summaryrefslogtreecommitdiff
path: root/src/process/im_geometric.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/process/im_geometric.cpp')
-rw-r--r--src/process/im_geometric.cpp724
1 files changed, 724 insertions, 0 deletions
diff --git a/src/process/im_geometric.cpp b/src/process/im_geometric.cpp
new file mode 100644
index 0000000..a0b5129
--- /dev/null
+++ b/src/process/im_geometric.cpp
@@ -0,0 +1,724 @@
+/** \file
+ * \brief Geometric Operations
+ *
+ * See Copyright Notice in im_lib.h
+ * $Id: im_geometric.cpp,v 1.1 2008/10/17 06:16:33 scuri Exp $
+ */
+
+
+#include <im.h>
+#include <im_util.h>
+#include <im_counter.h>
+
+#include "im_process_loc.h"
+#include "im_math_op.h"
+
+#include <stdlib.h>
+#include <memory.h>
+
+static inline void imRect2Polar(float x, float y, float *radius, float *theta)
+{
+ *radius = sqrtf(x*x + y*y);
+ *theta = atan2f(y, x);
+}
+
+static inline void imPolar2Rect(float radius, float theta, float *x, float *y)
+{
+ *x = radius * cosf(theta);
+ *y = radius * sinf(theta);
+}
+
+static inline void swirl_invtransf(int x, int y, float *xl, float *yl, float k, float xc, float yc)
+{
+ float radius, theta;
+ x -= (int)xc;
+ y -= (int)yc;
+
+ imRect2Polar((float)x, (float)y, &radius, &theta);
+
+ theta += k * radius;
+
+ imPolar2Rect(radius, theta, xl, yl);
+
+ *xl += xc;
+ *yl += yc;
+}
+
+template <class DT, class DTU>
+static int Swirl(int width, int height, DT *src_map, DT *dst_map,
+ float k, int counter, DTU Dummy, int order)
+{
+ float xl, yl;
+ float xc = float(width/2.);
+ float yc = float(height/2.);
+
+ for (int y = 0; y < height; y++)
+ {
+ for (int x = 0; x < width; x++)
+ {
+ swirl_invtransf(x, y, &xl, &yl, k, xc, yc);
+
+ // if inside the original image broad area
+ if (xl > 0.0 && yl > 0.0 && xl < width && yl < height)
+ {
+ if (order == 1)
+ *dst_map = imBilinearInterpolation(width, height, src_map, xl, yl);
+ else if (order == 3)
+ *dst_map = imBicubicInterpolation(width, height, src_map, xl, yl, Dummy);
+ else
+ *dst_map = imZeroOrderInterpolation(width, height, src_map, xl, yl);
+ }
+
+ dst_map++;
+ }
+
+ if (!imCounterInc(counter))
+ return 0;
+ }
+
+ return 1;
+}
+
+static inline void radial_invtransf(int x, int y, float *xl, float *yl, float k1, float xc, float yc)
+{
+ float aux;
+ x -= (int)xc;
+ y -= (int)yc;
+ aux = 1.0f + k1*(x*x + y*y);
+ *xl = x*aux + xc;
+ *yl = y*aux + yc;
+}
+
+template <class DT, class DTU>
+static int Radial(int width, int height, DT *src_map, DT *dst_map,
+ float k1, int counter, DTU Dummy, int order)
+{
+ float xl, yl;
+ float xc = float(width/2.);
+ float yc = float(height/2.);
+ int diag = (int)sqrt(float(width*width + height*height));
+
+ k1 /= (diag * diag);
+
+ for (int y = 0; y < height; y++)
+ {
+ for (int x = 0; x < width; x++)
+ {
+ radial_invtransf(x, y, &xl, &yl, k1, xc, yc);
+
+ // if inside the original image broad area
+ if (xl > 0.0 && yl > 0.0 && xl < width && yl < height)
+ {
+ if (order == 1)
+ *dst_map = imBilinearInterpolation(width, height, src_map, xl, yl);
+ else if (order == 3)
+ *dst_map = imBicubicInterpolation(width, height, src_map, xl, yl, Dummy);
+ else
+ *dst_map = imZeroOrderInterpolation(width, height, src_map, xl, yl);
+ }
+
+ dst_map++;
+ }
+
+ if (!imCounterInc(counter))
+ return 0;
+ }
+
+ return 1;
+}
+
+//*******************************************************************************************
+//rotate_invtransf
+// shift the center to the origin of the destiny image
+// rotates centrered in the origin
+// shift the origin back to the center of the original image
+//*******************************************************************************************
+
+inline void rotate_invtransf(int x, int y, float *xl, float *yl, double cos0, double sin0, float dcx, float dcy, float scx, float scy)
+{
+ double xr = x+0.5 - dcx;
+ double yr = y+0.5 - dcy;
+ *xl = float(xr * cos0 - yr * sin0 + scx);
+ *yl = float(xr * sin0 + yr * cos0 + scy);
+}
+
+template <class DT, class DTU>
+static int RotateCenter(int src_width, int src_height, DT *src_map,
+ int dst_width, int dst_height, DT *dst_map,
+ double cos0, double sin0, int counter, DTU Dummy, int order)
+{
+ float xl, yl;
+ float dcx = float(dst_width/2.);
+ float dcy = float(dst_height/2.);
+ float scx = float(src_width/2.);
+ float scy = float(src_height/2.);
+
+ for (int y = 0; y < dst_height; y++)
+ {
+ for (int x = 0; x < dst_width; x++)
+ {
+ rotate_invtransf(x, y, &xl, &yl, cos0, sin0, dcx, dcy, scx, scy);
+
+ // if inside the original image broad area
+ if (xl > 0.0 && yl > 0.0 && xl < src_width && yl < src_height)
+ {
+ if (order == 1)
+ *dst_map = imBilinearInterpolation(src_width, src_height, src_map, xl, yl);
+ else if (order == 3)
+ *dst_map = imBicubicInterpolation(src_width, src_height, src_map, xl, yl, Dummy);
+ else
+ *dst_map = imZeroOrderInterpolation(src_width, src_height, src_map, xl, yl);
+ }
+
+ dst_map++;
+ }
+
+ if (!imCounterInc(counter))
+ return 0;
+ }
+
+ return 1;
+}
+
+template <class DT, class DTU>
+static int Rotate(int src_width, int src_height, DT *src_map,
+ int dst_width, int dst_height, DT *dst_map,
+ double cos0, double sin0, int ref_x, int ref_y, int to_origin,
+ int counter, DTU Dummy, int order)
+{
+ float xl, yl;
+ float sx = float(ref_x);
+ float sy = float(ref_y);
+ float dx = sx;
+ float dy = sy;
+ if (to_origin)
+ {
+ dx = 0;
+ dy = 0;
+ }
+
+ for (int y = 0; y < dst_height; y++)
+ {
+ for (int x = 0; x < dst_width; x++)
+ {
+ rotate_invtransf(x, y, &xl, &yl, cos0, sin0, dx, dy, sx, sy);
+
+ // if inside the original image broad area
+ if (xl > 0.0 && yl > 0.0 && xl < src_width && yl < src_height)
+ {
+ if (order == 1)
+ *dst_map = imBilinearInterpolation(src_width, src_height, src_map, xl, yl);
+ else if (order == 3)
+ *dst_map = imBicubicInterpolation(src_width, src_height, src_map, xl, yl, Dummy);
+ else
+ *dst_map = imZeroOrderInterpolation(src_width, src_height, src_map, xl, yl);
+ }
+
+ dst_map++;
+ }
+
+ if (!imCounterInc(counter))
+ return 0;
+ }
+
+ return 1;
+}
+
+template <class DT>
+static void Rotate90(int src_width,
+ int src_height,
+ DT *src_map,
+ int dst_width,
+ int dst_height,
+ DT *dst_map,
+ int dir)
+{
+ int xd,yd,x,y;
+
+ if (dir == 1)
+ xd = 0;
+ else
+ xd = dst_width - 1;
+
+ for(y = 0 ; y < src_height ; y++)
+ {
+ if (dir == 1)
+ yd = dst_height - 1;
+ else
+ yd = 0;
+
+ for(x = 0 ; x < src_width ; x++)
+ {
+ dst_map[yd * dst_width + xd] = src_map[y * src_width + x];
+
+ if (dir == 1)
+ yd--;
+ else
+ yd++;
+ }
+
+ if (dir == 1)
+ xd++;
+ else
+ xd--;
+ }
+}
+
+template <class DT>
+static void Rotate180(int src_width,
+ int src_height,
+ DT *src_map,
+ int dst_width,
+ int dst_height,
+ DT *dst_map)
+{
+ int xd,yd,x,y;
+
+ yd = dst_height - 1;
+
+ for(y = 0 ; y < src_height ; y++)
+ {
+ xd = dst_width - 1;
+
+ for(x = 0 ; x < src_width ; x++)
+ {
+ dst_map[yd * dst_width + xd] = src_map[y * src_width + x];
+ xd--;
+ }
+
+ yd--;
+ }
+}
+
+template <class DT>
+static void Mirror(int src_width,
+ int src_height,
+ DT *src_map,
+ int dst_width,
+ int dst_height,
+ DT *dst_map)
+{
+ int xd,x,y;
+ (void)dst_height;
+
+ if (src_map == dst_map) // check of in-place operation
+ {
+ int half_width = src_width/2;
+ for(y = 0 ; y < src_height; y++)
+ {
+ xd = dst_width - 1;
+
+ for(x = 0 ; x < half_width; x++)
+ {
+ DT temp_value = src_map[y * dst_width + xd];
+ src_map[y * dst_width + xd] = src_map[y * src_width + x];
+ src_map[y * src_width + x] = temp_value;
+ xd--;
+ }
+ }
+ }
+ else
+ {
+ for(y = 0 ; y < src_height; y++)
+ {
+ xd = dst_width - 1;
+
+ for(x = 0 ; x < src_width; x++)
+ {
+ dst_map[y * dst_width + xd] = src_map[y * src_width + x];
+ xd--;
+ }
+ }
+ }
+}
+
+template <class DT>
+static void Flip(int src_width,
+ int src_height,
+ DT *src_map,
+ int dst_width,
+ int dst_height,
+ DT *dst_map)
+{
+ int yd,y;
+
+ yd = dst_height - 1;
+
+ if (src_map == dst_map) // check of in-place operation
+ {
+ DT* temp_line = (DT*)malloc(src_width*sizeof(DT));
+ int half_height = src_height/2;
+
+ for(y = 0 ; y < half_height; y++)
+ {
+ memcpy(temp_line, dst_map+yd*dst_width, src_width * sizeof(DT));
+ memcpy(dst_map+yd*dst_width, src_map+y*src_width, src_width * sizeof(DT));
+ memcpy(src_map+y*src_width, temp_line,src_width * sizeof(DT));
+ yd--;
+ }
+
+ free(temp_line);
+ }
+ else
+ {
+ for(y = 0 ; y < src_height; y++)
+ {
+ memcpy(dst_map+yd*dst_width,src_map+y*src_width,src_width * sizeof(DT));
+ yd--;
+ }
+ }
+}
+
+template <class DT>
+static void InterlaceSplit(int src_width,
+ int src_height,
+ DT *src_map,
+ int dst_width,
+ DT *dst_map1,
+ DT *dst_map2)
+{
+ int yd = 0, y;
+
+ for(y = 0; y < src_height; y++)
+ {
+ if (y%2)
+ {
+ memcpy(dst_map2+yd*dst_width, src_map+y*src_width, src_width * sizeof(DT));
+ yd++; // increment only when odd
+ }
+ else
+ memcpy(dst_map1+yd*dst_width, src_map+y*src_width, src_width * sizeof(DT));
+ }
+}
+
+void imProcessRotate90(const imImage* src_image, imImage* dst_image, int dir)
+{
+ for (int i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ Rotate90(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image->width, dst_image->height, (imbyte*)dst_image->data[i], dir);
+ break;
+ case IM_USHORT:
+ Rotate90(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image->width, dst_image->height, (imushort*)dst_image->data[i], dir);
+ break;
+ case IM_INT:
+ Rotate90(src_image->width, src_image->height, (int*)src_image->data[i], dst_image->width, dst_image->height, (int*)dst_image->data[i], dir);
+ break;
+ case IM_FLOAT:
+ Rotate90(src_image->width, src_image->height, (float*)src_image->data[i], dst_image->width, dst_image->height, (float*)dst_image->data[i], dir);
+ break;
+ case IM_CFLOAT:
+ Rotate90(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image->width, dst_image->height, (imcfloat*)dst_image->data[i], dir);
+ break;
+ }
+ }
+}
+
+void imProcessRotate180(const imImage* src_image, imImage* dst_image)
+{
+ for (int i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ Rotate180(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image->width, dst_image->height, (imbyte*)dst_image->data[i]);
+ break;
+ case IM_USHORT:
+ Rotate180(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image->width, dst_image->height, (imushort*)dst_image->data[i]);
+ break;
+ case IM_INT:
+ Rotate180(src_image->width, src_image->height, (int*)src_image->data[i], dst_image->width, dst_image->height, (int*)dst_image->data[i]);
+ break;
+ case IM_FLOAT:
+ Rotate180(src_image->width, src_image->height, (float*)src_image->data[i], dst_image->width, dst_image->height, (float*)dst_image->data[i]);
+ break;
+ case IM_CFLOAT:
+ Rotate180(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image->width, dst_image->height, (imcfloat*)dst_image->data[i]);
+ break;
+ }
+ }
+}
+
+int imProcessRadial(const imImage* src_image, imImage* dst_image, float k1, int order)
+{
+ int ret = 0;
+
+ int counter = imCounterBegin("Radial Distort");
+ imCounterTotal(counter, dst_image->depth*dst_image->height, "Processing...");
+
+ for (int i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ ret = Radial(src_image->width, src_image->height, (imbyte*)src_image->data[i], (imbyte*)dst_image->data[i], k1, counter, float(0), order);
+ break;
+ case IM_USHORT:
+ ret = Radial(src_image->width, src_image->height, (imushort*)src_image->data[i], (imushort*)dst_image->data[i], k1, counter, float(0), order);
+ break;
+ case IM_INT:
+ ret = Radial(src_image->width, src_image->height, (int*)src_image->data[i], (int*)dst_image->data[i], k1, counter, float(0), order);
+ break;
+ case IM_FLOAT:
+ ret = Radial(src_image->width, src_image->height, (float*)src_image->data[i], (float*)dst_image->data[i], k1, counter, float(0), order);
+ break;
+ case IM_CFLOAT:
+ ret = Radial(src_image->width, src_image->height, (imcfloat*)src_image->data[i], (imcfloat*)dst_image->data[i], k1, counter, imcfloat(0,0), order);
+ break;
+ }
+
+ if (!ret)
+ break;
+ }
+
+ imCounterEnd(counter);
+
+ return ret;
+}
+
+int imProcessSwirl(const imImage* src_image, imImage* dst_image, float k, int order)
+{
+ int ret = 0;
+
+ int counter = imCounterBegin("Swirl Distort");
+ imCounterTotal(counter, dst_image->depth*dst_image->height, "Processing...");
+
+ for (int i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ ret = Swirl(src_image->width, src_image->height, (imbyte*)src_image->data[i], (imbyte*)dst_image->data[i], k, counter, float(0), order);
+ break;
+ case IM_USHORT:
+ ret = Swirl(src_image->width, src_image->height, (imushort*)src_image->data[i], (imushort*)dst_image->data[i], k, counter, float(0), order);
+ break;
+ case IM_INT:
+ ret = Swirl(src_image->width, src_image->height, (int*)src_image->data[i], (int*)dst_image->data[i], k, counter, float(0), order);
+ break;
+ case IM_FLOAT:
+ ret = Swirl(src_image->width, src_image->height, (float*)src_image->data[i], (float*)dst_image->data[i], k, counter, float(0), order);
+ break;
+ case IM_CFLOAT:
+ ret = Swirl(src_image->width, src_image->height, (imcfloat*)src_image->data[i], (imcfloat*)dst_image->data[i], k, counter, imcfloat(0,0), order);
+ break;
+ }
+
+ if (!ret)
+ break;
+ }
+
+ imCounterEnd(counter);
+
+ return ret;
+}
+
+//*******************************************************************************************
+//rotate_transf
+// In this case shift to the origin, rotate, but do NOT shift back
+//*******************************************************************************************
+
+static void rotate_transf(float cx, float cy, int x, int y, float *xl, float *yl, double cos0, double sin0)
+{
+ double xr = x+0.5 - cx;
+ double yr = y+0.5 - cy;
+ *xl = float( xr*cos0 + yr*sin0);
+ *yl = float(-xr*sin0 + yr*cos0);
+}
+
+void imProcessCalcRotateSize(int width, int height, int *new_width, int *new_height, double cos0, double sin0)
+{
+ float xl, yl, xmin, xmax, ymin, ymax;
+ float wd2 = float(width)/2;
+ float hd2 = float(height)/2;
+
+ rotate_transf(wd2, hd2, 0, 0, &xl, &yl, cos0, sin0);
+ xmin = xl; ymin = yl;
+ xmax = xl; ymax = yl;
+
+ rotate_transf(wd2, hd2, width-1, height-1, &xl, &yl, cos0, sin0);
+ xmin = min_op(xmin, xl); ymin = min_op(ymin, yl);
+ xmax = max_op(xmax, xl); ymax = max_op(ymax, yl);
+
+ rotate_transf(wd2, hd2, 0, height-1, &xl, &yl, cos0, sin0);
+ xmin = min_op(xmin, xl); ymin = min_op(ymin, yl);
+ xmax = max_op(xmax, xl); ymax = max_op(ymax, yl);
+
+ rotate_transf(wd2, hd2, width-1, 0, &xl, &yl, cos0, sin0);
+ xmin = min_op(xmin, xl); ymin = min_op(ymin, yl);
+ xmax = max_op(xmax, xl); ymax = max_op(ymax, yl);
+
+ *new_width = (int)(xmax - xmin + 2.0);
+ *new_height = (int)(ymax - ymin + 2.0);
+}
+
+int imProcessRotate(const imImage* src_image, imImage* dst_image, double cos0, double sin0, int order)
+{
+ int ret = 0;
+
+ int counter = imCounterBegin("Rotate");
+ imCounterTotal(counter, dst_image->depth*dst_image->height, "Processing...");
+
+ if (src_image->color_space == IM_MAP)
+ {
+ ret = RotateCenter(src_image->width, src_image->height, (imbyte*)src_image->data[0], dst_image->width, dst_image->height, (imbyte*)dst_image->data[0], cos0, sin0, counter, float(0), 0);
+ }
+ else
+ {
+ for (int i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ ret = RotateCenter(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image->width, dst_image->height, (imbyte*)dst_image->data[i], cos0, sin0, counter, float(0), order);
+ break;
+ case IM_USHORT:
+ ret = RotateCenter(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image->width, dst_image->height, (imushort*)dst_image->data[i], cos0, sin0, counter, float(0), order);
+ break;
+ case IM_INT:
+ ret = RotateCenter(src_image->width, src_image->height, (int*)src_image->data[i], dst_image->width, dst_image->height, (int*)dst_image->data[i], cos0, sin0, counter, float(0), order);
+ break;
+ case IM_FLOAT:
+ ret = RotateCenter(src_image->width, src_image->height, (float*)src_image->data[i], dst_image->width, dst_image->height, (float*)dst_image->data[i], cos0, sin0, counter, float(0), order);
+ break;
+ case IM_CFLOAT:
+ ret = RotateCenter(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image->width, dst_image->height, (imcfloat*)dst_image->data[i], cos0, sin0, counter, imcfloat(0,0), order);
+ break;
+ }
+
+ if (!ret)
+ break;
+ }
+ }
+
+ imCounterEnd(counter);
+
+ return ret;
+}
+
+int imProcessRotateRef(const imImage* src_image, imImage* dst_image, double cos0, double sin0, int x, int y, int to_origin, int order)
+{
+ int ret = 0;
+
+ int counter = imCounterBegin("RotateRef");
+ imCounterTotal(counter, dst_image->depth*dst_image->height, "Processing...");
+
+ if (src_image->color_space == IM_MAP)
+ {
+ ret = Rotate(src_image->width, src_image->height, (imbyte*)src_image->data[0], dst_image->width, dst_image->height, (imbyte*)dst_image->data[0], cos0, sin0, x, y, to_origin, counter, float(0), 0);
+ }
+ else
+ {
+ for (int i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ ret = Rotate(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image->width, dst_image->height, (imbyte*)dst_image->data[i], cos0, sin0, x, y, to_origin, counter, float(0), order);
+ break;
+ case IM_USHORT:
+ ret = Rotate(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image->width, dst_image->height, (imushort*)dst_image->data[i], cos0, sin0, x, y, to_origin, counter, float(0), order);
+ break;
+ case IM_INT:
+ ret = Rotate(src_image->width, src_image->height, (int*)src_image->data[i], dst_image->width, dst_image->height, (int*)dst_image->data[i], cos0, sin0, x, y, to_origin, counter, float(0), order);
+ break;
+ case IM_FLOAT:
+ ret = Rotate(src_image->width, src_image->height, (float*)src_image->data[i], dst_image->width, dst_image->height, (float*)dst_image->data[i], cos0, sin0, x, y, to_origin, counter, float(0), order);
+ break;
+ case IM_CFLOAT:
+ ret = Rotate(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image->width, dst_image->height, (imcfloat*)dst_image->data[i], cos0, sin0, x, y, to_origin, counter, imcfloat(0,0), order);
+ break;
+ }
+
+ if (!ret)
+ break;
+ }
+ }
+
+ imCounterEnd(counter);
+
+ return ret;
+}
+
+void imProcessMirror(const imImage* src_image, imImage* dst_image)
+{
+ int i;
+
+ for (i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ Mirror(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image->width, dst_image->height, (imbyte*)dst_image->data[i]);
+ break;
+ case IM_USHORT:
+ Mirror(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image->width, dst_image->height, (imushort*)dst_image->data[i]);
+ break;
+ case IM_INT:
+ Mirror(src_image->width, src_image->height, (int*)src_image->data[i], dst_image->width, dst_image->height, (int*)dst_image->data[i]);
+ break;
+ case IM_FLOAT:
+ Mirror(src_image->width, src_image->height, (float*)src_image->data[i], dst_image->width, dst_image->height, (float*)dst_image->data[i]);
+ break;
+ case IM_CFLOAT:
+ Mirror(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image->width, dst_image->height, (imcfloat*)dst_image->data[i]);
+ break;
+ }
+ }
+}
+
+void imProcessFlip(const imImage* src_image, imImage* dst_image)
+{
+ int i;
+
+ for (i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ Flip(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image->width, dst_image->height, (imbyte*)dst_image->data[i]);
+ break;
+ case IM_USHORT:
+ Flip(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image->width, dst_image->height, (imushort*)dst_image->data[i]);
+ break;
+ case IM_INT:
+ Flip(src_image->width, src_image->height, (int*)src_image->data[i], dst_image->width, dst_image->height, (int*)dst_image->data[i]);
+ break;
+ case IM_FLOAT:
+ Flip(src_image->width, src_image->height, (float*)src_image->data[i], dst_image->width, dst_image->height, (float*)dst_image->data[i]);
+ break;
+ case IM_CFLOAT:
+ Flip(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image->width, dst_image->height, (imcfloat*)dst_image->data[i]);
+ break;
+ }
+ }
+}
+
+void imProcessInterlaceSplit(const imImage* src_image, imImage* dst_image1, imImage* dst_image2)
+{
+ int i;
+
+ for (i = 0; i < src_image->depth; i++)
+ {
+ switch(src_image->data_type)
+ {
+ case IM_BYTE:
+ InterlaceSplit(src_image->width, src_image->height, (imbyte*)src_image->data[i], dst_image1->width, (imbyte*)dst_image1->data[i], (imbyte*)dst_image2->data[i]);
+ break;
+ case IM_USHORT:
+ InterlaceSplit(src_image->width, src_image->height, (imushort*)src_image->data[i], dst_image1->width, (imushort*)dst_image1->data[i], (imushort*)dst_image2->data[i]);
+ break;
+ case IM_INT:
+ InterlaceSplit(src_image->width, src_image->height, (int*)src_image->data[i], dst_image1->width, (int*)dst_image1->data[i], (int*)dst_image2->data[i]);
+ break;
+ case IM_FLOAT:
+ InterlaceSplit(src_image->width, src_image->height, (float*)src_image->data[i], dst_image1->width, (float*)dst_image1->data[i], (float*)dst_image2->data[i]);
+ break;
+ case IM_CFLOAT:
+ InterlaceSplit(src_image->width, src_image->height, (imcfloat*)src_image->data[i], dst_image1->width, (imcfloat*)dst_image1->data[i], (imcfloat*)dst_image2->data[i]);
+ break;
+ }
+ }
+}