From 5d735255ddd3cb2f547abd3d03969af3fb7eb04e Mon Sep 17 00:00:00 2001 From: scuri Date: Thu, 20 Aug 2009 12:35:06 +0000 Subject: *** empty log message *** --- src/fftw3/reodft/reodft11e-r2hc.c | 295 -------------------------------------- 1 file changed, 295 deletions(-) delete mode 100644 src/fftw3/reodft/reodft11e-r2hc.c (limited to 'src/fftw3/reodft/reodft11e-r2hc.c') diff --git a/src/fftw3/reodft/reodft11e-r2hc.c b/src/fftw3/reodft/reodft11e-r2hc.c deleted file mode 100644 index d4366e3..0000000 --- a/src/fftw3/reodft/reodft11e-r2hc.c +++ /dev/null @@ -1,295 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft11e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem via an R2HC problem, with some - pre/post-processing ala FFTPACK. Use a trick from: - - S. C. Chan and K. L. Ho, "Direct methods for computing discrete - sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). - - to re-express as an REDFT01 (DCT-III) problem. - - NOTE: We no longer use this algorithm, because it turns out to suffer - a catastrophic loss of accuracy for certain inputs, apparently because - its post-processing multiplies the output by a cosine. Near the zero - of the cosine, the REDFT01 must produce a near-singular output. -*/ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td, *td2; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W; - R *buf; - E cur; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - /* I wish that this didn't require an extra pass. */ - /* FIXME: use recursive/cascade summation for better stability? */ - buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; - for (i = n - 1; i > 0; --i) { - E curnew; - buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; - cur = curnew; - } - - W = ego->td->W; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb, wa, wb; - a = buf[i]; - b = buf[n - i]; - apb = a + b; - amb = a - b; - wa = W[2*i]; - wb = W[2*i + 1]; - buf[i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - if (i == n - i) { - buf[i] = K(2.0) * buf[i] * W[2*i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W = ego->td2->W; - O[0] = W[0] * buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b; - int k; - a = buf[i]; - b = buf[n - i]; - k = i + i; - O[os * (k - 1)] = W[k - 1] * (a - b); - O[os * k] = W[k] * (a + b); - } - if (i == n - i) { - O[os * (n - 1)] = W[n - 1] * buf[i]; - } - } - - X(ifree)(buf); -} - -/* like for rodft01, rodft11 is obtained from redft11 by - reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W; - R *buf; - E cur; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - /* I wish that this didn't require an extra pass. */ - /* FIXME: use recursive/cascade summation for better stability? */ - buf[n - 1] = cur = K(2.0) * I[0]; - for (i = n - 1; i > 0; --i) { - E curnew; - buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; - cur = curnew; - } - - W = ego->td->W; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb, wa, wb; - a = buf[i]; - b = buf[n - i]; - apb = a + b; - amb = a - b; - wa = W[2*i]; - wb = W[2*i + 1]; - buf[i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - if (i == n - i) { - buf[i] = K(2.0) * buf[i] * W[2*i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W = ego->td2->W; - O[0] = W[0] * buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b; - int k; - a = buf[i]; - b = buf[n - i]; - k = i + i; - O[os * (k - 1)] = W[k - 1] * (b - a); - O[os * k] = W[k] * (a + b); - } - if (i == n - i) { - O[os * (n - 1)] = -W[n - 1] * buf[i]; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr reodft010e_tw[] = { - { TW_COS, 0, 1 }, - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - static const tw_instr reodft11e_tw[] = { - { TW_COS, 1, 1 }, - { TW_NEXT, 2, 0 } - }; - - AWAKE(ego->cld, flg); - - X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); - X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-r2hc-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = pln->td2 = 0; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; - ops.add = (n - 1) * 1 + (n-1)/2 * 6; - ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft11e_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} -- cgit v1.2.3