diff options
Diffstat (limited to 'src/libjpeg/jidctint.c')
-rw-r--r-- | src/libjpeg/jidctint.c | 389 |
1 files changed, 389 insertions, 0 deletions
diff --git a/src/libjpeg/jidctint.c b/src/libjpeg/jidctint.c new file mode 100644 index 0000000..a72b320 --- /dev/null +++ b/src/libjpeg/jidctint.c @@ -0,0 +1,389 @@ +/* + * jidctint.c + * + * Copyright (C) 1991-1998, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a slow-but-accurate integer implementation of the + * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine + * must also perform dequantization of the input coefficients. + * + * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT + * on each row (or vice versa, but it's more convenient to emit a row at + * a time). Direct algorithms are also available, but they are much more + * complex and seem not to be any faster when reduced to code. + * + * This implementation is based on an algorithm described in + * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h" /* Private declarations for DCT subsystem */ + +#ifdef DCT_ISLOW_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * The poop on this scaling stuff is as follows: + * + * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) + * larger than the true IDCT outputs. The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm. The advantage of + * this arrangement is that we save two multiplications per 1-D IDCT, + * because the y0 and y4 inputs need not be divided by sqrt(N). + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic. We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants). After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output. This division can be done + * cheaply as a right shift of CONST_BITS bits. We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision. These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling. (To scale up 12-bit sample data further, an + * intermediate INT32 array would be needed.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis + * shows that the values given below are the most effective. + */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS 13 +#define PASS1_BITS 2 +#else +#define CONST_BITS 13 +#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ +#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ +#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ +#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ +#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ +#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ +#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ +#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ +#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ +#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ +#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ +#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ +#else +#define FIX_0_298631336 FIX(0.298631336) +#define FIX_0_390180644 FIX(0.390180644) +#define FIX_0_541196100 FIX(0.541196100) +#define FIX_0_765366865 FIX(0.765366865) +#define FIX_0_899976223 FIX(0.899976223) +#define FIX_1_175875602 FIX(1.175875602) +#define FIX_1_501321110 FIX(1.501321110) +#define FIX_1_847759065 FIX(1.847759065) +#define FIX_1_961570560 FIX(1.961570560) +#define FIX_2_053119869 FIX(2.053119869) +#define FIX_2_562915447 FIX(2.562915447) +#define FIX_3_072711026 FIX(3.072711026) +#endif + + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. + * For 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MULTIPLY(var,const) MULTIPLY16C16(var,const) +#else +#define MULTIPLY(var,const) ((var) * (const)) +#endif + + +/* Dequantize a coefficient by multiplying it by the multiplier-table + * entry; produce an int result. In this module, both inputs and result + * are 16 bits or less, so either int or short multiply will work. + */ + +#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) + + +/* + * Perform dequantization and inverse DCT on one block of coefficients. + */ + +GLOBAL(void) +jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, + JCOEFPTR coef_block, + JSAMPARRAY output_buf, JDIMENSION output_col) +{ + INT32 tmp0, tmp1, tmp2, tmp3; + INT32 tmp10, tmp11, tmp12, tmp13; + INT32 z1, z2, z3, z4, z5; + JCOEFPTR inptr; + ISLOW_MULT_TYPE * quantptr; + int * wsptr; + JSAMPROW outptr; + JSAMPLE *range_limit = IDCT_range_limit(cinfo); + int ctr; + int workspace[DCTSIZE2]; /* buffers data between passes */ + SHIFT_TEMPS + + /* Pass 1: process columns from input, store into work array. */ + /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + inptr = coef_block; + quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; + wsptr = workspace; + for (ctr = DCTSIZE; ctr > 0; ctr--) { + /* Due to quantization, we will usually find that many of the input + * coefficients are zero, especially the AC terms. We can exploit this + * by short-circuiting the IDCT calculation for any column in which all + * the AC terms are zero. In that case each output is equal to the + * DC coefficient (with scale factor as needed). + * With typical images and quantization tables, half or more of the + * column DCT calculations can be simplified this way. + */ + + if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && + inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && + inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && + inptr[DCTSIZE*7] == 0) { + /* AC terms all zero */ + int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; + + wsptr[DCTSIZE*0] = dcval; + wsptr[DCTSIZE*1] = dcval; + wsptr[DCTSIZE*2] = dcval; + wsptr[DCTSIZE*3] = dcval; + wsptr[DCTSIZE*4] = dcval; + wsptr[DCTSIZE*5] = dcval; + wsptr[DCTSIZE*6] = dcval; + wsptr[DCTSIZE*7] = dcval; + + inptr++; /* advance pointers to next column */ + quantptr++; + wsptr++; + continue; + } + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + + z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); + z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); + tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); + + z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); + z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); + + tmp0 = (z2 + z3) << CONST_BITS; + tmp1 = (z2 - z3) << CONST_BITS; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); + tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); + tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); + tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); + + z1 = tmp0 + tmp3; + z2 = tmp1 + tmp2; + z3 = tmp0 + tmp2; + z4 = tmp1 + tmp3; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); + wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); + + inptr++; /* advance pointers to next column */ + quantptr++; + wsptr++; + } + + /* Pass 2: process rows from work array, store into output array. */ + /* Note that we must descale the results by a factor of 8 == 2**3, */ + /* and also undo the PASS1_BITS scaling. */ + + wsptr = workspace; + for (ctr = 0; ctr < DCTSIZE; ctr++) { + outptr = output_buf[ctr] + output_col; + /* Rows of zeroes can be exploited in the same way as we did with columns. + * However, the column calculation has created many nonzero AC terms, so + * the simplification applies less often (typically 5% to 10% of the time). + * On machines with very fast multiplication, it's possible that the + * test takes more time than it's worth. In that case this section + * may be commented out. + */ + +#ifndef NO_ZERO_ROW_TEST + if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && + wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { + /* AC terms all zero */ + JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) + & RANGE_MASK]; + + outptr[0] = dcval; + outptr[1] = dcval; + outptr[2] = dcval; + outptr[3] = dcval; + outptr[4] = dcval; + outptr[5] = dcval; + outptr[6] = dcval; + outptr[7] = dcval; + + wsptr += DCTSIZE; /* advance pointer to next row */ + continue; + } +#endif + + /* Even part: reverse the even part of the forward DCT. */ + /* The rotator is sqrt(2)*c(-6). */ + + z2 = (INT32) wsptr[2]; + z3 = (INT32) wsptr[6]; + + z1 = MULTIPLY(z2 + z3, FIX_0_541196100); + tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); + tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); + + tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS; + tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS; + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + /* Odd part per figure 8; the matrix is unitary and hence its + * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. + */ + + tmp0 = (INT32) wsptr[7]; + tmp1 = (INT32) wsptr[5]; + tmp2 = (INT32) wsptr[3]; + tmp3 = (INT32) wsptr[1]; + + z1 = tmp0 + tmp3; + z2 = tmp1 + tmp2; + z3 = tmp0 + tmp2; + z4 = tmp1 + tmp3; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + + tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + tmp0 += z1 + z3; + tmp1 += z2 + z4; + tmp2 += z2 + z3; + tmp3 += z1 + z4; + + /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ + + outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, + CONST_BITS+PASS1_BITS+3) + & RANGE_MASK]; + + wsptr += DCTSIZE; /* advance pointer to next row */ + } +} + +#endif /* DCT_ISLOW_SUPPORTED */ |