.  Use a trick from: - -   Zhongde Wang, "On computing the discrete Fourier and cosine transforms," -   IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985). - -   to re-express as a pair of half-size REDFT01 (DCT-III) problems.  Our -   implementation looks quite a bit different from the algorithm described -   in the paper because we combined the paper's pre/post-processing with -   the pre/post-processing used to turn REDFT01 into R2HC.  (Also, the -   paper uses a DCT/DST pair, but we turn the DST into a DCT via the -   usual reordering/sign-flip trick.  We additionally combined a couple -   of the matrices/transformations of the paper into a single pass.) - -   NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho -   that turned out to have numerical problems; see reodft11e-r2hc.c. - -   (For odd sizes, see reodft11e-r2hc-odd.c.) -*/ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld; -     twid *td, *td2; -     int is, os; -     int n; -     int vl; -     int ivs, ovs; -     rdft_kind kind; -} P; - -static void apply_re11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n, n2 = n/2; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *W2; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = K(2.0) * I[0]; -	  buf[n2] = K(2.0) * I[is * (n - 1)]; -	  for (i = 1; i + i < n2; ++i) { -	       int k = i + i; -	       E a, b, a2, b2; -	       { -		    E u, v; -		    u = I[is * (k - 1)]; -		    v = I[is * k]; -		    a = u + v; -		    b2 = u - v; -	       } -	       { -		    E u, v; -		    u = I[is * (n - k - 1)]; -		    v = I[is * (n - k)]; -		    b = u + v; -		    a2 = u - v; -	       } -	       { -		    E wa, wb; -		    wa = W[2*i]; -		    wb = W[2*i + 1]; -		    { -			 E apb, amb; -			 apb = a + b; -			 amb = a - b; -			 buf[i] = wa * amb + wb * apb;  -			 buf[n2 - i] = wa * apb - wb * amb;  -		    } -		    { -			 E apb, amb; -			 apb = a2 + b2; -			 amb = a2 - b2; -			 buf[n2 + i] = wa * amb + wb * apb;  -			 buf[n - i] = wa * apb - wb * amb;  -		    } -	       } -	  } -	  if (i + i == n2) { -	       E u, v; -	       u = I[is * (n2 - 1)]; -	       v = I[is * n2]; -	       buf[i] = K(2.0) * (u + v) * W[2*i]; -	       buf[n - i] = K(2.0) * (u - v) * W[2*i]; -	  } - - -	  /* child plan: two r2hc's of size n/2 */ -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  W2 = ego->td2->W; -	  { /* i == 0 case */ -	       E wa, wb; -	       E a, b; -	       wa = W2[0]; /* cos */ -	       wb = W2[1]; /* sin */ -	       a = buf[0]; -	       b = buf[n2]; -	       O[0] = wa * a + wb * b; -	       O[os * (n - 1)] = wb * a - wa * b; -	  } -	  W2 += 2; -	  for (i = 1; i + i < n2; ++i, W2 += 2) { -	       int k; -	       E u, v, u2, v2; -	       u = buf[i]; -	       v = buf[n2 - i]; -	       u2 = buf[n2 + i]; -	       v2 = buf[n - i]; -	       k = (i + i) - 1; -	       { -                    E wa, wb; -                    E a, b; -                    wa = W2[0]; /* cos */ -                    wb = W2[1]; /* sin */ -                    a = u - v; -                    b = v2 - u2; -                    O[os * k] = wa * a + wb * b; -                    O[os * (n - 1 - k)] = wb * a - wa * b; -               } -	       ++k; -	       W2 += 2; -	       { -		    E wa, wb; -		    E a, b; -		    wa = W2[0]; /* cos */ -		    wb = W2[1]; /* sin */ -		    a = u + v; -		    b = u2 + v2; -		    O[os * k] = wa * a + wb * b; -		    O[os * (n - 1 - k)] = wb * a - wa * b; -	       } -	  } -	  if (i + i == n2) { -	       int k = (i + i) - 1; -	       E wa, wb; -	       E a, b; -	       wa = W2[0]; /* cos */ -	       wb = W2[1]; /* sin */ -	       a = buf[i]; -	       b = buf[n2 + i]; -	       O[os * k] = wa * a - wb * b; -	       O[os * (n - 1 - k)] = wb * a + wa * b; -	  } -     } - -     X(ifree)(buf); -} - -#if 0 - -/* This version of apply_re11 uses REDFT01 child plans, more similar -   to the original paper by Z. Wang.  We keep it around for reference -   (it is simpler) and because it may become more efficient if we -   ever implement REDFT01 codelets. */ - -static void apply_re11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = K(2.0) * I[0]; -	  buf[n/2] = K(2.0) * I[is * (n - 1)]; -	  for (i = 1; i + i < n; ++i) { -	       int k = i + i; -	       E a, b; -	       a = I[is * (k - 1)]; -	       b = I[is * k]; -	       buf[i] = a + b; -	       buf[n - i] = a - b; -	  } - -	  /* child plan: two redft01's (DCT-III) */ -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  W = ego->td2->W; -	  for (i = 0; i + 1 < n/2; ++i, W += 2) { -	       { -		    E wa, wb; -		    E a, b; -		    wa = W[0]; /* cos */ -		    wb = W[1]; /* sin */ -		    a = buf[i]; -		    b = buf[n/2 + i]; -		    O[os * i] = wa * a + wb * b; -		    O[os * (n - 1 - i)] = wb * a - wa * b; -	       } -	       ++i; -	       W += 2; -	       { -                    E wa, wb; -                    E a, b; -                    wa = W[0]; /* cos */ -                    wb = W[1]; /* sin */ -                    a = buf[i]; -                    b = buf[n/2 + i]; -                    O[os * i] = wa * a - wb * b; -                    O[os * (n - 1 - i)] = wb * a + wa * b; -               } -	  } -	  if (i < n/2) { -	       E wa, wb; -	       E a, b; -	       wa = W[0]; /* cos */ -	       wb = W[1]; /* sin */ -	       a = buf[i]; -	       b = buf[n/2 + i]; -	       O[os * i] = wa * a + wb * b; -	       O[os * (n - 1 - i)] = wb * a - wa * b; -	  } -     } - -     X(ifree)(buf); -} - -#endif /* 0 */ - -/* like for rodft01, rodft11 is obtained from redft11 by -   reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n, n2 = n/2; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *W2; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = K(2.0) * I[is * (n - 1)]; -	  buf[n2] = K(2.0) * I[0]; -	  for (i = 1; i + i < n2; ++i) { -	       int k = i + i; -	       E a, b, a2, b2; -	       { -		    E u, v; -		    u = I[is * (n - k)]; -		    v = I[is * (n - 1 - k)]; -		    a = u + v; -		    b2 = u - v; -	       } -	       { -		    E u, v; -		    u = I[is * (k)]; -		    v = I[is * (k - 1)]; -		    b = u + v; -		    a2 = u - v; -	       } -	       { -		    E wa, wb; -		    wa = W[2*i]; -		    wb = W[2*i + 1]; -		    { -			 E apb, amb; -			 apb = a + b; -			 amb = a - b; -			 buf[i] = wa * amb + wb * apb;  -			 buf[n2 - i] = wa * apb - wb * amb;  -		    } -		    { -			 E apb, amb; -			 apb = a2 + b2; -			 amb = a2 - b2; -			 buf[n2 + i] = wa * amb + wb * apb;  -			 buf[n - i] = wa * apb - wb * amb;  -		    } -	       } -	  } -	  if (i + i == n2) { -	       E u, v; -	       u = I[is * n2]; -	       v = I[is * (n2 - 1)]; -	       buf[i] = K(2.0) * (u + v) * W[2*i]; -	       buf[n - i] = K(2.0) * (u - v) * W[2*i]; -	  } - - -	  /* child plan: two r2hc's of size n/2 */ -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  W2 = ego->td2->W; -	  { /* i == 0 case */ -	       E wa, wb; -	       E a, b; -	       wa = W2[0]; /* cos */ -	       wb = W2[1]; /* sin */ -	       a = buf[0]; -	       b = buf[n2]; -	       O[0] = wa * a + wb * b; -	       O[os * (n - 1)] = wa * b - wb * a; -	  } -	  W2 += 2; -	  for (i = 1; i + i < n2; ++i, W2 += 2) { -	       int k; -	       E u, v, u2, v2; -	       u = buf[i]; -	       v = buf[n2 - i]; -	       u2 = buf[n2 + i]; -	       v2 = buf[n - i]; -	       k = (i + i) - 1; -	       { -                    E wa, wb; -                    E a, b; -                    wa = W2[0]; /* cos */ -                    wb = W2[1]; /* sin */ -                    a = v - u; -                    b = u2 - v2; -                    O[os * k] = wa * a + wb * b; -                    O[os * (n - 1 - k)] = wa * b - wb * a; -               } -	       ++k; -	       W2 += 2; -	       { -		    E wa, wb; -		    E a, b; -		    wa = W2[0]; /* cos */ -		    wb = W2[1]; /* sin */ -		    a = u + v; -		    b = u2 + v2; -		    O[os * k] = wa * a + wb * b; -		    O[os * (n - 1 - k)] = wa * b - wb * a; -	       } -	  } -	  if (i + i == n2) { -	       int k = (i + i) - 1; -	       E wa, wb; -	       E a, b; -	       wa = W2[0]; /* cos */ -	       wb = W2[1]; /* sin */ -	       a = buf[i]; -	       b = buf[n2 + i]; -	       O[os * k] = wb * b - wa * a; -	       O[os * (n - 1 - k)] = wa * b + wb * a; -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     static const tw_instr reodft010e_tw[] = { -          { TW_COS, 0, 1 }, -          { TW_SIN, 0, 1 }, -          { TW_NEXT, 1, 0 } -     }; -     static const tw_instr reodft11e_tw[] = { -          { TW_COS, 1, 1 }, -          { TW_SIN, 1, 1 }, -          { TW_NEXT, 2, 0 } -     }; - -     AWAKE(ego->cld, flg); - -     X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 2*ego->n, 1, ego->n/4+1); -     X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(%se-radix2-r2hc-%d%v%(%p%))", -	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && p->sz->dims[0].n % 2 == 0 -		  && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld; -     R *buf; -     int n; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -          return (plan *)0; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n; -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1), -                                                   X(mktensor_1d)(2, n/2, n/2), -                                                   buf, buf, R2HC)); -     X(ifree)(buf); -     if (!cld) -          return (plan *)0; - -     pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->os = p->sz->dims[0].os; -     pln->cld = cld; -     pln->td = pln->td2 = 0; -     pln->kind = p->kind[0]; -      -     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); -      -     X(ops_zero)(&ops); -     ops.add = 2 + (n/2 - 1)/2 * 20; -     ops.mul = 6 + (n/2 - 1)/2 * 16; -     ops.other = 4*n + 2 + (n/2 - 1)/2 * 6; -     if ((n/2) % 2 == 0) { -	  ops.add += 4; -	  ops.mul += 8; -	  ops.other += 4; -     } - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - -     return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(reodft11e_radix2_r2hc_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/rodft00e-r2hc-pad.c b/src/fftw3/reodft/rodft00e-r2hc-pad.c deleted file mode 100644 index 0b48585..0000000 --- a/src/fftw3/reodft/rodft00e-r2hc-pad.c +++ /dev/null @@ -1,200 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: rodft00e-r2hc-pad.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a RODFT00 problem via an R2HC problem, padded antisymmetrically to -   twice the size.  This is asymptotically a factor of ~2 worse than -   rodft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical -   Recipes), but we abandoned the latter after we discovered that it -   has intrinsic accuracy problems. */ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld, *cldcpy; -     int is; -     int n; -     int vl; -     int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = 0.0; -	  for (i = 1; i < n; ++i) { -	       R a = I[(i-1) * is]; -	       buf[i] = -a; -	       buf[2*n - i] = a; -	  } -	  buf[i] = 0.0; /* i == n, Nyquist */ -	   -	  /* r2hc transform of size 2*n */ -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  /* copy n-1 real numbers (imag. parts of hc array) from buf to O */ -	  { -	       plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; -	       cldcpy->apply((plan *) cldcpy, buf+2*n-1, O); -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     AWAKE(ego->cld, flg); -     AWAKE(ego->cldcpy, flg); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cldcpy); -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(rodft00e-r2hc-pad-%d%v%(%p%)%(%p%))",  -	      ego->n - 1, ego->vl, ego->cld, ego->cldcpy); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && p->kind[0] == RODFT00 -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld = (plan *) 0, *cldcpy; -     R *buf = (R *) 0; -     int n; -     int vl, ivs, ovs; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -	  goto nada; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n + 1; -     A(n > 0); -     buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - -     cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1),  -						  X(mktensor_0d)(),  -						  buf, buf, R2HC)); -     if (!cld) -	  goto nada; - -     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); -     cldcpy = -	  X(mkplan_d)(plnr, -		      X(mkproblem_rdft_1_d)(X(mktensor_0d)(), -					    X(mktensor_1d)(n-1,-1, -							   p->sz->dims[0].os),  -					    buf+2*n-1,TAINT(p->O, ovs), R2HC)); -     if (!cldcpy) -	  goto nada; - -     X(ifree)(buf); - -     pln = MKPLAN_RDFT(P, &padt, apply); - -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->cld = cld; -     pln->cldcpy = cldcpy; -     pln->vl = vl; -     pln->ivs = ivs; -     pln->ovs = ovs; -      -     X(ops_zero)(&ops); -     ops.other = n-1 + 2*n; /* loads + stores (input -> buf) */ - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); - -     return &(pln->super.super); - - nada: -     X(ifree0)(buf); -     if (cld) -	  X(plan_destroy_internal)(cld);   -     return (plan *)0; -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(rodft00e_r2hc_pad_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/rodft00e-r2hc.c b/src/fftw3/reodft/rodft00e-r2hc.c deleted file mode 100644 index 46bb299..0000000 --- a/src/fftw3/reodft/rodft00e-r2hc.c +++ /dev/null @@ -1,212 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - * - */ - -/* $Id: rodft00e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing. - -   This code uses the trick from FFTPACK, also documented in a similar -   form by Numerical Recipes.  Unfortunately, this algorithm seems to -   have intrinsic numerical problems (similar to those in -   reodft11e-r2hc.c), possibly due to the fact that it multiplies its -   input by a sine, causing a loss of precision near the zero.  For -   transforms of 16k points, it has already lost three or four decimal -   places of accuracy, which we deem unacceptable. - -   So, we have abandoned this algorithm in favor of the one in -   rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. -   The only other alternative in the literature that does not have -   similar numerical difficulties seems to be the direct adaptation of -   the Cooley-Tukey decomposition for antisymmetric data, but this -   would require a whole new set of codelets and it's not clear that -   it's worth it at this point. */ - -#include "reodft.h" - -typedef struct { -     solver super; -} S; - -typedef struct { -     plan_rdft super; -     plan *cld; -     twid *td; -     int is, os; -     int n; -     int vl; -     int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ -     const P *ego = (const P *) ego_; -     int is = ego->is, os = ego->os; -     int i, n = ego->n; -     int iv, vl = ego->vl; -     int ivs = ego->ivs, ovs = ego->ovs; -     R *W = ego->td->W; -     R *buf; - -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { -	  buf[0] = 0; -	  for (i = 1; i < n - i; ++i) { -	       E a, b, apb, amb; -	       a = I[is * (i - 1)]; -	       b = I[is * ((n - i) - 1)]; -	       apb =  K(2.0) * W[i] * (a + b); -	       amb = (a - b); -	       buf[i] = apb + amb; -	       buf[n - i] = apb - amb; -	  } -	  if (i == n - i) { -	       buf[i] = K(4.0) * I[is * (i - 1)]; -	  } -	   -	  { -	       plan_rdft *cld = (plan_rdft *) ego->cld; -	       cld->apply((plan *) cld, buf, buf); -	  } -	   -	  /* FIXME: use recursive/cascade summation for better stability? */ -	  O[0] = buf[0] * 0.5; -	  for (i = 1; i + i < n - 1; ++i) { -	       int k = i + i; -	       O[os * (k - 1)] = -buf[n - i]; -	       O[os * k] = O[os * (k - 2)] + buf[i]; -	  } -	  if (i + i == n - 1) { -	       O[os * (n - 2)] = -buf[n - i]; -	  } -     } - -     X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ -     P *ego = (P *) ego_; -     static const tw_instr rodft00e_tw[] = { -          { TW_SIN, 0, 1 }, -          { TW_NEXT, 1, 0 } -     }; - -     AWAKE(ego->cld, flg); - -     X(twiddle_awake)(flg, &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2); -} - -static void destroy(plan *ego_) -{ -     P *ego = (P *) ego_; -     X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ -     const P *ego = (const P *) ego_; -     p->print(p, "(rodft00e-r2hc-%d%v%(%p%))", ego->n - 1, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ -     UNUSED(ego_); -     if (RDFTP(p_)) { -          const problem_rdft *p = (const problem_rdft *) p_; -          return (1 -		  && p->sz->rnk == 1 -		  && p->vecsz->rnk <= 1 -		  && p->kind[0] == RODFT00 -	       ); -     } - -     return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ -     return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ -     P *pln; -     const problem_rdft *p; -     plan *cld; -     R *buf; -     int n; -     opcnt ops; - -     static const plan_adt padt = { -	  X(rdft_solve), awake, print, destroy -     }; - -     if (!applicable(ego_, p_, plnr)) -          return (plan *)0; - -     p = (const problem_rdft *) p_; - -     n = p->sz->dims[0].n + 1; -     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - -     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), -                                                   X(mktensor_0d)(), -                                                   buf, buf, R2HC)); -     X(ifree)(buf); -     if (!cld) -          return (plan *)0; - -     pln = MKPLAN_RDFT(P, &padt, apply); - -     pln->n = n; -     pln->is = p->sz->dims[0].is; -     pln->os = p->sz->dims[0].os; -     pln->cld = cld; -     pln->td = 0; -      -     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); -      -     X(ops_zero)(&ops); -     ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5; -     ops.add = (n-1)/2 * 4 + (n-2)/2 * 1; -     ops.mul = 1 + (n-1)/2 * 2; -     if (n % 2 == 0) -	  ops.mul += 1; - -     X(ops_zero)(&pln->super.super.ops); -     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); -     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - -     return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ -     static const solver_adt sadt = { mkplan }; -     S *slv = MKSOLVER(S, &sadt); -     return &(slv->super); -} - -void X(rodft00e_r2hc_register)(planner *p) -{ -     REGISTER_SOLVER(p, mksolver()); -}  | 
