/*
 * Copyright (c) 2003 Matteo Frigo
 * Copyright (c) 2003 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sat Jul  5 21:39:14 EDT 2003 */

#include "codelet-dft.h"

/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twidsq -compact -variables 4 -reload-twiddle -dif -n 8 -name q1_8 -include q.h */

/*
 * This function contains 528 FP additions, 256 FP multiplications,
 * (or, 416 additions, 144 multiplications, 112 fused multiply/add),
 * 142 stack variables, and 256 memory accesses
 */
/*
 * Generator Id's : 
 * $Id: q1_8.c,v 1.1 2008/10/17 06:11:08 scuri Exp $
 * $Id: q1_8.c,v 1.1 2008/10/17 06:11:08 scuri Exp $
 * $Id: q1_8.c,v 1.1 2008/10/17 06:11:08 scuri Exp $
 */

#include "q.h"

static const R *q1_8(R *rio, R *iio, const R *W, stride is, stride vs, int m, int dist)
{
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
     int i;
     for (i = m; i > 0; i = i - 1, rio = rio + dist, iio = iio + dist, W = W + 14) {
	  E T7, T14, T1g, Tk, TC, TQ, T10, TM, T1w, T2p, T2z, T1H, T1M, T1W, T2j;
	  E T1V, T7R, T8O, T90, T84, T8m, T8A, T8K, T8w, T9g, Ta9, Taj, T9r, T9w, T9G;
	  E Ta3, T9F, Te, T17, T1h, Tp, Tu, TE, T11, TD, T1p, T2m, T2y, T1C, T1U;
	  E T28, T2i, T24, T7Y, T8R, T91, T89, T8e, T8o, T8L, T8n, T99, Ta6, Tai, T9m;
	  E T9E, T9S, Ta2, T9O, T2H, T3E, T3Q, T2U, T3c, T3q, T3A, T3m, T46, T4Z, T59;
	  E T4h, T4m, T4w, T4T, T4v, T5h, T6e, T6q, T5u, T5M, T60, T6a, T5W, T6G, T7z;
	  E T7J, T6R, T6W, T76, T7t, T75, T2O, T3H, T3R, T2Z, T34, T3e, T3B, T3d, T3Z;
	  E T4W, T58, T4c, T4u, T4I, T4S, T4E, T5o, T6h, T6r, T5z, T5E, T5O, T6b, T5N;
	  E T6z, T7w, T7I, T6M, T74, T7i, T7s, T7e;
	  {
	       E T3, Ty, Tj, TY, T6, Tg, TB, TZ;
	       {
		    E T1, T2, Th, Ti;
		    T1 = rio[0];
		    T2 = rio[WS(is, 4)];
		    T3 = T1 + T2;
		    Ty = T1 - T2;
		    Th = iio[0];
		    Ti = iio[WS(is, 4)];
		    Tj = Th - Ti;
		    TY = Th + Ti;
	       }
	       {
		    E T4, T5, Tz, TA;
		    T4 = rio[WS(is, 2)];
		    T5 = rio[WS(is, 6)];
		    T6 = T4 + T5;
		    Tg = T4 - T5;
		    Tz = iio[WS(is, 2)];
		    TA = iio[WS(is, 6)];
		    TB = Tz - TA;
		    TZ = Tz + TA;
	       }
	       T7 = T3 + T6;
	       T14 = T3 - T6;
	       T1g = TY + TZ;
	       Tk = Tg + Tj;
	       TC = Ty - TB;
	       TQ = Tj - Tg;
	       T10 = TY - TZ;
	       TM = Ty + TB;
	  }
	  {
	       E T1s, T1I, T1L, T2n, T1v, T1D, T1G, T2o;
	       {
		    E T1q, T1r, T1J, T1K;
		    T1q = rio[WS(vs, 1) + WS(is, 1)];
		    T1r = rio[WS(vs, 1) + WS(is, 5)];
		    T1s = T1q + T1r;
		    T1I = T1q - T1r;
		    T1J = iio[WS(vs, 1) + WS(is, 1)];
		    T1K = iio[WS(vs, 1) + WS(is, 5)];
		    T1L = T1J - T1K;
		    T2n = T1J + T1K;
	       }
	       {
		    E T1t, T1u, T1E, T1F;
		    T1t = rio[WS(vs, 1) + WS(is, 7)];
		    T1u = rio[WS(vs, 1) + WS(is, 3)];
		    T1v = T1t + T1u;
		    T1D = T1t - T1u;
		    T1E = iio[WS(vs, 1) + WS(is, 7)];
		    T1F = iio[WS(vs, 1) + WS(is, 3)];
		    T1G = T1E - T1F;
		    T2o = T1E + T1F;
	       }
	       T1w = T1s + T1v;
	       T2p = T2n - T2o;
	       T2z = T2n + T2o;
	       T1H = T1D - T1G;
	       T1M = T1I + T1L;
	       T1W = T1D + T1G;
	       T2j = T1v - T1s;
	       T1V = T1L - T1I;
	  }
	  {
	       E T7N, T8i, T83, T8I, T7Q, T80, T8l, T8J;
	       {
		    E T7L, T7M, T81, T82;
		    T7L = rio[WS(vs, 6)];
		    T7M = rio[WS(vs, 6) + WS(is, 4)];
		    T7N = T7L + T7M;
		    T8i = T7L - T7M;
		    T81 = iio[WS(vs, 6)];
		    T82 = iio[WS(vs, 6) + WS(is, 4)];
		    T83 = T81 - T82;
		    T8I = T81 + T82;
	       }
	       {
		    E T7O, T7P, T8j, T8k;
		    T7O = rio[WS(vs, 6) + WS(is, 2)];
		    T7P = rio[WS(vs, 6) + WS(is, 6)];
		    T7Q = T7O + T7P;
		    T80 = T7O - T7P;
		    T8j = iio[WS(vs, 6) + WS(is, 2)];
		    T8k = iio[WS(vs, 6) + WS(is, 6)];
		    T8l = T8j - T8k;
		    T8J = T8j + T8k;
	       }
	       T7R = T7N + T7Q;
	       T8O = T7N - T7Q;
	       T90 = T8I + T8J;
	       T84 = T80 + T83;
	       T8m = T8i - T8l;
	       T8A = T83 - T80;
	       T8K = T8I - T8J;
	       T8w = T8i + T8l;
	  }
	  {
	       E T9c, T9s, T9v, Ta7, T9f, T9n, T9q, Ta8;
	       {
		    E T9a, T9b, T9t, T9u;
		    T9a = rio[WS(vs, 7) + WS(is, 1)];
		    T9b = rio[WS(vs, 7) + WS(is, 5)];
		    T9c = T9a + T9b;
		    T9s = T9a - T9b;
		    T9t = iio[WS(vs, 7) + WS(is, 1)];
		    T9u = iio[WS(vs, 7) + WS(is, 5)];
		    T9v = T9t - T9u;
		    Ta7 = T9t + T9u;
	       }
	       {
		    E T9d, T9e, T9o, T9p;
		    T9d = rio[WS(vs, 7) + WS(is, 7)];
		    T9e = rio[WS(vs, 7) + WS(is, 3)];
		    T9f = T9d + T9e;
		    T9n = T9d - T9e;
		    T9o = iio[WS(vs, 7) + WS(is, 7)];
		    T9p = iio[WS(vs, 7) + WS(is, 3)];
		    T9q = T9o - T9p;
		    Ta8 = T9o + T9p;
	       }
	       T9g = T9c + T9f;
	       Ta9 = Ta7 - Ta8;
	       Taj = Ta7 + Ta8;
	       T9r = T9n - T9q;
	       T9w = T9s + T9v;
	       T9G = T9n + T9q;
	       Ta3 = T9f - T9c;
	       T9F = T9v - T9s;
	  }
	  {
	       E Ta, Tq, Tt, T15, Td, Tl, To, T16;
	       {
		    E T8, T9, Tr, Ts;
		    T8 = rio[WS(is, 1)];
		    T9 = rio[WS(is, 5)];
		    Ta = T8 + T9;
		    Tq = T8 - T9;
		    Tr = iio[WS(is, 1)];
		    Ts = iio[WS(is, 5)];
		    Tt = Tr - Ts;
		    T15 = Tr + Ts;
	       }
	       {
		    E Tb, Tc, Tm, Tn;
		    Tb = rio[WS(is, 7)];
		    Tc = rio[WS(is, 3)];
		    Td = Tb + Tc;
		    Tl = Tb - Tc;
		    Tm = iio[WS(is, 7)];
		    Tn = iio[WS(is, 3)];
		    To = Tm - Tn;
		    T16 = Tm + Tn;
	       }
	       Te = Ta + Td;
	       T17 = T15 - T16;
	       T1h = T15 + T16;
	       Tp = Tl - To;
	       Tu = Tq + Tt;
	       TE = Tl + To;
	       T11 = Td - Ta;
	       TD = Tt - Tq;
	  }
	  {
	       E T1l, T1Q, T1B, T2g, T1o, T1y, T1T, T2h;
	       {
		    E T1j, T1k, T1z, T1A;
		    T1j = rio[WS(vs, 1)];
		    T1k = rio[WS(vs, 1) + WS(is, 4)];
		    T1l = T1j + T1k;
		    T1Q = T1j - T1k;
		    T1z = iio[WS(vs, 1)];
		    T1A = iio[WS(vs, 1) + WS(is, 4)];
		    T1B = T1z - T1A;
		    T2g = T1z + T1A;
	       }
	       {
		    E T1m, T1n, T1R, T1S;
		    T1m = rio[WS(vs, 1) + WS(is, 2)];
		    T1n = rio[WS(vs, 1) + WS(is, 6)];
		    T1o = T1m + T1n;
		    T1y = T1m - T1n;
		    T1R = iio[WS(vs, 1) + WS(is, 2)];
		    T1S = iio[WS(vs, 1) + WS(is, 6)];
		    T1T = T1R - T1S;
		    T2h = T1R + T1S;
	       }
	       T1p = T1l + T1o;
	       T2m = T1l - T1o;
	       T2y = T2g + T2h;
	       T1C = T1y + T1B;
	       T1U = T1Q - T1T;
	       T28 = T1B - T1y;
	       T2i = T2g - T2h;
	       T24 = T1Q + T1T;
	  }
	  {
	       E T7U, T8a, T8d, T8P, T7X, T85, T88, T8Q;
	       {
		    E T7S, T7T, T8b, T8c;
		    T7S = rio[WS(vs, 6) + WS(is, 1)];
		    T7T = rio[WS(vs, 6) + WS(is, 5)];
		    T7U = T7S + T7T;
		    T8a = T7S - T7T;
		    T8b = iio[WS(vs, 6) + WS(is, 1)];
		    T8c = iio[WS(vs, 6) + WS(is, 5)];
		    T8d = T8b - T8c;
		    T8P = T8b + T8c;
	       }
	       {
		    E T7V, T7W, T86, T87;
		    T7V = rio[WS(vs, 6) + WS(is, 7)];
		    T7W = rio[WS(vs, 6) + WS(is, 3)];
		    T7X = T7V + T7W;
		    T85 = T7V - T7W;
		    T86 = iio[WS(vs, 6) + WS(is, 7)];
		    T87 = iio[WS(vs, 6) + WS(is, 3)];
		    T88 = T86 - T87;
		    T8Q = T86 + T87;
	       }
	       T7Y = T7U + T7X;
	       T8R = T8P - T8Q;
	       T91 = T8P + T8Q;
	       T89 = T85 - T88;
	       T8e = T8a + T8d;
	       T8o = T85 + T88;
	       T8L = T7X - T7U;
	       T8n = T8d - T8a;
	  }
	  {
	       E T95, T9A, T9l, Ta0, T98, T9i, T9D, Ta1;
	       {
		    E T93, T94, T9j, T9k;
		    T93 = rio[WS(vs, 7)];
		    T94 = rio[WS(vs, 7) + WS(is, 4)];
		    T95 = T93 + T94;
		    T9A = T93 - T94;
		    T9j = iio[WS(vs, 7)];
		    T9k = iio[WS(vs, 7) + WS(is, 4)];
		    T9l = T9j - T9k;
		    Ta0 = T9j + T9k;
	       }
	       {
		    E T96, T97, T9B, T9C;
		    T96 = rio[WS(vs, 7) + WS(is, 2)];
		    T97 = rio[WS(vs, 7) + WS(is, 6)];
		    T98 = T96 + T97;
		    T9i = T96 - T97;
		    T9B = iio[WS(vs, 7) + WS(is, 2)];
		    T9C = iio[WS(vs, 7) + WS(is, 6)];
		    T9D = T9B - T9C;
		    Ta1 = T9B + T9C;
	       }
	       T99 = T95 + T98;
	       Ta6 = T95 - T98;
	       Tai = Ta0 + Ta1;
	       T9m = T9i + T9l;
	       T9E = T9A - T9D;
	       T9S = T9l - T9i;
	       Ta2 = Ta0 - Ta1;
	       T9O = T9A + T9D;
	  }
	  {
	       E T2D, T38, T2T, T3y, T2G, T2Q, T3b, T3z;
	       {
		    E T2B, T2C, T2R, T2S;
		    T2B = rio[WS(vs, 2)];
		    T2C = rio[WS(vs, 2) + WS(is, 4)];
		    T2D = T2B + T2C;
		    T38 = T2B - T2C;
		    T2R = iio[WS(vs, 2)];
		    T2S = iio[WS(vs, 2) + WS(is, 4)];
		    T2T = T2R - T2S;
		    T3y = T2R + T2S;
	       }
	       {
		    E T2E, T2F, T39, T3a;
		    T2E = rio[WS(vs, 2) + WS(is, 2)];
		    T2F = rio[WS(vs, 2) + WS(is, 6)];
		    T2G = T2E + T2F;
		    T2Q = T2E - T2F;
		    T39 = iio[WS(vs, 2) + WS(is, 2)];
		    T3a = iio[WS(vs, 2) + WS(is, 6)];
		    T3b = T39 - T3a;
		    T3z = T39 + T3a;
	       }
	       T2H = T2D + T2G;
	       T3E = T2D - T2G;
	       T3Q = T3y + T3z;
	       T2U = T2Q + T2T;
	       T3c = T38 - T3b;
	       T3q = T2T - T2Q;
	       T3A = T3y - T3z;
	       T3m = T38 + T3b;
	  }
	  {
	       E T42, T4i, T4l, T4X, T45, T4d, T4g, T4Y;
	       {
		    E T40, T41, T4j, T4k;
		    T40 = rio[WS(vs, 3) + WS(is, 1)];
		    T41 = rio[WS(vs, 3) + WS(is, 5)];
		    T42 = T40 + T41;
		    T4i = T40 - T41;
		    T4j = iio[WS(vs, 3) + WS(is, 1)];
		    T4k = iio[WS(vs, 3) + WS(is, 5)];
		    T4l = T4j - T4k;
		    T4X = T4j + T4k;
	       }
	       {
		    E T43, T44, T4e, T4f;
		    T43 = rio[WS(vs, 3) + WS(is, 7)];
		    T44 = rio[WS(vs, 3) + WS(is, 3)];
		    T45 = T43 + T44;
		    T4d = T43 - T44;
		    T4e = iio[WS(vs, 3) + WS(is, 7)];
		    T4f = iio[WS(vs, 3) + WS(is, 3)];
		    T4g = T4e - T4f;
		    T4Y = T4e + T4f;
	       }
	       T46 = T42 + T45;
	       T4Z = T4X - T4Y;
	       T59 = T4X + T4Y;
	       T4h = T4d - T4g;
	       T4m = T4i + T4l;
	       T4w = T4d + T4g;
	       T4T = T45 - T42;
	       T4v = T4l - T4i;
	  }
	  {
	       E T5d, T5I, T5t, T68, T5g, T5q, T5L, T69;
	       {
		    E T5b, T5c, T5r, T5s;
		    T5b = rio[WS(vs, 4)];
		    T5c = rio[WS(vs, 4) + WS(is, 4)];
		    T5d = T5b + T5c;
		    T5I = T5b - T5c;
		    T5r = iio[WS(vs, 4)];
		    T5s = iio[WS(vs, 4) + WS(is, 4)];
		    T5t = T5r - T5s;
		    T68 = T5r + T5s;
	       }
	       {
		    E T5e, T5f, T5J, T5K;
		    T5e = rio[WS(vs, 4) + WS(is, 2)];
		    T5f = rio[WS(vs, 4) + WS(is, 6)];
		    T5g = T5e + T5f;
		    T5q = T5e - T5f;
		    T5J = iio[WS(vs, 4) + WS(is, 2)];
		    T5K = iio[WS(vs, 4) + WS(is, 6)];
		    T5L = T5J - T5K;
		    T69 = T5J + T5K;
	       }
	       T5h = T5d + T5g;
	       T6e = T5d - T5g;
	       T6q = T68 + T69;
	       T5u = T5q + T5t;
	       T5M = T5I - T5L;
	       T60 = T5t - T5q;
	       T6a = T68 - T69;
	       T5W = T5I + T5L;
	  }
	  {
	       E T6C, T6S, T6V, T7x, T6F, T6N, T6Q, T7y;
	       {
		    E T6A, T6B, T6T, T6U;
		    T6A = rio[WS(vs, 5) + WS(is, 1)];
		    T6B = rio[WS(vs, 5) + WS(is, 5)];
		    T6C = T6A + T6B;
		    T6S = T6A - T6B;
		    T6T = iio[WS(vs, 5) + WS(is, 1)];
		    T6U = iio[WS(vs, 5) + WS(is, 5)];
		    T6V = T6T - T6U;
		    T7x = T6T + T6U;
	       }
	       {
		    E T6D, T6E, T6O, T6P;
		    T6D = rio[WS(vs, 5) + WS(is, 7)];
		    T6E = rio[WS(vs, 5) + WS(is, 3)];
		    T6F = T6D + T6E;
		    T6N = T6D - T6E;
		    T6O = iio[WS(vs, 5) + WS(is, 7)];
		    T6P = iio[WS(vs, 5) + WS(is, 3)];
		    T6Q = T6O - T6P;
		    T7y = T6O + T6P;
	       }
	       T6G = T6C + T6F;
	       T7z = T7x - T7y;
	       T7J = T7x + T7y;
	       T6R = T6N - T6Q;
	       T6W = T6S + T6V;
	       T76 = T6N + T6Q;
	       T7t = T6F - T6C;
	       T75 = T6V - T6S;
	  }
	  {
	       E T2K, T30, T33, T3F, T2N, T2V, T2Y, T3G;
	       {
		    E T2I, T2J, T31, T32;
		    T2I = rio[WS(vs, 2) + WS(is, 1)];
		    T2J = rio[WS(vs, 2) + WS(is, 5)];
		    T2K = T2I + T2J;
		    T30 = T2I - T2J;
		    T31 = iio[WS(vs, 2) + WS(is, 1)];
		    T32 = iio[WS(vs, 2) + WS(is, 5)];
		    T33 = T31 - T32;
		    T3F = T31 + T32;
	       }
	       {
		    E T2L, T2M, T2W, T2X;
		    T2L = rio[WS(vs, 2) + WS(is, 7)];
		    T2M = rio[WS(vs, 2) + WS(is, 3)];
		    T2N = T2L + T2M;
		    T2V = T2L - T2M;
		    T2W = iio[WS(vs, 2) + WS(is, 7)];
		    T2X = iio[WS(vs, 2) + WS(is, 3)];
		    T2Y = T2W - T2X;
		    T3G = T2W + T2X;
	       }
	       T2O = T2K + T2N;
	       T3H = T3F - T3G;
	       T3R = T3F + T3G;
	       T2Z = T2V - T2Y;
	       T34 = T30 + T33;
	       T3e = T2V + T2Y;
	       T3B = T2N - T2K;
	       T3d = T33 - T30;
	  }
	  {
	       E T3V, T4q, T4b, T4Q, T3Y, T48, T4t, T4R;
	       {
		    E T3T, T3U, T49, T4a;
		    T3T = rio[WS(vs, 3)];
		    T3U = rio[WS(vs, 3) + WS(is, 4)];
		    T3V = T3T + T3U;
		    T4q = T3T - T3U;
		    T49 = iio[WS(vs, 3)];
		    T4a = iio[WS(vs, 3) + WS(is, 4)];
		    T4b = T49 - T4a;
		    T4Q = T49 + T4a;
	       }
	       {
		    E T3W, T3X, T4r, T4s;
		    T3W = rio[WS(vs, 3) + WS(is, 2)];
		    T3X = rio[WS(vs, 3) + WS(is, 6)];
		    T3Y = T3W + T3X;
		    T48 = T3W - T3X;
		    T4r = iio[WS(vs, 3) + WS(is, 2)];
		    T4s = iio[WS(vs, 3) + WS(is, 6)];
		    T4t = T4r - T4s;
		    T4R = T4r + T4s;
	       }
	       T3Z = T3V + T3Y;
	       T4W = T3V - T3Y;
	       T58 = T4Q + T4R;
	       T4c = T48 + T4b;
	       T4u = T4q - T4t;
	       T4I = T4b - T48;
	       T4S = T4Q - T4R;
	       T4E = T4q + T4t;
	  }
	  {
	       E T5k, T5A, T5D, T6f, T5n, T5v, T5y, T6g;
	       {
		    E T5i, T5j, T5B, T5C;
		    T5i = rio[WS(vs, 4) + WS(is, 1)];
		    T5j = rio[WS(vs, 4) + WS(is, 5)];
		    T5k = T5i + T5j;
		    T5A = T5i - T5j;
		    T5B = iio[WS(vs, 4) + WS(is, 1)];
		    T5C = iio[WS(vs, 4) + WS(is, 5)];
		    T5D = T5B - T5C;
		    T6f = T5B + T5C;
	       }
	       {
		    E T5l, T5m, T5w, T5x;
		    T5l = rio[WS(vs, 4) + WS(is, 7)];
		    T5m = rio[WS(vs, 4) + WS(is, 3)];
		    T5n = T5l + T5m;
		    T5v = T5l - T5m;
		    T5w = iio[WS(vs, 4) + WS(is, 7)];
		    T5x = iio[WS(vs, 4) + WS(is, 3)];
		    T5y = T5w - T5x;
		    T6g = T5w + T5x;
	       }
	       T5o = T5k + T5n;
	       T6h = T6f - T6g;
	       T6r = T6f + T6g;
	       T5z = T5v - T5y;
	       T5E = T5A + T5D;
	       T5O = T5v + T5y;
	       T6b = T5n - T5k;
	       T5N = T5D - T5A;
	  }
	  {
	       E T6v, T70, T6L, T7q, T6y, T6I, T73, T7r;
	       {
		    E T6t, T6u, T6J, T6K;
		    T6t = rio[WS(vs, 5)];
		    T6u = rio[WS(vs, 5) + WS(is, 4)];
		    T6v = T6t + T6u;
		    T70 = T6t - T6u;
		    T6J = iio[WS(vs, 5)];
		    T6K = iio[WS(vs, 5) + WS(is, 4)];
		    T6L = T6J - T6K;
		    T7q = T6J + T6K;
	       }
	       {
		    E T6w, T6x, T71, T72;
		    T6w = rio[WS(vs, 5) + WS(is, 2)];
		    T6x = rio[WS(vs, 5) + WS(is, 6)];
		    T6y = T6w + T6x;
		    T6I = T6w - T6x;
		    T71 = iio[WS(vs, 5) + WS(is, 2)];
		    T72 = iio[WS(vs, 5) + WS(is, 6)];
		    T73 = T71 - T72;
		    T7r = T71 + T72;
	       }
	       T6z = T6v + T6y;
	       T7w = T6v - T6y;
	       T7I = T7q + T7r;
	       T6M = T6I + T6L;
	       T74 = T70 - T73;
	       T7i = T6L - T6I;
	       T7s = T7q - T7r;
	       T7e = T70 + T73;
	  }
	  rio[0] = T7 + Te;
	  iio[0] = T1g + T1h;
	  rio[WS(is, 1)] = T1p + T1w;
	  iio[WS(is, 1)] = T2y + T2z;
	  rio[WS(is, 3)] = T3Z + T46;
	  rio[WS(is, 2)] = T2H + T2O;
	  iio[WS(is, 2)] = T3Q + T3R;
	  iio[WS(is, 3)] = T58 + T59;
	  rio[WS(is, 6)] = T7R + T7Y;
	  iio[WS(is, 6)] = T90 + T91;
	  iio[WS(is, 5)] = T7I + T7J;
	  rio[WS(is, 5)] = T6z + T6G;
	  iio[WS(is, 4)] = T6q + T6r;
	  rio[WS(is, 4)] = T5h + T5o;
	  rio[WS(is, 7)] = T99 + T9g;
	  iio[WS(is, 7)] = Tai + Taj;
	  {
	       E T12, T18, TX, T13;
	       T12 = T10 - T11;
	       T18 = T14 - T17;
	       TX = W[10];
	       T13 = W[11];
	       iio[WS(vs, 6)] = FNMS(T13, T18, TX * T12);
	       rio[WS(vs, 6)] = FMA(T13, T12, TX * T18);
	  }
	  {
	       E Tag, Tak, Taf, Tah;
	       Tag = T99 - T9g;
	       Tak = Tai - Taj;
	       Taf = W[6];
	       Tah = W[7];
	       rio[WS(vs, 4) + WS(is, 7)] = FMA(Taf, Tag, Tah * Tak);
	       iio[WS(vs, 4) + WS(is, 7)] = FNMS(Tah, Tag, Taf * Tak);
	  }
	  {
	       E T8M, T8S, T8H, T8N;
	       T8M = T8K - T8L;
	       T8S = T8O - T8R;
	       T8H = W[10];
	       T8N = W[11];
	       iio[WS(vs, 6) + WS(is, 6)] = FNMS(T8N, T8S, T8H * T8M);
	       rio[WS(vs, 6) + WS(is, 6)] = FMA(T8N, T8M, T8H * T8S);
	  }
	  {
	       E T2k, T2q, T2f, T2l;
	       T2k = T2i - T2j;
	       T2q = T2m - T2p;
	       T2f = W[10];
	       T2l = W[11];
	       iio[WS(vs, 6) + WS(is, 1)] = FNMS(T2l, T2q, T2f * T2k);
	       rio[WS(vs, 6) + WS(is, 1)] = FMA(T2l, T2k, T2f * T2q);
	  }
	  {
	       E Ta4, Taa, T9Z, Ta5;
	       Ta4 = Ta2 - Ta3;
	       Taa = Ta6 - Ta9;
	       T9Z = W[10];
	       Ta5 = W[11];
	       iio[WS(vs, 6) + WS(is, 7)] = FNMS(Ta5, Taa, T9Z * Ta4);
	       rio[WS(vs, 6) + WS(is, 7)] = FMA(Ta5, Ta4, T9Z * Taa);
	  }
	  {
	       E T8Y, T92, T8X, T8Z;
	       T8Y = T7R - T7Y;
	       T92 = T90 - T91;
	       T8X = W[6];
	       T8Z = W[7];
	       rio[WS(vs, 4) + WS(is, 6)] = FMA(T8X, T8Y, T8Z * T92);
	       iio[WS(vs, 4) + WS(is, 6)] = FNMS(T8Z, T8Y, T8X * T92);
	  }
	  {
	       E T2w, T2A, T2v, T2x;
	       T2w = T1p - T1w;
	       T2A = T2y - T2z;
	       T2v = W[6];
	       T2x = W[7];
	       rio[WS(vs, 4) + WS(is, 1)] = FMA(T2v, T2w, T2x * T2A);
	       iio[WS(vs, 4) + WS(is, 1)] = FNMS(T2x, T2w, T2v * T2A);
	  }
	  {
	       E Tac, Tae, Tab, Tad;
	       Tac = Ta3 + Ta2;
	       Tae = Ta6 + Ta9;
	       Tab = W[2];
	       Tad = W[3];
	       iio[WS(vs, 2) + WS(is, 7)] = FNMS(Tad, Tae, Tab * Tac);
	       rio[WS(vs, 2) + WS(is, 7)] = FMA(Tad, Tac, Tab * Tae);
	  }
	  {
	       E T8U, T8W, T8T, T8V;
	       T8U = T8L + T8K;
	       T8W = T8O + T8R;
	       T8T = W[2];
	       T8V = W[3];
	       iio[WS(vs, 2) + WS(is, 6)] = FNMS(T8V, T8W, T8T * T8U);
	       rio[WS(vs, 2) + WS(is, 6)] = FMA(T8V, T8U, T8T * T8W);
	  }
	  {
	       E T1a, T1c, T19, T1b;
	       T1a = T11 + T10;
	       T1c = T14 + T17;
	       T19 = W[2];
	       T1b = W[3];
	       iio[WS(vs, 2)] = FNMS(T1b, T1c, T19 * T1a);
	       rio[WS(vs, 2)] = FMA(T1b, T1a, T19 * T1c);
	  }
	  {
	       E T1e, T1i, T1d, T1f;
	       T1e = T7 - Te;
	       T1i = T1g - T1h;
	       T1d = W[6];
	       T1f = W[7];
	       rio[WS(vs, 4)] = FMA(T1d, T1e, T1f * T1i);
	       iio[WS(vs, 4)] = FNMS(T1f, T1e, T1d * T1i);
	  }
	  {
	       E T2s, T2u, T2r, T2t;
	       T2s = T2j + T2i;
	       T2u = T2m + T2p;
	       T2r = W[2];
	       T2t = W[3];
	       iio[WS(vs, 2) + WS(is, 1)] = FNMS(T2t, T2u, T2r * T2s);
	       rio[WS(vs, 2) + WS(is, 1)] = FMA(T2t, T2s, T2r * T2u);
	  }
	  {
	       E T3C, T3I, T3x, T3D;
	       T3C = T3A - T3B;
	       T3I = T3E - T3H;
	       T3x = W[10];
	       T3D = W[11];
	       iio[WS(vs, 6) + WS(is, 2)] = FNMS(T3D, T3I, T3x * T3C);
	       rio[WS(vs, 6) + WS(is, 2)] = FMA(T3D, T3C, T3x * T3I);
	  }
	  {
	       E T4U, T50, T4P, T4V;
	       T4U = T4S - T4T;
	       T50 = T4W - T4Z;
	       T4P = W[10];
	       T4V = W[11];
	       iio[WS(vs, 6) + WS(is, 3)] = FNMS(T4V, T50, T4P * T4U);
	       rio[WS(vs, 6) + WS(is, 3)] = FMA(T4V, T4U, T4P * T50);
	  }
	  {
	       E T56, T5a, T55, T57;
	       T56 = T3Z - T46;
	       T5a = T58 - T59;
	       T55 = W[6];
	       T57 = W[7];
	       rio[WS(vs, 4) + WS(is, 3)] = FMA(T55, T56, T57 * T5a);
	       iio[WS(vs, 4) + WS(is, 3)] = FNMS(T57, T56, T55 * T5a);
	  }
	  {
	       E T6o, T6s, T6n, T6p;
	       T6o = T5h - T5o;
	       T6s = T6q - T6r;
	       T6n = W[6];
	       T6p = W[7];
	       rio[WS(vs, 4) + WS(is, 4)] = FMA(T6n, T6o, T6p * T6s);
	       iio[WS(vs, 4) + WS(is, 4)] = FNMS(T6p, T6o, T6n * T6s);
	  }
	  {
	       E T7u, T7A, T7p, T7v;
	       T7u = T7s - T7t;
	       T7A = T7w - T7z;
	       T7p = W[10];
	       T7v = W[11];
	       iio[WS(vs, 6) + WS(is, 5)] = FNMS(T7v, T7A, T7p * T7u);
	       rio[WS(vs, 6) + WS(is, 5)] = FMA(T7v, T7u, T7p * T7A);
	  }
	  {
	       E T6c, T6i, T67, T6d;
	       T6c = T6a - T6b;
	       T6i = T6e - T6h;
	       T67 = W[10];
	       T6d = W[11];
	       iio[WS(vs, 6) + WS(is, 4)] = FNMS(T6d, T6i, T67 * T6c);
	       rio[WS(vs, 6) + WS(is, 4)] = FMA(T6d, T6c, T67 * T6i);
	  }
	  {
	       E T7G, T7K, T7F, T7H;
	       T7G = T6z - T6G;
	       T7K = T7I - T7J;
	       T7F = W[6];
	       T7H = W[7];
	       rio[WS(vs, 4) + WS(is, 5)] = FMA(T7F, T7G, T7H * T7K);
	       iio[WS(vs, 4) + WS(is, 5)] = FNMS(T7H, T7G, T7F * T7K);
	  }
	  {
	       E T3O, T3S, T3N, T3P;
	       T3O = T2H - T2O;
	       T3S = T3Q - T3R;
	       T3N = W[6];
	       T3P = W[7];
	       rio[WS(vs, 4) + WS(is, 2)] = FMA(T3N, T3O, T3P * T3S);
	       iio[WS(vs, 4) + WS(is, 2)] = FNMS(T3P, T3O, T3N * T3S);
	  }
	  {
	       E T3K, T3M, T3J, T3L;
	       T3K = T3B + T3A;
	       T3M = T3E + T3H;
	       T3J = W[2];
	       T3L = W[3];
	       iio[WS(vs, 2) + WS(is, 2)] = FNMS(T3L, T3M, T3J * T3K);
	       rio[WS(vs, 2) + WS(is, 2)] = FMA(T3L, T3K, T3J * T3M);
	  }
	  {
	       E T7C, T7E, T7B, T7D;
	       T7C = T7t + T7s;
	       T7E = T7w + T7z;
	       T7B = W[2];
	       T7D = W[3];
	       iio[WS(vs, 2) + WS(is, 5)] = FNMS(T7D, T7E, T7B * T7C);
	       rio[WS(vs, 2) + WS(is, 5)] = FMA(T7D, T7C, T7B * T7E);
	  }
	  {
	       E T6k, T6m, T6j, T6l;
	       T6k = T6b + T6a;
	       T6m = T6e + T6h;
	       T6j = W[2];
	       T6l = W[3];
	       iio[WS(vs, 2) + WS(is, 4)] = FNMS(T6l, T6m, T6j * T6k);
	       rio[WS(vs, 2) + WS(is, 4)] = FMA(T6l, T6k, T6j * T6m);
	  }
	  {
	       E T52, T54, T51, T53;
	       T52 = T4T + T4S;
	       T54 = T4W + T4Z;
	       T51 = W[2];
	       T53 = W[3];
	       iio[WS(vs, 2) + WS(is, 3)] = FNMS(T53, T54, T51 * T52);
	       rio[WS(vs, 2) + WS(is, 3)] = FMA(T53, T52, T51 * T54);
	  }
	  {
	       E T5G, T5S, T5Q, T5U, T5F, T5P;
	       T5F = KP707106781 * (T5z - T5E);
	       T5G = T5u - T5F;
	       T5S = T5u + T5F;
	       T5P = KP707106781 * (T5N - T5O);
	       T5Q = T5M - T5P;
	       T5U = T5M + T5P;
	       {
		    E T5p, T5H, T5R, T5T;
		    T5p = W[12];
		    T5H = W[13];
		    iio[WS(vs, 7) + WS(is, 4)] = FNMS(T5H, T5Q, T5p * T5G);
		    rio[WS(vs, 7) + WS(is, 4)] = FMA(T5H, T5G, T5p * T5Q);
		    T5R = W[4];
		    T5T = W[5];
		    iio[WS(vs, 3) + WS(is, 4)] = FNMS(T5T, T5U, T5R * T5S);
		    rio[WS(vs, 3) + WS(is, 4)] = FMA(T5T, T5S, T5R * T5U);
	       }
	  }
	  {
	       E Tw, TI, TG, TK, Tv, TF;
	       Tv = KP707106781 * (Tp - Tu);
	       Tw = Tk - Tv;
	       TI = Tk + Tv;
	       TF = KP707106781 * (TD - TE);
	       TG = TC - TF;
	       TK = TC + TF;
	       {
		    E Tf, Tx, TH, TJ;
		    Tf = W[12];
		    Tx = W[13];
		    iio[WS(vs, 7)] = FNMS(Tx, TG, Tf * Tw);
		    rio[WS(vs, 7)] = FMA(Tx, Tw, Tf * TG);
		    TH = W[4];
		    TJ = W[5];
		    iio[WS(vs, 3)] = FNMS(TJ, TK, TH * TI);
		    rio[WS(vs, 3)] = FMA(TJ, TI, TH * TK);
	       }
	  }
	  {
	       E T9Q, T9W, T9U, T9Y, T9P, T9T;
	       T9P = KP707106781 * (T9w + T9r);
	       T9Q = T9O - T9P;
	       T9W = T9O + T9P;
	       T9T = KP707106781 * (T9F + T9G);
	       T9U = T9S - T9T;
	       T9Y = T9S + T9T;
	       {
		    E T9N, T9R, T9V, T9X;
		    T9N = W[8];
		    T9R = W[9];
		    rio[WS(vs, 5) + WS(is, 7)] = FMA(T9N, T9Q, T9R * T9U);
		    iio[WS(vs, 5) + WS(is, 7)] = FNMS(T9R, T9Q, T9N * T9U);
		    T9V = W[0];
		    T9X = W[1];
		    rio[WS(vs, 1) + WS(is, 7)] = FMA(T9V, T9W, T9X * T9Y);
		    iio[WS(vs, 1) + WS(is, 7)] = FNMS(T9X, T9W, T9V * T9Y);
	       }
	  }
	  {
	       E T36, T3i, T3g, T3k, T35, T3f;
	       T35 = KP707106781 * (T2Z - T34);
	       T36 = T2U - T35;
	       T3i = T2U + T35;
	       T3f = KP707106781 * (T3d - T3e);
	       T3g = T3c - T3f;
	       T3k = T3c + T3f;
	       {
		    E T2P, T37, T3h, T3j;
		    T2P = W[12];
		    T37 = W[13];
		    iio[WS(vs, 7) + WS(is, 2)] = FNMS(T37, T3g, T2P * T36);
		    rio[WS(vs, 7) + WS(is, 2)] = FMA(T37, T36, T2P * T3g);
		    T3h = W[4];
		    T3j = W[5];
		    iio[WS(vs, 3) + WS(is, 2)] = FNMS(T3j, T3k, T3h * T3i);
		    rio[WS(vs, 3) + WS(is, 2)] = FMA(T3j, T3i, T3h * T3k);
	       }
	  }
	  {
	       E T5Y, T64, T62, T66, T5X, T61;
	       T5X = KP707106781 * (T5E + T5z);
	       T5Y = T5W - T5X;
	       T64 = T5W + T5X;
	       T61 = KP707106781 * (T5N + T5O);
	       T62 = T60 - T61;
	       T66 = T60 + T61;
	       {
		    E T5V, T5Z, T63, T65;
		    T5V = W[8];
		    T5Z = W[9];
		    rio[WS(vs, 5) + WS(is, 4)] = FMA(T5V, T5Y, T5Z * T62);
		    iio[WS(vs, 5) + WS(is, 4)] = FNMS(T5Z, T5Y, T5V * T62);
		    T63 = W[0];
		    T65 = W[1];
		    rio[WS(vs, 1) + WS(is, 4)] = FMA(T63, T64, T65 * T66);
		    iio[WS(vs, 1) + WS(is, 4)] = FNMS(T65, T64, T63 * T66);
	       }
	  }
	  {
	       E T7g, T7m, T7k, T7o, T7f, T7j;
	       T7f = KP707106781 * (T6W + T6R);
	       T7g = T7e - T7f;
	       T7m = T7e + T7f;
	       T7j = KP707106781 * (T75 + T76);
	       T7k = T7i - T7j;
	       T7o = T7i + T7j;
	       {
		    E T7d, T7h, T7l, T7n;
		    T7d = W[8];
		    T7h = W[9];
		    rio[WS(vs, 5) + WS(is, 5)] = FMA(T7d, T7g, T7h * T7k);
		    iio[WS(vs, 5) + WS(is, 5)] = FNMS(T7h, T7g, T7d * T7k);
		    T7l = W[0];
		    T7n = W[1];
		    rio[WS(vs, 1) + WS(is, 5)] = FMA(T7l, T7m, T7n * T7o);
		    iio[WS(vs, 1) + WS(is, 5)] = FNMS(T7n, T7m, T7l * T7o);
	       }
	  }
	  {
	       E T8g, T8s, T8q, T8u, T8f, T8p;
	       T8f = KP707106781 * (T89 - T8e);
	       T8g = T84 - T8f;
	       T8s = T84 + T8f;
	       T8p = KP707106781 * (T8n - T8o);
	       T8q = T8m - T8p;
	       T8u = T8m + T8p;
	       {
		    E T7Z, T8h, T8r, T8t;
		    T7Z = W[12];
		    T8h = W[13];
		    iio[WS(vs, 7) + WS(is, 6)] = FNMS(T8h, T8q, T7Z * T8g);
		    rio[WS(vs, 7) + WS(is, 6)] = FMA(T8h, T8g, T7Z * T8q);
		    T8r = W[4];
		    T8t = W[5];
		    iio[WS(vs, 3) + WS(is, 6)] = FNMS(T8t, T8u, T8r * T8s);
		    rio[WS(vs, 3) + WS(is, 6)] = FMA(T8t, T8s, T8r * T8u);
	       }
	  }
	  {
	       E T4G, T4M, T4K, T4O, T4F, T4J;
	       T4F = KP707106781 * (T4m + T4h);
	       T4G = T4E - T4F;
	       T4M = T4E + T4F;
	       T4J = KP707106781 * (T4v + T4w);
	       T4K = T4I - T4J;
	       T4O = T4I + T4J;
	       {
		    E T4D, T4H, T4L, T4N;
		    T4D = W[8];
		    T4H = W[9];
		    rio[WS(vs, 5) + WS(is, 3)] = FMA(T4D, T4G, T4H * T4K);
		    iio[WS(vs, 5) + WS(is, 3)] = FNMS(T4H, T4G, T4D * T4K);
		    T4L = W[0];
		    T4N = W[1];
		    rio[WS(vs, 1) + WS(is, 3)] = FMA(T4L, T4M, T4N * T4O);
		    iio[WS(vs, 1) + WS(is, 3)] = FNMS(T4N, T4M, T4L * T4O);
	       }
	  }
	  {
	       E TO, TU, TS, TW, TN, TR;
	       TN = KP707106781 * (Tu + Tp);
	       TO = TM - TN;
	       TU = TM + TN;
	       TR = KP707106781 * (TD + TE);
	       TS = TQ - TR;
	       TW = TQ + TR;
	       {
		    E TL, TP, TT, TV;
		    TL = W[8];
		    TP = W[9];
		    rio[WS(vs, 5)] = FMA(TL, TO, TP * TS);
		    iio[WS(vs, 5)] = FNMS(TP, TO, TL * TS);
		    TT = W[0];
		    TV = W[1];
		    rio[WS(vs, 1)] = FMA(TT, TU, TV * TW);
		    iio[WS(vs, 1)] = FNMS(TV, TU, TT * TW);
	       }
	  }
	  {
	       E T26, T2c, T2a, T2e, T25, T29;
	       T25 = KP707106781 * (T1M + T1H);
	       T26 = T24 - T25;
	       T2c = T24 + T25;
	       T29 = KP707106781 * (T1V + T1W);
	       T2a = T28 - T29;
	       T2e = T28 + T29;
	       {
		    E T23, T27, T2b, T2d;
		    T23 = W[8];
		    T27 = W[9];
		    rio[WS(vs, 5) + WS(is, 1)] = FMA(T23, T26, T27 * T2a);
		    iio[WS(vs, 5) + WS(is, 1)] = FNMS(T27, T26, T23 * T2a);
		    T2b = W[0];
		    T2d = W[1];
		    rio[WS(vs, 1) + WS(is, 1)] = FMA(T2b, T2c, T2d * T2e);
		    iio[WS(vs, 1) + WS(is, 1)] = FNMS(T2d, T2c, T2b * T2e);
	       }
	  }
	  {
	       E T9y, T9K, T9I, T9M, T9x, T9H;
	       T9x = KP707106781 * (T9r - T9w);
	       T9y = T9m - T9x;
	       T9K = T9m + T9x;
	       T9H = KP707106781 * (T9F - T9G);
	       T9I = T9E - T9H;
	       T9M = T9E + T9H;
	       {
		    E T9h, T9z, T9J, T9L;
		    T9h = W[12];
		    T9z = W[13];
		    iio[WS(vs, 7) + WS(is, 7)] = FNMS(T9z, T9I, T9h * T9y);
		    rio[WS(vs, 7) + WS(is, 7)] = FMA(T9z, T9y, T9h * T9I);
		    T9J = W[4];
		    T9L = W[5];
		    iio[WS(vs, 3) + WS(is, 7)] = FNMS(T9L, T9M, T9J * T9K);
		    rio[WS(vs, 3) + WS(is, 7)] = FMA(T9L, T9K, T9J * T9M);
	       }
	  }
	  {
	       E T6Y, T7a, T78, T7c, T6X, T77;
	       T6X = KP707106781 * (T6R - T6W);
	       T6Y = T6M - T6X;
	       T7a = T6M + T6X;
	       T77 = KP707106781 * (T75 - T76);
	       T78 = T74 - T77;
	       T7c = T74 + T77;
	       {
		    E T6H, T6Z, T79, T7b;
		    T6H = W[12];
		    T6Z = W[13];
		    iio[WS(vs, 7) + WS(is, 5)] = FNMS(T6Z, T78, T6H * T6Y);
		    rio[WS(vs, 7) + WS(is, 5)] = FMA(T6Z, T6Y, T6H * T78);
		    T79 = W[4];
		    T7b = W[5];
		    iio[WS(vs, 3) + WS(is, 5)] = FNMS(T7b, T7c, T79 * T7a);
		    rio[WS(vs, 3) + WS(is, 5)] = FMA(T7b, T7a, T79 * T7c);
	       }
	  }
	  {
	       E T1O, T20, T1Y, T22, T1N, T1X;
	       T1N = KP707106781 * (T1H - T1M);
	       T1O = T1C - T1N;
	       T20 = T1C + T1N;
	       T1X = KP707106781 * (T1V - T1W);
	       T1Y = T1U - T1X;
	       T22 = T1U + T1X;
	       {
		    E T1x, T1P, T1Z, T21;
		    T1x = W[12];
		    T1P = W[13];
		    iio[WS(vs, 7) + WS(is, 1)] = FNMS(T1P, T1Y, T1x * T1O);
		    rio[WS(vs, 7) + WS(is, 1)] = FMA(T1P, T1O, T1x * T1Y);
		    T1Z = W[4];
		    T21 = W[5];
		    iio[WS(vs, 3) + WS(is, 1)] = FNMS(T21, T22, T1Z * T20);
		    rio[WS(vs, 3) + WS(is, 1)] = FMA(T21, T20, T1Z * T22);
	       }
	  }
	  {
	       E T4o, T4A, T4y, T4C, T4n, T4x;
	       T4n = KP707106781 * (T4h - T4m);
	       T4o = T4c - T4n;
	       T4A = T4c + T4n;
	       T4x = KP707106781 * (T4v - T4w);
	       T4y = T4u - T4x;
	       T4C = T4u + T4x;
	       {
		    E T47, T4p, T4z, T4B;
		    T47 = W[12];
		    T4p = W[13];
		    iio[WS(vs, 7) + WS(is, 3)] = FNMS(T4p, T4y, T47 * T4o);
		    rio[WS(vs, 7) + WS(is, 3)] = FMA(T4p, T4o, T47 * T4y);
		    T4z = W[4];
		    T4B = W[5];
		    iio[WS(vs, 3) + WS(is, 3)] = FNMS(T4B, T4C, T4z * T4A);
		    rio[WS(vs, 3) + WS(is, 3)] = FMA(T4B, T4A, T4z * T4C);
	       }
	  }
	  {
	       E T3o, T3u, T3s, T3w, T3n, T3r;
	       T3n = KP707106781 * (T34 + T2Z);
	       T3o = T3m - T3n;
	       T3u = T3m + T3n;
	       T3r = KP707106781 * (T3d + T3e);
	       T3s = T3q - T3r;
	       T3w = T3q + T3r;
	       {
		    E T3l, T3p, T3t, T3v;
		    T3l = W[8];
		    T3p = W[9];
		    rio[WS(vs, 5) + WS(is, 2)] = FMA(T3l, T3o, T3p * T3s);
		    iio[WS(vs, 5) + WS(is, 2)] = FNMS(T3p, T3o, T3l * T3s);
		    T3t = W[0];
		    T3v = W[1];
		    rio[WS(vs, 1) + WS(is, 2)] = FMA(T3t, T3u, T3v * T3w);
		    iio[WS(vs, 1) + WS(is, 2)] = FNMS(T3v, T3u, T3t * T3w);
	       }
	  }
	  {
	       E T8y, T8E, T8C, T8G, T8x, T8B;
	       T8x = KP707106781 * (T8e + T89);
	       T8y = T8w - T8x;
	       T8E = T8w + T8x;
	       T8B = KP707106781 * (T8n + T8o);
	       T8C = T8A - T8B;
	       T8G = T8A + T8B;
	       {
		    E T8v, T8z, T8D, T8F;
		    T8v = W[8];
		    T8z = W[9];
		    rio[WS(vs, 5) + WS(is, 6)] = FMA(T8v, T8y, T8z * T8C);
		    iio[WS(vs, 5) + WS(is, 6)] = FNMS(T8z, T8y, T8v * T8C);
		    T8D = W[0];
		    T8F = W[1];
		    rio[WS(vs, 1) + WS(is, 6)] = FMA(T8D, T8E, T8F * T8G);
		    iio[WS(vs, 1) + WS(is, 6)] = FNMS(T8F, T8E, T8D * T8G);
	       }
	  }
     }
     return W;
}

static const tw_instr twinstr[] = {
     {TW_FULL, 0, 8},
     {TW_NEXT, 1, 0}
};

static const ct_desc desc = { 8, "q1_8", twinstr, {416, 144, 112, 0}, &GENUS, 0, 0, 0 };

void X(codelet_q1_8) (planner *p) {
     X(kdft_difsq_register) (p, q1_8, &desc);
}