From 5a422aba704c375a307a902bafe658342e209906 Mon Sep 17 00:00:00 2001 From: scuri Date: Fri, 17 Oct 2008 06:10:15 +0000 Subject: First commit - moving from LuaForge to SourceForge --- src/libjpeg/jfdctflt.c | 168 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 168 insertions(+) create mode 100644 src/libjpeg/jfdctflt.c (limited to 'src/libjpeg/jfdctflt.c') diff --git a/src/libjpeg/jfdctflt.c b/src/libjpeg/jfdctflt.c new file mode 100644 index 0000000..79d7a00 --- /dev/null +++ b/src/libjpeg/jfdctflt.c @@ -0,0 +1,168 @@ +/* + * jfdctflt.c + * + * Copyright (C) 1994-1996, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a floating-point implementation of the + * forward DCT (Discrete Cosine Transform). + * + * This implementation should be more accurate than either of the integer + * DCT implementations. However, it may not give the same results on all + * machines because of differences in roundoff behavior. Speed will depend + * on the hardware's floating point capacity. + * + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT + * on each column. Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * This implementation is based on Arai, Agui, and Nakajima's algorithm for + * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in + * Japanese, but the algorithm is described in the Pennebaker & Mitchell + * JPEG textbook (see REFERENCES section in file README). The following code + * is based directly on figure 4-8 in P&M. + * While an 8-point DCT cannot be done in less than 11 multiplies, it is + * possible to arrange the computation so that many of the multiplies are + * simple scalings of the final outputs. These multiplies can then be + * folded into the multiplications or divisions by the JPEG quantization + * table entries. The AA&N method leaves only 5 multiplies and 29 adds + * to be done in the DCT itself. + * The primary disadvantage of this method is that with a fixed-point + * implementation, accuracy is lost due to imprecise representation of the + * scaled quantization values. However, that problem does not arise if + * we use floating point arithmetic. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" +#include "jdct.h" /* Private declarations for DCT subsystem */ + +#ifdef DCT_FLOAT_SUPPORTED + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * Perform the forward DCT on one block of samples. + */ + +GLOBAL(void) +jpeg_fdct_float (FAST_FLOAT * data) +{ + FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + FAST_FLOAT tmp10, tmp11, tmp12, tmp13; + FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; + FAST_FLOAT *dataptr; + int ctr; + + /* Pass 1: process rows. */ + + dataptr = data; + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { + tmp0 = dataptr[0] + dataptr[7]; + tmp7 = dataptr[0] - dataptr[7]; + tmp1 = dataptr[1] + dataptr[6]; + tmp6 = dataptr[1] - dataptr[6]; + tmp2 = dataptr[2] + dataptr[5]; + tmp5 = dataptr[2] - dataptr[5]; + tmp3 = dataptr[3] + dataptr[4]; + tmp4 = dataptr[3] - dataptr[4]; + + /* Even part */ + + tmp10 = tmp0 + tmp3; /* phase 2 */ + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + dataptr[0] = tmp10 + tmp11; /* phase 3 */ + dataptr[4] = tmp10 - tmp11; + + z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ + dataptr[2] = tmp13 + z1; /* phase 5 */ + dataptr[6] = tmp13 - z1; + + /* Odd part */ + + tmp10 = tmp4 + tmp5; /* phase 2 */ + tmp11 = tmp5 + tmp6; + tmp12 = tmp6 + tmp7; + + /* The rotator is modified from fig 4-8 to avoid extra negations. */ + z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ + z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ + z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ + z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ + + z11 = tmp7 + z3; /* phase 5 */ + z13 = tmp7 - z3; + + dataptr[5] = z13 + z2; /* phase 6 */ + dataptr[3] = z13 - z2; + dataptr[1] = z11 + z4; + dataptr[7] = z11 - z4; + + dataptr += DCTSIZE; /* advance pointer to next row */ + } + + /* Pass 2: process columns. */ + + dataptr = data; + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { + tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; + tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; + tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; + tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; + tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; + tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; + tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; + tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; + + /* Even part */ + + tmp10 = tmp0 + tmp3; /* phase 2 */ + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ + dataptr[DCTSIZE*4] = tmp10 - tmp11; + + z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ + dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ + dataptr[DCTSIZE*6] = tmp13 - z1; + + /* Odd part */ + + tmp10 = tmp4 + tmp5; /* phase 2 */ + tmp11 = tmp5 + tmp6; + tmp12 = tmp6 + tmp7; + + /* The rotator is modified from fig 4-8 to avoid extra negations. */ + z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ + z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ + z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ + z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ + + z11 = tmp7 + z3; /* phase 5 */ + z13 = tmp7 - z3; + + dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ + dataptr[DCTSIZE*3] = z13 - z2; + dataptr[DCTSIZE*1] = z11 + z4; + dataptr[DCTSIZE*7] = z11 - z4; + + dataptr++; /* advance pointer to next column */ + } +} + +#endif /* DCT_FLOAT_SUPPORTED */ -- cgit v1.2.3