From 5d735255ddd3cb2f547abd3d03969af3fb7eb04e Mon Sep 17 00:00:00 2001 From: scuri Date: Thu, 20 Aug 2009 12:35:06 +0000 Subject: *** empty log message *** --- src/fftw3/reodft/redft00e-r2hc-pad.c | 201 ------------- src/fftw3/reodft/redft00e-r2hc.c | 216 -------------- src/fftw3/reodft/reoconf.c | 42 --- src/fftw3/reodft/reodft.h | 41 --- src/fftw3/reodft/reodft010e-r2hc.c | 409 --------------------------- src/fftw3/reodft/reodft11e-r2hc-odd.c | 304 -------------------- src/fftw3/reodft/reodft11e-r2hc.c | 295 ------------------- src/fftw3/reodft/reodft11e-radix2.c | 515 ---------------------------------- src/fftw3/reodft/rodft00e-r2hc-pad.c | 200 ------------- src/fftw3/reodft/rodft00e-r2hc.c | 212 -------------- 10 files changed, 2435 deletions(-) delete mode 100644 src/fftw3/reodft/redft00e-r2hc-pad.c delete mode 100644 src/fftw3/reodft/redft00e-r2hc.c delete mode 100644 src/fftw3/reodft/reoconf.c delete mode 100644 src/fftw3/reodft/reodft.h delete mode 100644 src/fftw3/reodft/reodft010e-r2hc.c delete mode 100644 src/fftw3/reodft/reodft11e-r2hc-odd.c delete mode 100644 src/fftw3/reodft/reodft11e-r2hc.c delete mode 100644 src/fftw3/reodft/reodft11e-radix2.c delete mode 100644 src/fftw3/reodft/rodft00e-r2hc-pad.c delete mode 100644 src/fftw3/reodft/rodft00e-r2hc.c (limited to 'src/fftw3/reodft') diff --git a/src/fftw3/reodft/redft00e-r2hc-pad.c b/src/fftw3/reodft/redft00e-r2hc-pad.c deleted file mode 100644 index ec3fa35..0000000 --- a/src/fftw3/reodft/redft00e-r2hc-pad.c +++ /dev/null @@ -1,201 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: redft00e-r2hc-pad.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a REDFT00 problem via an R2HC problem, padded symmetrically to - twice the size. This is asymptotically a factor of ~2 worse than - redft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical - Recipes), but we abandoned the latter after we discovered that it - has intrinsic accuracy problems. */ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld, *cldcpy; - int is; - int n; - int vl; - int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = I[0]; - for (i = 1; i < n; ++i) { - R a = I[i * is]; - buf[i] = a; - buf[2*n - i] = a; - } - buf[i] = I[i * is]; /* i == n, Nyquist */ - - /* r2hc transform of size 2*n */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* copy n+1 real numbers (real parts of hc array) from buf to O */ - { - plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; - cldcpy->apply((plan *) cldcpy, buf, O); - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - AWAKE(ego->cld, flg); - AWAKE(ego->cldcpy, flg); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cldcpy); - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(redft00e-r2hc-pad-%d%v%(%p%)%(%p%))", - ego->n + 1, ego->vl, ego->cld, ego->cldcpy); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->kind[0] == REDFT00 - && p->sz->dims[0].n > 1 /* n == 1 is not well-defined */ - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld = (plan *) 0, *cldcpy; - R *buf = (R *) 0; - int n; - int vl, ivs, ovs; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - goto nada; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n - 1; - A(n > 0); - buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - - cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1), - X(mktensor_0d)(), - buf, buf, R2HC)); - if (!cld) - goto nada; - - X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); - cldcpy = - X(mkplan_d)(plnr, - X(mkproblem_rdft_1_d)(X(mktensor_0d)(), - X(mktensor_1d)(n+1,1, - p->sz->dims[0].os), - buf, TAINT(p->O, ovs), R2HC)); - if (!cldcpy) - goto nada; - - X(ifree)(buf); - - pln = MKPLAN_RDFT(P, &padt, apply); - - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->cld = cld; - pln->cldcpy = cldcpy; - pln->vl = vl; - pln->ivs = ivs; - pln->ovs = ovs; - - X(ops_zero)(&ops); - ops.other = n + 2*n; /* loads + stores (input -> buf) */ - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); - - return &(pln->super.super); - - nada: - X(ifree0)(buf); - if (cld) - X(plan_destroy_internal)(cld); - return (plan *)0; -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(redft00e_r2hc_pad_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/redft00e-r2hc.c b/src/fftw3/reodft/redft00e-r2hc.c deleted file mode 100644 index 0cd742f..0000000 --- a/src/fftw3/reodft/redft00e-r2hc.c +++ /dev/null @@ -1,216 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: redft00e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing. - - This code uses the trick from FFTPACK, also documented in a similar - form by Numerical Recipes. Unfortunately, this algorithm seems to - have intrinsic numerical problems (similar to those in - reodft11e-r2hc.c), possibly due to the fact that it multiplies its - input by a cosine, causing a loss of precision near the zero. For - transforms of 16k points, it has already lost three or four decimal - places of accuracy, which we deem unacceptable. - - So, we have abandoned this algorithm in favor of the one in - redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. - The only other alternative in the literature that does not have - similar numerical difficulties seems to be the direct adaptation of - the Cooley-Tukey decomposition for symmetric data, but this would - require a whole new set of codelets and it's not clear that it's - worth it at this point. */ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td; - int is, os; - int n; - int vl; - int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *buf; - E csum; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = I[0] + I[is * n]; - csum = I[0] - I[is * n]; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb; - a = I[is * i]; - b = I[is * (n - i)]; - csum += W[2*i] * (amb = K(2.0)*(a - b)); - amb = W[2*i+1] * amb; - apb = (a + b); - buf[i] = apb - amb; - buf[n - i] = apb + amb; - } - if (i == n - i) { - buf[i] = K(2.0) * I[is * i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* FIXME: use recursive/cascade summation for better stability? */ - O[0] = buf[0]; - O[os] = csum; - for (i = 1; i + i < n; ++i) { - int k = i + i; - O[os * k] = buf[i]; - O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i]; - } - if (i + i == n) { - O[os * n] = buf[i]; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr redft00e_tw[] = { - { TW_COS, 0, 1 }, - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - - AWAKE(ego->cld, flg); - X(twiddle_awake)(flg, &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(redft00e-r2hc-%d%v%(%p%))", ego->n + 1, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->kind[0] == REDFT00 - && p->sz->dims[0].n > 1 /* n == 1 is not well-defined */ - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n - 1; - A(n > 0); - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, apply); - - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = 0; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5; - ops.add = 2 + (n-1)/2 * 5; - ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1; - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(redft00e_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reoconf.c b/src/fftw3/reodft/reoconf.c deleted file mode 100644 index 1cd41b6..0000000 --- a/src/fftw3/reodft/reoconf.c +++ /dev/null @@ -1,42 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reoconf.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -#include "reodft.h" - -static const solvtab s = -{ - /* SOLVTAB(X(redft00e_r2hc_register)), - SOLVTAB(X(rodft00e_r2hc_register)), */ - SOLVTAB(X(redft00e_r2hc_pad_register)), - SOLVTAB(X(rodft00e_r2hc_pad_register)), - SOLVTAB(X(reodft010e_r2hc_register)), - /* SOLVTAB(X(reodft11e_r2hc_register)), */ - SOLVTAB(X(reodft11e_radix2_r2hc_register)), - SOLVTAB(X(reodft11e_r2hc_odd_register)), - - SOLVTAB_END -}; - -void X(reodft_conf_standard)(planner *p) -{ - X(solvtab_exec)(s, p); -} diff --git a/src/fftw3/reodft/reodft.h b/src/fftw3/reodft/reodft.h deleted file mode 100644 index 8c67144..0000000 --- a/src/fftw3/reodft/reodft.h +++ /dev/null @@ -1,41 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -#ifndef __REODFT_H__ -#define __REODFT_H__ - -#include "ifftw.h" -#include "rdft.h" - -#define REODFT_KINDP(k) ((k) >= REDFT00 && (k) <= RODFT11) - -void X(redft00e_r2hc_register)(planner *p); -void X(redft00e_r2hc_pad_register)(planner *p); -void X(rodft00e_r2hc_register)(planner *p); -void X(rodft00e_r2hc_pad_register)(planner *p); -void X(reodft010e_r2hc_register)(planner *p); -void X(reodft11e_r2hc_register)(planner *p); -void X(reodft11e_radix2_r2hc_register)(planner *p); -void X(reodft11e_r2hc_odd_register)(planner *p); - -/* configurations */ -void X(reodft_conf_standard)(planner *p); - -#endif /* __REODFT_H__ */ diff --git a/src/fftw3/reodft/reodft010e-r2hc.c b/src/fftw3/reodft/reodft010e-r2hc.c deleted file mode 100644 index ace14de..0000000 --- a/src/fftw3/reodft/reodft010e-r2hc.c +++ /dev/null @@ -1,409 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft010e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some - pre/post-processing ala FFTPACK. */ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -/* A real-even-01 DFT operates logically on a size-4N array: - I 0 -r(I*) -I 0 r(I*), - where r denotes reversal and * denotes deletion of the 0th element. - To compute the transform of this, we imagine performing a radix-4 - (real-input) DIF step, which turns the size-4N DFT into 4 size-N - (contiguous) DFTs, two of which are zero and two of which are - conjugates. The non-redundant size-N DFT has halfcomplex input, so - we can do it with a size-N hc2r transform. (In order to share - plans with the re10 (inverse) transform, however, we use the DHT - trick to re-express the hc2r problem as r2hc. This has little cost - since we are already pre- and post-processing the data in {i,n-i} - order.) Finally, we have to write out the data in the correct - order...the two size-N redundant (conjugate) hc2r DFTs correspond - to the even and odd outputs in O (i.e. the usual interleaved output - of DIF transforms); since this data has even symmetry, we only - write the first half of it. - - The real-even-10 DFT is just the reverse of these steps, i.e. a - radix-4 DIT transform. There, however, we just use the r2hc - transform naturally without resorting to the DHT trick. - - A real-odd-01 DFT is very similar, except that the input is - 0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed - into precisely the real-even-01 format above by sending I -> rI - and shifting the array by N. The former swap is just another - transformation on the input during preprocessing; the latter - multiplies the even/odd outputs by i/-i, which combines with - the factor of -i (to take the imaginary part) to simply flip - the sign of the odd outputs. Vice-versa for real-odd-10. - - The FFTPACK source code was very helpful in working this out. - (They do unnecessary passes over the array, though.) - - Note that Numerical Recipes suggests a different algorithm that - requires more operations and uses trig. functions for both the pre- - and post-processing passes. -*/ - -static void apply_re01(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = I[0]; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb, wa, wb; - a = I[is * i]; - b = I[is * (n - i)]; - apb = a + b; - amb = a - b; - wa = W[2*i]; - wb = W[2*i + 1]; - buf[i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - if (i == n - i) { - buf[i] = K(2.0) * I[is * i] * W[2*i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - O[0] = buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b; - int k; - a = buf[i]; - b = buf[n - i]; - k = i + i; - O[os * (k - 1)] = a - b; - O[os * k] = a + b; - } - if (i == n - i) { - O[os * (n - 1)] = buf[i]; - } - } - - X(ifree)(buf); -} - -/* ro01 is same as re01, but with i <-> n - 1 - i in the input and - the sign of the odd output elements flipped. */ -static void apply_ro01(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = I[is * (n - 1)]; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb, wa, wb; - a = I[is * (n - 1 - i)]; - b = I[is * (i - 1)]; - apb = a + b; - amb = a - b; - wa = W[2*i]; - wb = W[2*i+1]; - buf[i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - if (i == n - i) { - buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - O[0] = buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b; - int k; - a = buf[i]; - b = buf[n - i]; - k = i + i; - O[os * (k - 1)] = b - a; - O[os * k] = a + b; - } - if (i == n - i) { - O[os * (n - 1)] = -buf[i]; - } - } - - X(ifree)(buf); -} - -static void apply_re10(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = I[0]; - for (i = 1; i < n - i; ++i) { - E u, v; - int k = i + i; - u = I[is * (k - 1)]; - v = I[is * k]; - buf[n - i] = u; - buf[i] = v; - } - if (i == n - i) { - buf[i] = I[is * (n - 1)]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - O[0] = K(2.0) * buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b, wa, wb; - a = K(2.0) * buf[i]; - b = K(2.0) * buf[n - i]; - wa = W[2*i]; - wb = W[2*i + 1]; - O[os * i] = wa * a + wb * b; - O[os * (n - i)] = wb * a - wa * b; - } - if (i == n - i) { - O[os * i] = K(2.0) * buf[i] * W[2*i]; - } - } - - X(ifree)(buf); -} - -/* ro10 is same as re10, but with i <-> n - 1 - i in the output and - the sign of the odd input elements flipped. */ -static void apply_ro10(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = I[0]; - for (i = 1; i < n - i; ++i) { - E u, v; - int k = i + i; - u = -I[is * (k - 1)]; - v = I[is * k]; - buf[n - i] = u; - buf[i] = v; - } - if (i == n - i) { - buf[i] = -I[is * (n - 1)]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - O[os * (n - 1)] = K(2.0) * buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b, wa, wb; - a = K(2.0) * buf[i]; - b = K(2.0) * buf[n - i]; - wa = W[2*i]; - wb = W[2*i + 1]; - O[os * (n - 1 - i)] = wa * a + wb * b; - O[os * (i - 1)] = wb * a - wa * b; - } - if (i == n - i) { - O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr reodft010e_tw[] = { - { TW_COS, 0, 1 }, - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - - AWAKE(ego->cld, flg); - - X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-r2hc-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 - || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - switch (p->kind[0]) { - case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; - case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; - case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; - case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; - default: A(0); return (plan*)0; - } - - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = 0; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; - if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { - ops.add = (n-1)/2 * 6; - ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; - } - else { /* 10 transforms */ - ops.add = (n-1)/2 * 2; - ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; - } - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft010e_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reodft11e-r2hc-odd.c b/src/fftw3/reodft/reodft11e-r2hc-odd.c deleted file mode 100644 index 471f7ca..0000000 --- a/src/fftw3/reodft/reodft11e-r2hc-odd.c +++ /dev/null @@ -1,304 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft11e-r2hc-odd.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size, - with some permutations and post-processing, as described in: - - S. C. Chan and K. L. Ho, "Fast algorithms for computing the - discrete cosine transform," IEEE Trans. Circuits Systems II: - Analog & Digital Sig. Proc. 39 (3), 185--190 (1992). - - (For even sizes, see reodft11e-radix2.c.) - - This algorithm is related to the 8 x n prime-factor-algorithm (PFA) - decomposition of the size 8n "logical" DFT corresponding to the - R{EO}DFT11. - - Aside from very confusing notation (several symbols are redefined - from one line to the next), be aware that this paper has some - errors. In particular, the signs are wrong in Eqs. (34-35). Also, - Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly - for S (or, equivalently, the second cases should have 2*N - 2*k - 1 - instead of N - k - 1). Note also that in their definition of the - DFT, similarly to FFTW's, the exponent's sign is -1, but they - forgot to correspondingly multiply S (the sine terms) by -1. -*/ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769); - -#define SGN_SET(x, i) ((i) % 2 ? -(x) : (x)) - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - { - int m; - for (i = 0, m = n2; m < n; ++i, m += 4) - buf[i] = I[is * m]; - for (; m < 2 * n; ++i, m += 4) - buf[i] = -I[is * (2*n - m - 1)]; - for (; m < 3 * n; ++i, m += 4) - buf[i] = -I[is * (m - 2*n)]; - for (; m < 4 * n; ++i, m += 4) - buf[i] = I[is * (4*n - m - 1)]; - m -= 4 * n; - for (; i < n; ++i, m += 4) - buf[i] = I[is * m]; - } - - { /* child plan: R2HC of size n */ - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ - for (i = 0; i + i + 1 < n2; ++i) { - int k = i + i + 1; - E c1, s1; - E c2, s2; - c1 = buf[k]; - c2 = buf[k + 1]; - s2 = buf[n - (k + 1)]; - s1 = buf[n - k]; - - O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) + - SGN_SET(s1, i/2)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) - - SGN_SET(s1, (n-(i+1))/2)); - - O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) - - SGN_SET(s2, (n2-(i+1))/2)); - O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) + - SGN_SET(s2, (n2+(i+1))/2)); - } - if (i + i + 1 == n2) { - E c, s; - c = buf[n2]; - s = buf[n - n2]; - O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) + - SGN_SET(s, i/2)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) + - SGN_SET(s, (i+1)/2)); - } - O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2); - } - - X(ifree)(buf); -} - -/* like for rodft01, rodft11 is obtained from redft11 by - reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - { - int m; - for (i = 0, m = n2; m < n; ++i, m += 4) - buf[i] = I[is * (n - 1 - m)]; - for (; m < 2 * n; ++i, m += 4) - buf[i] = -I[is * (m - n)]; - for (; m < 3 * n; ++i, m += 4) - buf[i] = -I[is * (3*n - 1 - m)]; - for (; m < 4 * n; ++i, m += 4) - buf[i] = I[is * (m - 3*n)]; - m -= 4 * n; - for (; i < n; ++i, m += 4) - buf[i] = I[is * (n - 1 - m)]; - } - - { /* child plan: R2HC of size n */ - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */ - for (i = 0; i + i + 1 < n2; ++i) { - int k = i + i + 1; - int j; - E c1, s1; - E c2, s2; - c1 = buf[k]; - c2 = buf[k + 1]; - s2 = buf[n - (k + 1)]; - s1 = buf[n - k]; - - O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) + - SGN_SET(s1, i/2 + i)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) - - SGN_SET(s1, (n-(i+1))/2 + i)); - - j = n2 - (i+1); - O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) - - SGN_SET(s2, (n2-(i+1))/2 + j)); - O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) + - SGN_SET(s2, (n2+(i+1))/2 + j)); - } - if (i + i + 1 == n2) { - E c, s; - c = buf[n2]; - s = buf[n - n2]; - O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) + - SGN_SET(s, i/2 + i)); - O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) + - SGN_SET(s, (i+1)/2 + i)); - } - O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2); - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - AWAKE(ego->cld, flg); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-r2hc-odd-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->sz->dims[0].n % 2 == 1 - && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.add = n - 1; - ops.mul = n; - ops.other = 4*n; - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft11e_r2hc_odd_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reodft11e-r2hc.c b/src/fftw3/reodft/reodft11e-r2hc.c deleted file mode 100644 index d4366e3..0000000 --- a/src/fftw3/reodft/reodft11e-r2hc.c +++ /dev/null @@ -1,295 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft11e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem via an R2HC problem, with some - pre/post-processing ala FFTPACK. Use a trick from: - - S. C. Chan and K. L. Ho, "Direct methods for computing discrete - sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). - - to re-express as an REDFT01 (DCT-III) problem. - - NOTE: We no longer use this algorithm, because it turns out to suffer - a catastrophic loss of accuracy for certain inputs, apparently because - its post-processing multiplies the output by a cosine. Near the zero - of the cosine, the REDFT01 must produce a near-singular output. -*/ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td, *td2; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W; - R *buf; - E cur; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - /* I wish that this didn't require an extra pass. */ - /* FIXME: use recursive/cascade summation for better stability? */ - buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; - for (i = n - 1; i > 0; --i) { - E curnew; - buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; - cur = curnew; - } - - W = ego->td->W; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb, wa, wb; - a = buf[i]; - b = buf[n - i]; - apb = a + b; - amb = a - b; - wa = W[2*i]; - wb = W[2*i + 1]; - buf[i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - if (i == n - i) { - buf[i] = K(2.0) * buf[i] * W[2*i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W = ego->td2->W; - O[0] = W[0] * buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b; - int k; - a = buf[i]; - b = buf[n - i]; - k = i + i; - O[os * (k - 1)] = W[k - 1] * (a - b); - O[os * k] = W[k] * (a + b); - } - if (i == n - i) { - O[os * (n - 1)] = W[n - 1] * buf[i]; - } - } - - X(ifree)(buf); -} - -/* like for rodft01, rodft11 is obtained from redft11 by - reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W; - R *buf; - E cur; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - /* I wish that this didn't require an extra pass. */ - /* FIXME: use recursive/cascade summation for better stability? */ - buf[n - 1] = cur = K(2.0) * I[0]; - for (i = n - 1; i > 0; --i) { - E curnew; - buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; - cur = curnew; - } - - W = ego->td->W; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb, wa, wb; - a = buf[i]; - b = buf[n - i]; - apb = a + b; - amb = a - b; - wa = W[2*i]; - wb = W[2*i + 1]; - buf[i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - if (i == n - i) { - buf[i] = K(2.0) * buf[i] * W[2*i]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W = ego->td2->W; - O[0] = W[0] * buf[0]; - for (i = 1; i < n - i; ++i) { - E a, b; - int k; - a = buf[i]; - b = buf[n - i]; - k = i + i; - O[os * (k - 1)] = W[k - 1] * (b - a); - O[os * k] = W[k] * (a + b); - } - if (i == n - i) { - O[os * (n - 1)] = -W[n - 1] * buf[i]; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr reodft010e_tw[] = { - { TW_COS, 0, 1 }, - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - static const tw_instr reodft11e_tw[] = { - { TW_COS, 1, 1 }, - { TW_NEXT, 2, 0 } - }; - - AWAKE(ego->cld, flg); - - X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); - X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-r2hc-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = pln->td2 = 0; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; - ops.add = (n - 1) * 1 + (n-1)/2 * 6; - ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft11e_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/reodft11e-radix2.c b/src/fftw3/reodft/reodft11e-radix2.c deleted file mode 100644 index 674f7b4..0000000 --- a/src/fftw3/reodft/reodft11e-radix2.c +++ /dev/null @@ -1,515 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: reodft11e-radix2.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems - of half the size, plus some pre/post-processing. Use a trick from: - - Zhongde Wang, "On computing the discrete Fourier and cosine transforms," - IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985). - - to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our - implementation looks quite a bit different from the algorithm described - in the paper because we combined the paper's pre/post-processing with - the pre/post-processing used to turn REDFT01 into R2HC. (Also, the - paper uses a DCT/DST pair, but we turn the DST into a DCT via the - usual reordering/sign-flip trick. We additionally combined a couple - of the matrices/transformations of the paper into a single pass.) - - NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho - that turned out to have numerical problems; see reodft11e-r2hc.c. - - (For odd sizes, see reodft11e-r2hc-odd.c.) -*/ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td, *td2; - int is, os; - int n; - int vl; - int ivs, ovs; - rdft_kind kind; -} P; - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *W2; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = K(2.0) * I[0]; - buf[n2] = K(2.0) * I[is * (n - 1)]; - for (i = 1; i + i < n2; ++i) { - int k = i + i; - E a, b, a2, b2; - { - E u, v; - u = I[is * (k - 1)]; - v = I[is * k]; - a = u + v; - b2 = u - v; - } - { - E u, v; - u = I[is * (n - k - 1)]; - v = I[is * (n - k)]; - b = u + v; - a2 = u - v; - } - { - E wa, wb; - wa = W[2*i]; - wb = W[2*i + 1]; - { - E apb, amb; - apb = a + b; - amb = a - b; - buf[i] = wa * amb + wb * apb; - buf[n2 - i] = wa * apb - wb * amb; - } - { - E apb, amb; - apb = a2 + b2; - amb = a2 - b2; - buf[n2 + i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - } - } - if (i + i == n2) { - E u, v; - u = I[is * (n2 - 1)]; - v = I[is * n2]; - buf[i] = K(2.0) * (u + v) * W[2*i]; - buf[n - i] = K(2.0) * (u - v) * W[2*i]; - } - - - /* child plan: two r2hc's of size n/2 */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W2 = ego->td2->W; - { /* i == 0 case */ - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[0]; - b = buf[n2]; - O[0] = wa * a + wb * b; - O[os * (n - 1)] = wb * a - wa * b; - } - W2 += 2; - for (i = 1; i + i < n2; ++i, W2 += 2) { - int k; - E u, v, u2, v2; - u = buf[i]; - v = buf[n2 - i]; - u2 = buf[n2 + i]; - v2 = buf[n - i]; - k = (i + i) - 1; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = u - v; - b = v2 - u2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wb * a - wa * b; - } - ++k; - W2 += 2; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = u + v; - b = u2 + v2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wb * a - wa * b; - } - } - if (i + i == n2) { - int k = (i + i) - 1; - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[i]; - b = buf[n2 + i]; - O[os * k] = wa * a - wb * b; - O[os * (n - 1 - k)] = wb * a + wa * b; - } - } - - X(ifree)(buf); -} - -#if 0 - -/* This version of apply_re11 uses REDFT01 child plans, more similar - to the original paper by Z. Wang. We keep it around for reference - (it is simpler) and because it may become more efficient if we - ever implement REDFT01 codelets. */ - -static void apply_re11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = K(2.0) * I[0]; - buf[n/2] = K(2.0) * I[is * (n - 1)]; - for (i = 1; i + i < n; ++i) { - int k = i + i; - E a, b; - a = I[is * (k - 1)]; - b = I[is * k]; - buf[i] = a + b; - buf[n - i] = a - b; - } - - /* child plan: two redft01's (DCT-III) */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W = ego->td2->W; - for (i = 0; i + 1 < n/2; ++i, W += 2) { - { - E wa, wb; - E a, b; - wa = W[0]; /* cos */ - wb = W[1]; /* sin */ - a = buf[i]; - b = buf[n/2 + i]; - O[os * i] = wa * a + wb * b; - O[os * (n - 1 - i)] = wb * a - wa * b; - } - ++i; - W += 2; - { - E wa, wb; - E a, b; - wa = W[0]; /* cos */ - wb = W[1]; /* sin */ - a = buf[i]; - b = buf[n/2 + i]; - O[os * i] = wa * a - wb * b; - O[os * (n - 1 - i)] = wb * a + wa * b; - } - } - if (i < n/2) { - E wa, wb; - E a, b; - wa = W[0]; /* cos */ - wb = W[1]; /* sin */ - a = buf[i]; - b = buf[n/2 + i]; - O[os * i] = wa * a + wb * b; - O[os * (n - 1 - i)] = wb * a - wa * b; - } - } - - X(ifree)(buf); -} - -#endif /* 0 */ - -/* like for rodft01, rodft11 is obtained from redft11 by - reversing the input and flipping the sign of every other output. */ -static void apply_ro11(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n, n2 = n/2; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *W2; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = K(2.0) * I[is * (n - 1)]; - buf[n2] = K(2.0) * I[0]; - for (i = 1; i + i < n2; ++i) { - int k = i + i; - E a, b, a2, b2; - { - E u, v; - u = I[is * (n - k)]; - v = I[is * (n - 1 - k)]; - a = u + v; - b2 = u - v; - } - { - E u, v; - u = I[is * (k)]; - v = I[is * (k - 1)]; - b = u + v; - a2 = u - v; - } - { - E wa, wb; - wa = W[2*i]; - wb = W[2*i + 1]; - { - E apb, amb; - apb = a + b; - amb = a - b; - buf[i] = wa * amb + wb * apb; - buf[n2 - i] = wa * apb - wb * amb; - } - { - E apb, amb; - apb = a2 + b2; - amb = a2 - b2; - buf[n2 + i] = wa * amb + wb * apb; - buf[n - i] = wa * apb - wb * amb; - } - } - } - if (i + i == n2) { - E u, v; - u = I[is * n2]; - v = I[is * (n2 - 1)]; - buf[i] = K(2.0) * (u + v) * W[2*i]; - buf[n - i] = K(2.0) * (u - v) * W[2*i]; - } - - - /* child plan: two r2hc's of size n/2 */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - W2 = ego->td2->W; - { /* i == 0 case */ - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[0]; - b = buf[n2]; - O[0] = wa * a + wb * b; - O[os * (n - 1)] = wa * b - wb * a; - } - W2 += 2; - for (i = 1; i + i < n2; ++i, W2 += 2) { - int k; - E u, v, u2, v2; - u = buf[i]; - v = buf[n2 - i]; - u2 = buf[n2 + i]; - v2 = buf[n - i]; - k = (i + i) - 1; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = v - u; - b = u2 - v2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wa * b - wb * a; - } - ++k; - W2 += 2; - { - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = u + v; - b = u2 + v2; - O[os * k] = wa * a + wb * b; - O[os * (n - 1 - k)] = wa * b - wb * a; - } - } - if (i + i == n2) { - int k = (i + i) - 1; - E wa, wb; - E a, b; - wa = W2[0]; /* cos */ - wb = W2[1]; /* sin */ - a = buf[i]; - b = buf[n2 + i]; - O[os * k] = wb * b - wa * a; - O[os * (n - 1 - k)] = wa * b + wb * a; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr reodft010e_tw[] = { - { TW_COS, 0, 1 }, - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - static const tw_instr reodft11e_tw[] = { - { TW_COS, 1, 1 }, - { TW_SIN, 1, 1 }, - { TW_NEXT, 2, 0 } - }; - - AWAKE(ego->cld, flg); - - X(twiddle_awake)(flg, &ego->td, reodft010e_tw, 2*ego->n, 1, ego->n/4+1); - X(twiddle_awake)(flg, &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(%se-radix2-r2hc-%d%v%(%p%))", - X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->sz->dims[0].n % 2 == 0 - && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1), - X(mktensor_1d)(2, n/2, n/2), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = pln->td2 = 0; - pln->kind = p->kind[0]; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.add = 2 + (n/2 - 1)/2 * 20; - ops.mul = 6 + (n/2 - 1)/2 * 16; - ops.other = 4*n + 2 + (n/2 - 1)/2 * 6; - if ((n/2) % 2 == 0) { - ops.add += 4; - ops.mul += 8; - ops.other += 4; - } - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(reodft11e_radix2_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/rodft00e-r2hc-pad.c b/src/fftw3/reodft/rodft00e-r2hc-pad.c deleted file mode 100644 index 0b48585..0000000 --- a/src/fftw3/reodft/rodft00e-r2hc-pad.c +++ /dev/null @@ -1,200 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: rodft00e-r2hc-pad.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a RODFT00 problem via an R2HC problem, padded antisymmetrically to - twice the size. This is asymptotically a factor of ~2 worse than - rodft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical - Recipes), but we abandoned the latter after we discovered that it - has intrinsic accuracy problems. */ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld, *cldcpy; - int is; - int n; - int vl; - int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = 0.0; - for (i = 1; i < n; ++i) { - R a = I[(i-1) * is]; - buf[i] = -a; - buf[2*n - i] = a; - } - buf[i] = 0.0; /* i == n, Nyquist */ - - /* r2hc transform of size 2*n */ - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* copy n-1 real numbers (imag. parts of hc array) from buf to O */ - { - plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; - cldcpy->apply((plan *) cldcpy, buf+2*n-1, O); - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - AWAKE(ego->cld, flg); - AWAKE(ego->cldcpy, flg); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cldcpy); - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(rodft00e-r2hc-pad-%d%v%(%p%)%(%p%))", - ego->n - 1, ego->vl, ego->cld, ego->cldcpy); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->kind[0] == RODFT00 - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld = (plan *) 0, *cldcpy; - R *buf = (R *) 0; - int n; - int vl, ivs, ovs; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - goto nada; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n + 1; - A(n > 0); - buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); - - cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1), - X(mktensor_0d)(), - buf, buf, R2HC)); - if (!cld) - goto nada; - - X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); - cldcpy = - X(mkplan_d)(plnr, - X(mkproblem_rdft_1_d)(X(mktensor_0d)(), - X(mktensor_1d)(n-1,-1, - p->sz->dims[0].os), - buf+2*n-1,TAINT(p->O, ovs), R2HC)); - if (!cldcpy) - goto nada; - - X(ifree)(buf); - - pln = MKPLAN_RDFT(P, &padt, apply); - - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->cld = cld; - pln->cldcpy = cldcpy; - pln->vl = vl; - pln->ivs = ivs; - pln->ovs = ovs; - - X(ops_zero)(&ops); - ops.other = n-1 + 2*n; /* loads + stores (input -> buf) */ - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); - - return &(pln->super.super); - - nada: - X(ifree0)(buf); - if (cld) - X(plan_destroy_internal)(cld); - return (plan *)0; -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(rodft00e_r2hc_pad_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} diff --git a/src/fftw3/reodft/rodft00e-r2hc.c b/src/fftw3/reodft/rodft00e-r2hc.c deleted file mode 100644 index 46bb299..0000000 --- a/src/fftw3/reodft/rodft00e-r2hc.c +++ /dev/null @@ -1,212 +0,0 @@ -/* - * Copyright (c) 2003 Matteo Frigo - * Copyright (c) 2003 Massachusetts Institute of Technology - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - */ - -/* $Id: rodft00e-r2hc.c,v 1.1 2008/10/17 06:13:18 scuri Exp $ */ - -/* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing. - - This code uses the trick from FFTPACK, also documented in a similar - form by Numerical Recipes. Unfortunately, this algorithm seems to - have intrinsic numerical problems (similar to those in - reodft11e-r2hc.c), possibly due to the fact that it multiplies its - input by a sine, causing a loss of precision near the zero. For - transforms of 16k points, it has already lost three or four decimal - places of accuracy, which we deem unacceptable. - - So, we have abandoned this algorithm in favor of the one in - rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. - The only other alternative in the literature that does not have - similar numerical difficulties seems to be the direct adaptation of - the Cooley-Tukey decomposition for antisymmetric data, but this - would require a whole new set of codelets and it's not clear that - it's worth it at this point. */ - -#include "reodft.h" - -typedef struct { - solver super; -} S; - -typedef struct { - plan_rdft super; - plan *cld; - twid *td; - int is, os; - int n; - int vl; - int ivs, ovs; -} P; - -static void apply(const plan *ego_, R *I, R *O) -{ - const P *ego = (const P *) ego_; - int is = ego->is, os = ego->os; - int i, n = ego->n; - int iv, vl = ego->vl; - int ivs = ego->ivs, ovs = ego->ovs; - R *W = ego->td->W; - R *buf; - - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { - buf[0] = 0; - for (i = 1; i < n - i; ++i) { - E a, b, apb, amb; - a = I[is * (i - 1)]; - b = I[is * ((n - i) - 1)]; - apb = K(2.0) * W[i] * (a + b); - amb = (a - b); - buf[i] = apb + amb; - buf[n - i] = apb - amb; - } - if (i == n - i) { - buf[i] = K(4.0) * I[is * (i - 1)]; - } - - { - plan_rdft *cld = (plan_rdft *) ego->cld; - cld->apply((plan *) cld, buf, buf); - } - - /* FIXME: use recursive/cascade summation for better stability? */ - O[0] = buf[0] * 0.5; - for (i = 1; i + i < n - 1; ++i) { - int k = i + i; - O[os * (k - 1)] = -buf[n - i]; - O[os * k] = O[os * (k - 2)] + buf[i]; - } - if (i + i == n - 1) { - O[os * (n - 2)] = -buf[n - i]; - } - } - - X(ifree)(buf); -} - -static void awake(plan *ego_, int flg) -{ - P *ego = (P *) ego_; - static const tw_instr rodft00e_tw[] = { - { TW_SIN, 0, 1 }, - { TW_NEXT, 1, 0 } - }; - - AWAKE(ego->cld, flg); - - X(twiddle_awake)(flg, &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2); -} - -static void destroy(plan *ego_) -{ - P *ego = (P *) ego_; - X(plan_destroy_internal)(ego->cld); -} - -static void print(const plan *ego_, printer *p) -{ - const P *ego = (const P *) ego_; - p->print(p, "(rodft00e-r2hc-%d%v%(%p%))", ego->n - 1, ego->vl, ego->cld); -} - -static int applicable0(const solver *ego_, const problem *p_) -{ - UNUSED(ego_); - if (RDFTP(p_)) { - const problem_rdft *p = (const problem_rdft *) p_; - return (1 - && p->sz->rnk == 1 - && p->vecsz->rnk <= 1 - && p->kind[0] == RODFT00 - ); - } - - return 0; -} - -static int applicable(const solver *ego, const problem *p, const planner *plnr) -{ - return (!NO_UGLYP(plnr) && applicable0(ego, p)); -} - -static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) -{ - P *pln; - const problem_rdft *p; - plan *cld; - R *buf; - int n; - opcnt ops; - - static const plan_adt padt = { - X(rdft_solve), awake, print, destroy - }; - - if (!applicable(ego_, p_, plnr)) - return (plan *)0; - - p = (const problem_rdft *) p_; - - n = p->sz->dims[0].n + 1; - buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); - - cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), - X(mktensor_0d)(), - buf, buf, R2HC)); - X(ifree)(buf); - if (!cld) - return (plan *)0; - - pln = MKPLAN_RDFT(P, &padt, apply); - - pln->n = n; - pln->is = p->sz->dims[0].is; - pln->os = p->sz->dims[0].os; - pln->cld = cld; - pln->td = 0; - - X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); - - X(ops_zero)(&ops); - ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5; - ops.add = (n-1)/2 * 4 + (n-2)/2 * 1; - ops.mul = 1 + (n-1)/2 * 2; - if (n % 2 == 0) - ops.mul += 1; - - X(ops_zero)(&pln->super.super.ops); - X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); - X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); - - return &(pln->super.super); -} - -/* constructor */ -static solver *mksolver(void) -{ - static const solver_adt sadt = { mkplan }; - S *slv = MKSOLVER(S, &sadt); - return &(slv->super); -} - -void X(rodft00e_r2hc_register)(planner *p) -{ - REGISTER_SOLVER(p, mksolver()); -} -- cgit v1.2.3