/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:39:14 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twidsq -compact -variables 4 -reload-twiddle -dif -n 8 -name q1_8 -include q.h */ /* * This function contains 528 FP additions, 256 FP multiplications, * (or, 416 additions, 144 multiplications, 112 fused multiply/add), * 142 stack variables, and 256 memory accesses */ /* * Generator Id's : * $Id: q1_8.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ * $Id: q1_8.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ * $Id: q1_8.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ #include "q.h" static const R *q1_8(R *rio, R *iio, const R *W, stride is, stride vs, int m, int dist) { DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m; i > 0; i = i - 1, rio = rio + dist, iio = iio + dist, W = W + 14) { E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j; E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G; E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U; E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m; E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59; E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z; E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z; E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N; E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e; { E T3, Ty, Tj, TY, T6, Tg, TB, TZ; { E T1, T2, Th, Ti; T1 = rio[0]; T2 = rio[WS(is, 4)]; T3 = T1 + T2; Ty = T1 - T2; Th = iio[0]; Ti = iio[WS(is, 4)]; Tj = Th - Ti; TY = Th + Ti; } { E T4, T5, Tz, TA; T4 = rio[WS(is, 2)]; T5 = rio[WS(is, 6)]; T6 = T4 + T5; Tg = T4 - T5; Tz = iio[WS(is, 2)]; TA = iio[WS(is, 6)]; TB = Tz - TA; TZ = Tz + TA; } T7 = T3 + T6; T14 = T3 - T6; T1g = TY + TZ; Tk = Tg + Tj; TC = Ty - TB; TQ = Tj - Tg; T10 = TY - TZ; TM = Ty + TB; } { E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o; { E T1q, T1r, T1J, T1K; T1q = rio[WS(vs, 1) + WS(is, 1)]; T1r = rio[WS(vs, 1) + WS(is, 5)]; T1s = T1q + T1r; T1I = T1q - T1r; T1J = iio[WS(vs, 1) + WS(is, 1)]; T1K = iio[WS(vs, 1) + WS(is, 5)]; T1L = T1J - T1K; T2n = T1J + T1K; } { E T1t, T1u, T1E, T1F; T1t = rio[WS(vs, 1) + WS(is, 7)]; T1u = rio[WS(vs, 1) + WS(is, 3)]; T1v = T1t + T1u; T1D = T1t - T1u; T1E = iio[WS(vs, 1) + WS(is, 7)]; T1F = iio[WS(vs, 1) + WS(is, 3)]; T1G = T1E - T1F; T2o = T1E + T1F; } T1w = T1s + T1v; T2p = T2n - T2o; T2z = T2n + T2o; T1H = T1D - T1G; T1M = T1I + T1L; T1W = T1D + T1G; T2j = T1v - T1s; T1V = T1L - T1I; } { E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J; { E T7L, T7M, T81, T82; T7L = rio[WS(vs, 6)]; T7M = rio[WS(vs, 6) + WS(is, 4)]; T7N = T7L + T7M; T8i = T7L - T7M; T81 = iio[WS(vs, 6)]; T82 = iio[WS(vs, 6) + WS(is, 4)]; T83 = T81 - T82; T8I = T81 + T82; } { E T7O, T7P, T8j, T8k; T7O = rio[WS(vs, 6) + WS(is, 2)]; T7P = rio[WS(vs, 6) + WS(is, 6)]; T7Q = T7O + T7P; T80 = T7O - T7P; T8j = iio[WS(vs, 6) + WS(is, 2)]; T8k = iio[WS(vs, 6) + WS(is, 6)]; T8l = T8j - T8k; T8J = T8j + T8k; } T7R = T7N + T7Q; T8O = T7N - T7Q; T90 = T8I + T8J; T84 = T80 + T83; T8m = T8i - T8l; T8A = T83 - T80; T8K = T8I - T8J; T8w = T8i + T8l; } { E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8; { E T9a, T9b, T9t, T9u; T9a = rio[WS(vs, 7) + WS(is, 1)]; T9b = rio[WS(vs, 7) + WS(is, 5)]; T9c = T9a + T9b; T9s = T9a - T9b; T9t = iio[WS(vs, 7) + WS(is, 1)]; T9u = iio[WS(vs, 7) + WS(is, 5)]; T9v = T9t - T9u; Ta7 = T9t + T9u; } { E T9d, T9e, T9o, T9p; T9d = rio[WS(vs, 7) + WS(is, 7)]; T9e = rio[WS(vs, 7) + WS(is, 3)]; T9f = T9d + T9e; T9n = T9d - T9e; T9o = iio[WS(vs, 7) + WS(is, 7)]; T9p = iio[WS(vs, 7) + WS(is, 3)]; T9q = T9o - T9p; Ta8 = T9o + T9p; } T9g = T9c + T9f; Ta9 = Ta7 - Ta8; Taj = Ta7 + Ta8; T9r = T9n - T9q; T9w = T9s + T9v; T9G = T9n + T9q; Ta3 = T9f - T9c; T9F = T9v - T9s; } { E Ta, Tq, Tt, T15, Td, Tl, To, T16; { E T8, T9, Tr, Ts; T8 = rio[WS(is, 1)]; T9 = rio[WS(is, 5)]; Ta = T8 + T9; Tq = T8 - T9; Tr = iio[WS(is, 1)]; Ts = iio[WS(is, 5)]; Tt = Tr - Ts; T15 = Tr + Ts; } { E Tb, Tc, Tm, Tn; Tb = rio[WS(is, 7)]; Tc = rio[WS(is, 3)]; Td = Tb + Tc; Tl = Tb - Tc; Tm = iio[WS(is, 7)]; Tn = iio[WS(is, 3)]; To = Tm - Tn; T16 = Tm + Tn; } Te = Ta + Td; T17 = T15 - T16; T1h = T15 + T16; Tp = Tl - To; Tu = Tq + Tt; TE = Tl + To; T11 = Td - Ta; TD = Tt - Tq; } { E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h; { E T1j, T1k, T1z, T1A; T1j = rio[WS(vs, 1)]; T1k = rio[WS(vs, 1) + WS(is, 4)]; T1l = T1j + T1k; T1Q = T1j - T1k; T1z = iio[WS(vs, 1)]; T1A = iio[WS(vs, 1) + WS(is, 4)]; T1B = T1z - T1A; T2g = T1z + T1A; } { E T1m, T1n, T1R, T1S; T1m = rio[WS(vs, 1) + WS(is, 2)]; T1n = rio[WS(vs, 1) + WS(is, 6)]; T1o = T1m + T1n; T1y = T1m - T1n; T1R = iio[WS(vs, 1) + WS(is, 2)]; T1S = iio[WS(vs, 1) + WS(is, 6)]; T1T = T1R - T1S; T2h = T1R + T1S; } T1p = T1l + T1o; T2m = T1l - T1o; T2y = T2g + T2h; T1C = T1y + T1B; T1U = T1Q - T1T; T28 = T1B - T1y; T2i = T2g - T2h; T24 = T1Q + T1T; } { E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q; { E T7S, T7T, T8b, T8c; T7S = rio[WS(vs, 6) + WS(is, 1)]; T7T = rio[WS(vs, 6) + WS(is, 5)]; T7U = T7S + T7T; T8a = T7S - T7T; T8b = iio[WS(vs, 6) + WS(is, 1)]; T8c = iio[WS(vs, 6) + WS(is, 5)]; T8d = T8b - T8c; T8P = T8b + T8c; } { E T7V, T7W, T86, T87; T7V = rio[WS(vs, 6) + WS(is, 7)]; T7W = rio[WS(vs, 6) + WS(is, 3)]; T7X = T7V + T7W; T85 = T7V - T7W; T86 = iio[WS(vs, 6) + WS(is, 7)]; T87 = iio[WS(vs, 6) + WS(is, 3)]; T88 = T86 - T87; T8Q = T86 + T87; } T7Y = T7U + T7X; T8R = T8P - T8Q; T91 = T8P + T8Q; T89 = T85 - T88; T8e = T8a + T8d; T8o = T85 + T88; T8L = T7X - T7U; T8n = T8d - T8a; } { E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1; { E T93, T94, T9j, T9k; T93 = rio[WS(vs, 7)]; T94 = rio[WS(vs, 7) + WS(is, 4)]; T95 = T93 + T94; T9A = T93 - T94; T9j = iio[WS(vs, 7)]; T9k = iio[WS(vs, 7) + WS(is, 4)]; T9l = T9j - T9k; Ta0 = T9j + T9k; } { E T96, T97, T9B, T9C; T96 = rio[WS(vs, 7) + WS(is, 2)]; T97 = rio[WS(vs, 7) + WS(is, 6)]; T98 = T96 + T97; T9i = T96 - T97; T9B = iio[WS(vs, 7) + WS(is, 2)]; T9C = iio[WS(vs, 7) + WS(is, 6)]; T9D = T9B - T9C; Ta1 = T9B + T9C; } T99 = T95 + T98; Ta6 = T95 - T98; Tai = Ta0 + Ta1; T9m = T9i + T9l; T9E = T9A - T9D; T9S = T9l - T9i; Ta2 = Ta0 - Ta1; T9O = T9A + T9D; } { E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z; { E T2B, T2C, T2R, T2S; T2B = rio[WS(vs, 2)]; T2C = rio[WS(vs, 2) + WS(is, 4)]; T2D = T2B + T2C; T38 = T2B - T2C; T2R = iio[WS(vs, 2)]; T2S = iio[WS(vs, 2) + WS(is, 4)]; T2T = T2R - T2S; T3y = T2R + T2S; } { E T2E, T2F, T39, T3a; T2E = rio[WS(vs, 2) + WS(is, 2)]; T2F = rio[WS(vs, 2) + WS(is, 6)]; T2G = T2E + T2F; T2Q = T2E - T2F; T39 = iio[WS(vs, 2) + WS(is, 2)]; T3a = iio[WS(vs, 2) + WS(is, 6)]; T3b = T39 - T3a; T3z = T39 + T3a; } T2H = T2D + T2G; T3E = T2D - T2G; T3Q = T3y + T3z; T2U = T2Q + T2T; T3c = T38 - T3b; T3q = T2T - T2Q; T3A = T3y - T3z; T3m = T38 + T3b; } { E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y; { E T40, T41, T4j, T4k; T40 = rio[WS(vs, 3) + WS(is, 1)]; T41 = rio[WS(vs, 3) + WS(is, 5)]; T42 = T40 + T41; T4i = T40 - T41; T4j = iio[WS(vs, 3) + WS(is, 1)]; T4k = iio[WS(vs, 3) + WS(is, 5)]; T4l = T4j - T4k; T4X = T4j + T4k; } { E T43, T44, T4e, T4f; T43 = rio[WS(vs, 3) + WS(is, 7)]; T44 = rio[WS(vs, 3) + WS(is, 3)]; T45 = T43 + T44; T4d = T43 - T44; T4e = iio[WS(vs, 3) + WS(is, 7)]; T4f = iio[WS(vs, 3) + WS(is, 3)]; T4g = T4e - T4f; T4Y = T4e + T4f; } T46 = T42 + T45; T4Z = T4X - T4Y; T59 = T4X + T4Y; T4h = T4d - T4g; T4m = T4i + T4l; T4w = T4d + T4g; T4T = T45 - T42; T4v = T4l - T4i; } { E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69; { E T5b, T5c, T5r, T5s; T5b = rio[WS(vs, 4)]; T5c = rio[WS(vs, 4) + WS(is, 4)]; T5d = T5b + T5c; T5I = T5b - T5c; T5r = iio[WS(vs, 4)]; T5s = iio[WS(vs, 4) + WS(is, 4)]; T5t = T5r - T5s; T68 = T5r + T5s; } { E T5e, T5f, T5J, T5K; T5e = rio[WS(vs, 4) + WS(is, 2)]; T5f = rio[WS(vs, 4) + WS(is, 6)]; T5g = T5e + T5f; T5q = T5e - T5f; T5J = iio[WS(vs, 4) + WS(is, 2)]; T5K = iio[WS(vs, 4) + WS(is, 6)]; T5L = T5J - T5K; T69 = T5J + T5K; } T5h = T5d + T5g; T6e = T5d - T5g; T6q = T68 + T69; T5u = T5q + T5t; T5M = T5I - T5L; T60 = T5t - T5q; T6a = T68 - T69; T5W = T5I + T5L; } { E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y; { E T6A, T6B, T6T, T6U; T6A = rio[WS(vs, 5) + WS(is, 1)]; T6B = rio[WS(vs, 5) + WS(is, 5)]; T6C = T6A + T6B; T6S = T6A - T6B; T6T = iio[WS(vs, 5) + WS(is, 1)]; T6U = iio[WS(vs, 5) + WS(is, 5)]; T6V = T6T - T6U; T7x = T6T + T6U; } { E T6D, T6E, T6O, T6P; T6D = rio[WS(vs, 5) + WS(is, 7)]; T6E = rio[WS(vs, 5) + WS(is, 3)]; T6F = T6D + T6E; T6N = T6D - T6E; T6O = iio[WS(vs, 5) + WS(is, 7)]; T6P = iio[WS(vs, 5) + WS(is, 3)]; T6Q = T6O - T6P; T7y = T6O + T6P; } T6G = T6C + T6F; T7z = T7x - T7y; T7J = T7x + T7y; T6R = T6N - T6Q; T6W = T6S + T6V; T76 = T6N + T6Q; T7t = T6F - T6C; T75 = T6V - T6S; } { E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G; { E T2I, T2J, T31, T32; T2I = rio[WS(vs, 2) + WS(is, 1)]; T2J = rio[WS(vs, 2) + WS(is, 5)]; T2K = T2I + T2J; T30 = T2I - T2J; T31 = iio[WS(vs, 2) + WS(is, 1)]; T32 = iio[WS(vs, 2) + WS(is, 5)]; T33 = T31 - T32; T3F = T31 + T32; } { E T2L, T2M, T2W, T2X; T2L = rio[WS(vs, 2) + WS(is, 7)]; T2M = rio[WS(vs, 2) + WS(is, 3)]; T2N = T2L + T2M; T2V = T2L - T2M; T2W = iio[WS(vs, 2) + WS(is, 7)]; T2X = iio[WS(vs, 2) + WS(is, 3)]; T2Y = T2W - T2X; T3G = T2W + T2X; } T2O = T2K + T2N; T3H = T3F - T3G; T3R = T3F + T3G; T2Z = T2V - T2Y; T34 = T30 + T33; T3e = T2V + T2Y; T3B = T2N - T2K; T3d = T33 - T30; } { E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R; { E T3T, T3U, T49, T4a; T3T = rio[WS(vs, 3)]; T3U = rio[WS(vs, 3) + WS(is, 4)]; T3V = T3T + T3U; T4q = T3T - T3U; T49 = iio[WS(vs, 3)]; T4a = iio[WS(vs, 3) + WS(is, 4)]; T4b = T49 - T4a; T4Q = T49 + T4a; } { E T3W, T3X, T4r, T4s; T3W = rio[WS(vs, 3) + WS(is, 2)]; T3X = rio[WS(vs, 3) + WS(is, 6)]; T3Y = T3W + T3X; T48 = T3W - T3X; T4r = iio[WS(vs, 3) + WS(is, 2)]; T4s = iio[WS(vs, 3) + WS(is, 6)]; T4t = T4r - T4s; T4R = T4r + T4s; } T3Z = T3V + T3Y; T4W = T3V - T3Y; T58 = T4Q + T4R; T4c = T48 + T4b; T4u = T4q - T4t; T4I = T4b - T48; T4S = T4Q - T4R; T4E = T4q + T4t; } { E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g; { E T5i, T5j, T5B, T5C; T5i = rio[WS(vs, 4) + WS(is, 1)]; T5j = rio[WS(vs, 4) + WS(is, 5)]; T5k = T5i + T5j; T5A = T5i - T5j; T5B = iio[WS(vs, 4) + WS(is, 1)]; T5C = iio[WS(vs, 4) + WS(is, 5)]; T5D = T5B - T5C; T6f = T5B + T5C; } { E T5l, T5m, T5w, T5x; T5l = rio[WS(vs, 4) + WS(is, 7)]; T5m = rio[WS(vs, 4) + WS(is, 3)]; T5n = T5l + T5m; T5v = T5l - T5m; T5w = iio[WS(vs, 4) + WS(is, 7)]; T5x = iio[WS(vs, 4) + WS(is, 3)]; T5y = T5w - T5x; T6g = T5w + T5x; } T5o = T5k + T5n; T6h = T6f - T6g; T6r = T6f + T6g; T5z = T5v - T5y; T5E = T5A + T5D; T5O = T5v + T5y; T6b = T5n - T5k; T5N = T5D - T5A; } { E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r; { E T6t, T6u, T6J, T6K; T6t = rio[WS(vs, 5)]; T6u = rio[WS(vs, 5) + WS(is, 4)]; T6v = T6t + T6u; T70 = T6t - T6u; T6J = iio[WS(vs, 5)]; T6K = iio[WS(vs, 5) + WS(is, 4)]; T6L = T6J - T6K; T7q = T6J + T6K; } { E T6w, T6x, T71, T72; T6w = rio[WS(vs, 5) + WS(is, 2)]; T6x = rio[WS(vs, 5) + WS(is, 6)]; T6y = T6w + T6x; T6I = T6w - T6x; T71 = iio[WS(vs, 5) + WS(is, 2)]; T72 = iio[WS(vs, 5) + WS(is, 6)]; T73 = T71 - T72; T7r = T71 + T72; } T6z = T6v + T6y; T7w = T6v - T6y; T7I = T7q + T7r; T6M = T6I + T6L; T74 = T70 - T73; T7i = T6L - T6I; T7s = T7q - T7r; T7e = T70 + T73; } rio[0] = T7 + Te; iio[0] = T1g + T1h; rio[WS(is, 1)] = T1p + T1w; iio[WS(is, 1)] = T2y + T2z; rio[WS(is, 3)] = T3Z + T46; rio[WS(is, 2)] = T2H + T2O; iio[WS(is, 2)] = T3Q + T3R; iio[WS(is, 3)] = T58 + T59; rio[WS(is, 6)] = T7R + T7Y; iio[WS(is, 6)] = T90 + T91; iio[WS(is, 5)] = T7I + T7J; rio[WS(is, 5)] = T6z + T6G; iio[WS(is, 4)] = T6q + T6r; rio[WS(is, 4)] = T5h + T5o; rio[WS(is, 7)] = T99 + T9g; iio[WS(is, 7)] = Tai + Taj; { E T12, T18, TX, T13; T12 = T10 - T11; T18 = T14 - T17; TX = W[10]; T13 = W[11]; iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12); rio[WS(vs, 6)] = FMA(T13, T12, TX * T18); } { E Tag, Tak, Taf, Tah; Tag = T99 - T9g; Tak = Tai - Taj; Taf = W[6]; Tah = W[7]; rio[WS(vs, 4) + WS(is, 7)] = FMA(Taf, Tag, Tah * Tak); iio[WS(vs, 4) + WS(is, 7)] = FNMS(Tah, Tag, Taf * Tak); } { E T8M, T8S, T8H, T8N; T8M = T8K - T8L; T8S = T8O - T8R; T8H = W[10]; T8N = W[11]; iio[WS(vs, 6) + WS(is, 6)] = FNMS(T8N, T8S, T8H * T8M); rio[WS(vs, 6) + WS(is, 6)] = FMA(T8N, T8M, T8H * T8S); } { E T2k, T2q, T2f, T2l; T2k = T2i - T2j; T2q = T2m - T2p; T2f = W[10]; T2l = W[11]; iio[WS(vs, 6) + WS(is, 1)] = FNMS(T2l, T2q, T2f * T2k); rio[WS(vs, 6) + WS(is, 1)] = FMA(T2l, T2k, T2f * T2q); } { E Ta4, Taa, T9Z, Ta5; Ta4 = Ta2 - Ta3; Taa = Ta6 - Ta9; T9Z = W[10]; Ta5 = W[11]; iio[WS(vs, 6) + WS(is, 7)] = FNMS(Ta5, Taa, T9Z * Ta4); rio[WS(vs, 6) + WS(is, 7)] = FMA(Ta5, Ta4, T9Z * Taa); } { E T8Y, T92, T8X, T8Z; T8Y = T7R - T7Y; T92 = T90 - T91; T8X = W[6]; T8Z = W[7]; rio[WS(vs, 4) + WS(is, 6)] = FMA(T8X, T8Y, T8Z * T92); iio[WS(vs, 4) + WS(is, 6)] = FNMS(T8Z, T8Y, T8X * T92); } { E T2w, T2A, T2v, T2x; T2w = T1p - T1w; T2A = T2y - T2z; T2v = W[6]; T2x = W[7]; rio[WS(vs, 4) + WS(is, 1)] = FMA(T2v, T2w, T2x * T2A); iio[WS(vs, 4) + WS(is, 1)] = FNMS(T2x, T2w, T2v * T2A); } { E Tac, Tae, Tab, Tad; Tac = Ta3 + Ta2; Tae = Ta6 + Ta9; Tab = W[2]; Tad = W[3]; iio[WS(vs, 2) + WS(is, 7)] = FNMS(Tad, Tae, Tab * Tac); rio[WS(vs, 2) + WS(is, 7)] = FMA(Tad, Tac, Tab * Tae); } { E T8U, T8W, T8T, T8V; T8U = T8L + T8K; T8W = T8O + T8R; T8T = W[2]; T8V = W[3]; iio[WS(vs, 2) + WS(is, 6)] = FNMS(T8V, T8W, T8T * T8U); rio[WS(vs, 2) + WS(is, 6)] = FMA(T8V, T8U, T8T * T8W); } { E T1a, T1c, T19, T1b; T1a = T11 + T10; T1c = T14 + T17; T19 = W[2]; T1b = W[3]; iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a); rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c); } { E T1e, T1i, T1d, T1f; T1e = T7 - Te; T1i = T1g - T1h; T1d = W[6]; T1f = W[7]; rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i); iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i); } { E T2s, T2u, T2r, T2t; T2s = T2j + T2i; T2u = T2m + T2p; T2r = W[2]; T2t = W[3]; iio[WS(vs, 2) + WS(is, 1)] = FNMS(T2t, T2u, T2r * T2s); rio[WS(vs, 2) + WS(is, 1)] = FMA(T2t, T2s, T2r * T2u); } { E T3C, T3I, T3x, T3D; T3C = T3A - T3B; T3I = T3E - T3H; T3x = W[10]; T3D = W[11]; iio[WS(vs, 6) + WS(is, 2)] = FNMS(T3D, T3I, T3x * T3C); rio[WS(vs, 6) + WS(is, 2)] = FMA(T3D, T3C, T3x * T3I); } { E T4U, T50, T4P, T4V; T4U = T4S - T4T; T50 = T4W - T4Z; T4P = W[10]; T4V = W[11]; iio[WS(vs, 6) + WS(is, 3)] = FNMS(T4V, T50, T4P * T4U); rio[WS(vs, 6) + WS(is, 3)] = FMA(T4V, T4U, T4P * T50); } { E T56, T5a, T55, T57; T56 = T3Z - T46; T5a = T58 - T59; T55 = W[6]; T57 = W[7]; rio[WS(vs, 4) + WS(is, 3)] = FMA(T55, T56, T57 * T5a); iio[WS(vs, 4) + WS(is, 3)] = FNMS(T57, T56, T55 * T5a); } { E T6o, T6s, T6n, T6p; T6o = T5h - T5o; T6s = T6q - T6r; T6n = W[6]; T6p = W[7]; rio[WS(vs, 4) + WS(is, 4)] = FMA(T6n, T6o, T6p * T6s); iio[WS(vs, 4) + WS(is, 4)] = FNMS(T6p, T6o, T6n * T6s); } { E T7u, T7A, T7p, T7v; T7u = T7s - T7t; T7A = T7w - T7z; T7p = W[10]; T7v = W[11]; iio[WS(vs, 6) + WS(is, 5)] = FNMS(T7v, T7A, T7p * T7u); rio[WS(vs, 6) + WS(is, 5)] = FMA(T7v, T7u, T7p * T7A); } { E T6c, T6i, T67, T6d; T6c = T6a - T6b; T6i = T6e - T6h; T67 = W[10]; T6d = W[11]; iio[WS(vs, 6) + WS(is, 4)] = FNMS(T6d, T6i, T67 * T6c); rio[WS(vs, 6) + WS(is, 4)] = FMA(T6d, T6c, T67 * T6i); } { E T7G, T7K, T7F, T7H; T7G = T6z - T6G; T7K = T7I - T7J; T7F = W[6]; T7H = W[7]; rio[WS(vs, 4) + WS(is, 5)] = FMA(T7F, T7G, T7H * T7K); iio[WS(vs, 4) + WS(is, 5)] = FNMS(T7H, T7G, T7F * T7K); } { E T3O, T3S, T3N, T3P; T3O = T2H - T2O; T3S = T3Q - T3R; T3N = W[6]; T3P = W[7]; rio[WS(vs, 4) + WS(is, 2)] = FMA(T3N, T3O, T3P * T3S); iio[WS(vs, 4) + WS(is, 2)] = FNMS(T3P, T3O, T3N * T3S); } { E T3K, T3M, T3J, T3L; T3K = T3B + T3A; T3M = T3E + T3H; T3J = W[2]; T3L = W[3]; iio[WS(vs, 2) + WS(is, 2)] = FNMS(T3L, T3M, T3J * T3K); rio[WS(vs, 2) + WS(is, 2)] = FMA(T3L, T3K, T3J * T3M); } { E T7C, T7E, T7B, T7D; T7C = T7t + T7s; T7E = T7w + T7z; T7B = W[2]; T7D = W[3]; iio[WS(vs, 2) + WS(is, 5)] = FNMS(T7D, T7E, T7B * T7C); rio[WS(vs, 2) + WS(is, 5)] = FMA(T7D, T7C, T7B * T7E); } { E T6k, T6m, T6j, T6l; T6k = T6b + T6a; T6m = T6e + T6h; T6j = W[2]; T6l = W[3]; iio[WS(vs, 2) + WS(is, 4)] = FNMS(T6l, T6m, T6j * T6k); rio[WS(vs, 2) + WS(is, 4)] = FMA(T6l, T6k, T6j * T6m); } { E T52, T54, T51, T53; T52 = T4T + T4S; T54 = T4W + T4Z; T51 = W[2]; T53 = W[3]; iio[WS(vs, 2) + WS(is, 3)] = FNMS(T53, T54, T51 * T52); rio[WS(vs, 2) + WS(is, 3)] = FMA(T53, T52, T51 * T54); } { E T5G, T5S, T5Q, T5U, T5F, T5P; T5F = KP707106781 * (T5z - T5E); T5G = T5u - T5F; T5S = T5u + T5F; T5P = KP707106781 * (T5N - T5O); T5Q = T5M - T5P; T5U = T5M + T5P; { E T5p, T5H, T5R, T5T; T5p = W[12]; T5H = W[13]; iio[WS(vs, 7) + WS(is, 4)] = FNMS(T5H, T5Q, T5p * T5G); rio[WS(vs, 7) + WS(is, 4)] = FMA(T5H, T5G, T5p * T5Q); T5R = W[4]; T5T = W[5]; iio[WS(vs, 3) + WS(is, 4)] = FNMS(T5T, T5U, T5R * T5S); rio[WS(vs, 3) + WS(is, 4)] = FMA(T5T, T5S, T5R * T5U); } } { E Tw, TI, TG, TK, Tv, TF; Tv = KP707106781 * (Tp - Tu); Tw = Tk - Tv; TI = Tk + Tv; TF = KP707106781 * (TD - TE); TG = TC - TF; TK = TC + TF; { E Tf, Tx, TH, TJ; Tf = W[12]; Tx = W[13]; iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw); rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG); TH = W[4]; TJ = W[5]; iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI); rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK); } } { E T9Q, T9W, T9U, T9Y, T9P, T9T; T9P = KP707106781 * (T9w + T9r); T9Q = T9O - T9P; T9W = T9O + T9P; T9T = KP707106781 * (T9F + T9G); T9U = T9S - T9T; T9Y = T9S + T9T; { E T9N, T9R, T9V, T9X; T9N = W[8]; T9R = W[9]; rio[WS(vs, 5) + WS(is, 7)] = FMA(T9N, T9Q, T9R * T9U); iio[WS(vs, 5) + WS(is, 7)] = FNMS(T9R, T9Q, T9N * T9U); T9V = W[0]; T9X = W[1]; rio[WS(vs, 1) + WS(is, 7)] = FMA(T9V, T9W, T9X * T9Y); iio[WS(vs, 1) + WS(is, 7)] = FNMS(T9X, T9W, T9V * T9Y); } } { E T36, T3i, T3g, T3k, T35, T3f; T35 = KP707106781 * (T2Z - T34); T36 = T2U - T35; T3i = T2U + T35; T3f = KP707106781 * (T3d - T3e); T3g = T3c - T3f; T3k = T3c + T3f; { E T2P, T37, T3h, T3j; T2P = W[12]; T37 = W[13]; iio[WS(vs, 7) + WS(is, 2)] = FNMS(T37, T3g, T2P * T36); rio[WS(vs, 7) + WS(is, 2)] = FMA(T37, T36, T2P * T3g); T3h = W[4]; T3j = W[5]; iio[WS(vs, 3) + WS(is, 2)] = FNMS(T3j, T3k, T3h * T3i); rio[WS(vs, 3) + WS(is, 2)] = FMA(T3j, T3i, T3h * T3k); } } { E T5Y, T64, T62, T66, T5X, T61; T5X = KP707106781 * (T5E + T5z); T5Y = T5W - T5X; T64 = T5W + T5X; T61 = KP707106781 * (T5N + T5O); T62 = T60 - T61; T66 = T60 + T61; { E T5V, T5Z, T63, T65; T5V = W[8]; T5Z = W[9]; rio[WS(vs, 5) + WS(is, 4)] = FMA(T5V, T5Y, T5Z * T62); iio[WS(vs, 5) + WS(is, 4)] = FNMS(T5Z, T5Y, T5V * T62); T63 = W[0]; T65 = W[1]; rio[WS(vs, 1) + WS(is, 4)] = FMA(T63, T64, T65 * T66); iio[WS(vs, 1) + WS(is, 4)] = FNMS(T65, T64, T63 * T66); } } { E T7g, T7m, T7k, T7o, T7f, T7j; T7f = KP707106781 * (T6W + T6R); T7g = T7e - T7f; T7m = T7e + T7f; T7j = KP707106781 * (T75 + T76); T7k = T7i - T7j; T7o = T7i + T7j; { E T7d, T7h, T7l, T7n; T7d = W[8]; T7h = W[9]; rio[WS(vs, 5) + WS(is, 5)] = FMA(T7d, T7g, T7h * T7k); iio[WS(vs, 5) + WS(is, 5)] = FNMS(T7h, T7g, T7d * T7k); T7l = W[0]; T7n = W[1]; rio[WS(vs, 1) + WS(is, 5)] = FMA(T7l, T7m, T7n * T7o); iio[WS(vs, 1) + WS(is, 5)] = FNMS(T7n, T7m, T7l * T7o); } } { E T8g, T8s, T8q, T8u, T8f, T8p; T8f = KP707106781 * (T89 - T8e); T8g = T84 - T8f; T8s = T84 + T8f; T8p = KP707106781 * (T8n - T8o); T8q = T8m - T8p; T8u = T8m + T8p; { E T7Z, T8h, T8r, T8t; T7Z = W[12]; T8h = W[13]; iio[WS(vs, 7) + WS(is, 6)] = FNMS(T8h, T8q, T7Z * T8g); rio[WS(vs, 7) + WS(is, 6)] = FMA(T8h, T8g, T7Z * T8q); T8r = W[4]; T8t = W[5]; iio[WS(vs, 3) + WS(is, 6)] = FNMS(T8t, T8u, T8r * T8s); rio[WS(vs, 3) + WS(is, 6)] = FMA(T8t, T8s, T8r * T8u); } } { E T4G, T4M, T4K, T4O, T4F, T4J; T4F = KP707106781 * (T4m + T4h); T4G = T4E - T4F; T4M = T4E + T4F; T4J = KP707106781 * (T4v + T4w); T4K = T4I - T4J; T4O = T4I + T4J; { E T4D, T4H, T4L, T4N; T4D = W[8]; T4H = W[9]; rio[WS(vs, 5) + WS(is, 3)] = FMA(T4D, T4G, T4H * T4K); iio[WS(vs, 5) + WS(is, 3)] = FNMS(T4H, T4G, T4D * T4K); T4L = W[0]; T4N = W[1]; rio[WS(vs, 1) + WS(is, 3)] = FMA(T4L, T4M, T4N * T4O); iio[WS(vs, 1) + WS(is, 3)] = FNMS(T4N, T4M, T4L * T4O); } } { E TO, TU, TS, TW, TN, TR; TN = KP707106781 * (Tu + Tp); TO = TM - TN; TU = TM + TN; TR = KP707106781 * (TD + TE); TS = TQ - TR; TW = TQ + TR; { E TL, TP, TT, TV; TL = W[8]; TP = W[9]; rio[WS(vs, 5)] = FMA(TL, TO, TP * TS); iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS); TT = W[0]; TV = W[1]; rio[WS(vs, 1)] = FMA(TT, TU, TV * TW); iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW); } } { E T26, T2c, T2a, T2e, T25, T29; T25 = KP707106781 * (T1M + T1H); T26 = T24 - T25; T2c = T24 + T25; T29 = KP707106781 * (T1V + T1W); T2a = T28 - T29; T2e = T28 + T29; { E T23, T27, T2b, T2d; T23 = W[8]; T27 = W[9]; rio[WS(vs, 5) + WS(is, 1)] = FMA(T23, T26, T27 * T2a); iio[WS(vs, 5) + WS(is, 1)] = FNMS(T27, T26, T23 * T2a); T2b = W[0]; T2d = W[1]; rio[WS(vs, 1) + WS(is, 1)] = FMA(T2b, T2c, T2d * T2e); iio[WS(vs, 1) + WS(is, 1)] = FNMS(T2d, T2c, T2b * T2e); } } { E T9y, T9K, T9I, T9M, T9x, T9H; T9x = KP707106781 * (T9r - T9w); T9y = T9m - T9x; T9K = T9m + T9x; T9H = KP707106781 * (T9F - T9G); T9I = T9E - T9H; T9M = T9E + T9H; { E T9h, T9z, T9J, T9L; T9h = W[12]; T9z = W[13]; iio[WS(vs, 7) + WS(is, 7)] = FNMS(T9z, T9I, T9h * T9y); rio[WS(vs, 7) + WS(is, 7)] = FMA(T9z, T9y, T9h * T9I); T9J = W[4]; T9L = W[5]; iio[WS(vs, 3) + WS(is, 7)] = FNMS(T9L, T9M, T9J * T9K); rio[WS(vs, 3) + WS(is, 7)] = FMA(T9L, T9K, T9J * T9M); } } { E T6Y, T7a, T78, T7c, T6X, T77; T6X = KP707106781 * (T6R - T6W); T6Y = T6M - T6X; T7a = T6M + T6X; T77 = KP707106781 * (T75 - T76); T78 = T74 - T77; T7c = T74 + T77; { E T6H, T6Z, T79, T7b; T6H = W[12]; T6Z = W[13]; iio[WS(vs, 7) + WS(is, 5)] = FNMS(T6Z, T78, T6H * T6Y); rio[WS(vs, 7) + WS(is, 5)] = FMA(T6Z, T6Y, T6H * T78); T79 = W[4]; T7b = W[5]; iio[WS(vs, 3) + WS(is, 5)] = FNMS(T7b, T7c, T79 * T7a); rio[WS(vs, 3) + WS(is, 5)] = FMA(T7b, T7a, T79 * T7c); } } { E T1O, T20, T1Y, T22, T1N, T1X; T1N = KP707106781 * (T1H - T1M); T1O = T1C - T1N; T20 = T1C + T1N; T1X = KP707106781 * (T1V - T1W); T1Y = T1U - T1X; T22 = T1U + T1X; { E T1x, T1P, T1Z, T21; T1x = W[12]; T1P = W[13]; iio[WS(vs, 7) + WS(is, 1)] = FNMS(T1P, T1Y, T1x * T1O); rio[WS(vs, 7) + WS(is, 1)] = FMA(T1P, T1O, T1x * T1Y); T1Z = W[4]; T21 = W[5]; iio[WS(vs, 3) + WS(is, 1)] = FNMS(T21, T22, T1Z * T20); rio[WS(vs, 3) + WS(is, 1)] = FMA(T21, T20, T1Z * T22); } } { E T4o, T4A, T4y, T4C, T4n, T4x; T4n = KP707106781 * (T4h - T4m); T4o = T4c - T4n; T4A = T4c + T4n; T4x = KP707106781 * (T4v - T4w); T4y = T4u - T4x; T4C = T4u + T4x; { E T47, T4p, T4z, T4B; T47 = W[12]; T4p = W[13]; iio[WS(vs, 7) + WS(is, 3)] = FNMS(T4p, T4y, T47 * T4o); rio[WS(vs, 7) + WS(is, 3)] = FMA(T4p, T4o, T47 * T4y); T4z = W[4]; T4B = W[5]; iio[WS(vs, 3) + WS(is, 3)] = FNMS(T4B, T4C, T4z * T4A); rio[WS(vs, 3) + WS(is, 3)] = FMA(T4B, T4A, T4z * T4C); } } { E T3o, T3u, T3s, T3w, T3n, T3r; T3n = KP707106781 * (T34 + T2Z); T3o = T3m - T3n; T3u = T3m + T3n; T3r = KP707106781 * (T3d + T3e); T3s = T3q - T3r; T3w = T3q + T3r; { E T3l, T3p, T3t, T3v; T3l = W[8]; T3p = W[9]; rio[WS(vs, 5) + WS(is, 2)] = FMA(T3l, T3o, T3p * T3s); iio[WS(vs, 5) + WS(is, 2)] = FNMS(T3p, T3o, T3l * T3s); T3t = W[0]; T3v = W[1]; rio[WS(vs, 1) + WS(is, 2)] = FMA(T3t, T3u, T3v * T3w); iio[WS(vs, 1) + WS(is, 2)] = FNMS(T3v, T3u, T3t * T3w); } } { E T8y, T8E, T8C, T8G, T8x, T8B; T8x = KP707106781 * (T8e + T89); T8y = T8w - T8x; T8E = T8w + T8x; T8B = KP707106781 * (T8n + T8o); T8C = T8A - T8B; T8G = T8A + T8B; { E T8v, T8z, T8D, T8F; T8v = W[8]; T8z = W[9]; rio[WS(vs, 5) + WS(is, 6)] = FMA(T8v, T8y, T8z * T8C); iio[WS(vs, 5) + WS(is, 6)] = FNMS(T8z, T8y, T8v * T8C); T8D = W[0]; T8F = W[1]; rio[WS(vs, 1) + WS(is, 6)] = FMA(T8D, T8E, T8F * T8G); iio[WS(vs, 1) + WS(is, 6)] = FNMS(T8F, T8E, T8D * T8G); } } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 8}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 8, "q1_8", twinstr, {416, 144, 112, 0}, &GENUS, 0, 0, 0 }; void X(codelet_q1_8) (planner *p) { X(kdft_difsq_register) (p, q1_8, &desc); }