/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:29:42 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw_noinline -compact -variables 4 -n 64 -name m1_64 -include n.h */ /* * This function contains 912 FP additions, 248 FP multiplications, * (or, 808 additions, 144 multiplications, 104 fused multiply/add), * 171 stack variables, and 256 memory accesses */ /* * Generator Id's : * $Id: m1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: m1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: m1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "n.h" static void m1_64_0(const R *ri, const R *ii, R *ro, R *io, stride is, stride os) { DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; { E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; E T3c; { E T1, T2, T24, T25; T1 = ri[0]; T2 = ri[WS(is, 32)]; T3 = T1 + T2; T35 = T1 - T2; T24 = ii[0]; T25 = ii[WS(is, 32)]; T26 = T24 + T25; T5Y = T24 - T25; } { E T4, T5, T27, T28; T4 = ri[WS(is, 16)]; T5 = ri[WS(is, 48)]; T6 = T4 + T5; T5X = T4 - T5; T27 = ii[WS(is, 16)]; T28 = ii[WS(is, 48)]; T29 = T27 + T28; T36 = T27 - T28; } { E T8, T9, T2b, T2c; T8 = ri[WS(is, 8)]; T9 = ri[WS(is, 40)]; Ta = T8 + T9; T39 = T8 - T9; T2b = ii[WS(is, 8)]; T2c = ii[WS(is, 40)]; T2d = T2b + T2c; T38 = T2b - T2c; } { E Tb, Tc, T2e, T2f; Tb = ri[WS(is, 56)]; Tc = ri[WS(is, 24)]; Td = Tb + Tc; T3b = Tb - Tc; T2e = ii[WS(is, 56)]; T2f = ii[WS(is, 24)]; T2g = T2e + T2f; T3c = T2e - T2f; } { E T7, Te, T2a, T2h; T37 = T35 - T36; T7B = T35 + T36; T8F = T5Y - T5X; T5Z = T5X + T5Y; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; Td9 = T7 - Te; { E Tbz, TbA, T60, T61; Tbz = T26 - T29; TbA = Td - Ta; TbB = Tbz - TbA; TcB = TbA + Tbz; T60 = T3b - T3c; T61 = T39 + T38; T62 = KP707106781 * (T60 - T61); T7C = KP707106781 * (T61 + T60); } T2a = T26 + T29; T2h = T2d + T2g; T2i = T2a + T2h; TdH = T2a - T2h; { E Taf, Tag, T3a, T3d; Taf = T3 - T6; Tag = T2d - T2g; Tah = Taf - Tag; Tcb = Taf + Tag; T3a = T38 - T39; T3d = T3b + T3c; T3e = KP707106781 * (T3a - T3d); T8G = KP707106781 * (T3a + T3d); } } } { E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; E T3r; { E Tg, Th, T2j, T2k; Tg = ri[WS(is, 4)]; Th = ri[WS(is, 36)]; Ti = Tg + Th; T3j = Tg - Th; T2j = ii[WS(is, 4)]; T2k = ii[WS(is, 36)]; T2l = T2j + T2k; T3h = T2j - T2k; } { E Tj, Tk, T2m, T2n; Tj = ri[WS(is, 20)]; Tk = ri[WS(is, 52)]; Tl = Tj + Tk; T3g = Tj - Tk; T2m = ii[WS(is, 20)]; T2n = ii[WS(is, 52)]; T2o = T2m + T2n; T3k = T2m - T2n; } { E Tn, To, T2q, T2r; Tn = ri[WS(is, 60)]; To = ri[WS(is, 28)]; Tp = Tn + To; T3q = Tn - To; T2q = ii[WS(is, 60)]; T2r = ii[WS(is, 28)]; T2s = T2q + T2r; T3o = T2q - T2r; } { E Tq, Tr, T2t, T2u; Tq = ri[WS(is, 12)]; Tr = ri[WS(is, 44)]; Ts = Tq + Tr; T3n = Tq - Tr; T2t = ii[WS(is, 12)]; T2u = ii[WS(is, 44)]; T2v = T2t + T2u; T3r = T2t - T2u; } { E Tm, Tt, Tai, Taj; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; TdI = Tt - Tm; Tai = T2l - T2o; Taj = Ti - Tl; Tak = Tai - Taj; TbD = Taj + Tai; } { E Tal, Tam, T2p, T2w; Tal = Tp - Ts; Tam = T2s - T2v; Tan = Tal + Tam; TbC = Tal - Tam; T2p = T2l + T2o; T2w = T2s + T2v; T2x = T2p + T2w; Tda = T2p - T2w; } { E T3i, T3l, T7E, T7F; T3i = T3g + T3h; T3l = T3j - T3k; T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); T65 = FMA(KP923879532, T3i, KP382683432 * T3l); T7E = T3h - T3g; T7F = T3j + T3k; T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); T8J = FMA(KP382683432, T7E, KP923879532 * T7F); } { E T7H, T7I, T3p, T3s; T7H = T3o - T3n; T7I = T3q + T3r; T7J = FMA(KP923879532, T7H, KP382683432 * T7I); T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); T3p = T3n + T3o; T3s = T3q - T3r; T3t = FMA(KP382683432, T3p, KP923879532 * T3s); T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); } } { E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; E T3E; { E Tw, Tx, T2C, T2D; Tw = ri[WS(is, 2)]; Tx = ri[WS(is, 34)]; Ty = Tw + Tx; T3H = Tw - Tx; { E T2z, T2A, Tz, TA; T2z = ii[WS(is, 2)]; T2A = ii[WS(is, 34)]; T2B = T2z + T2A; T3x = T2z - T2A; Tz = ri[WS(is, 18)]; TA = ri[WS(is, 50)]; TB = Tz + TA; T3w = Tz - TA; } T2C = ii[WS(is, 18)]; T2D = ii[WS(is, 50)]; T2E = T2C + T2D; T3I = T2C - T2D; { E TG, TH, T3z, T2J, T2K, T3A; TG = ri[WS(is, 58)]; TH = ri[WS(is, 26)]; T3z = TG - TH; T2J = ii[WS(is, 58)]; T2K = ii[WS(is, 26)]; T3A = T2J - T2K; TI = TG + TH; T3L = T3z + T3A; T2L = T2J + T2K; T3B = T3z - T3A; } { E TD, TE, T3C, T2G, T2H, T3D; TD = ri[WS(is, 10)]; TE = ri[WS(is, 42)]; T3C = TD - TE; T2G = ii[WS(is, 10)]; T2H = ii[WS(is, 42)]; T3D = T2G - T2H; TF = TD + TE; T3K = T3D - T3C; T2I = T2G + T2H; T3E = T3C + T3D; } } { E TC, TJ, Taq, Tar; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; Tdd = TC - TJ; Taq = T2B - T2E; Tar = TI - TF; Tas = Taq - Tar; Tce = Tar + Taq; } { E Tat, Tau, T2F, T2M; Tat = Ty - TB; Tau = T2I - T2L; Tav = Tat - Tau; Tcf = Tat + Tau; T2F = T2B + T2E; T2M = T2I + T2L; T2N = T2F + T2M; Tdc = T2F - T2M; } { E T3y, T3F, T7M, T7N; T3y = T3w + T3x; T3F = KP707106781 * (T3B - T3E); T3G = T3y - T3F; T6G = T3y + T3F; T7M = T3x - T3w; T7N = KP707106781 * (T3K + T3L); T7O = T7M - T7N; T9k = T7M + T7N; } { E T7P, T7Q, T3J, T3M; T7P = T3H + T3I; T7Q = KP707106781 * (T3E + T3B); T7R = T7P - T7Q; T9l = T7P + T7Q; T3J = T3H - T3I; T3M = KP707106781 * (T3K - T3L); T3N = T3J - T3M; T6H = T3J + T3M; } } { E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; E T5O; { E T1x, T1y, T54, T55; T1x = ri[WS(is, 63)]; T1y = ri[WS(is, 31)]; T1z = T1x + T1y; T53 = T1x - T1y; { E T5J, T5K, T1A, T1B; T5J = ii[WS(is, 63)]; T5K = ii[WS(is, 31)]; T5L = T5J - T5K; Tbo = T5J + T5K; T1A = ri[WS(is, 15)]; T1B = ri[WS(is, 47)]; T1C = T1A + T1B; T5I = T1A - T1B; } T54 = ii[WS(is, 15)]; T55 = ii[WS(is, 47)]; T56 = T54 - T55; Tbp = T54 + T55; { E T1H, T1I, T5d, T5e, T5f, T5g; T1H = ri[WS(is, 55)]; T1I = ri[WS(is, 23)]; T5d = T1H - T1I; T5e = ii[WS(is, 55)]; T5f = ii[WS(is, 23)]; T5g = T5e - T5f; T1J = T1H + T1I; Tb9 = T5e + T5f; T5h = T5d + T5g; T5N = T5d - T5g; } { E T1E, T1F, T5b, T58, T59, T5a; T1E = ri[WS(is, 7)]; T1F = ri[WS(is, 39)]; T5b = T1E - T1F; T58 = ii[WS(is, 7)]; T59 = ii[WS(is, 39)]; T5a = T58 - T59; T1G = T1E + T1F; Tb8 = T58 + T59; T5c = T5a - T5b; T5O = T5b + T5a; } } { E T1D, T1K, Tbq, Tbr; T1D = T1z + T1C; T1K = T1G + T1J; T1L = T1D + T1K; Tdv = T1D - T1K; Tbq = Tbo - Tbp; Tbr = T1J - T1G; Tbs = Tbq - Tbr; Tcw = Tbr + Tbq; } { E TdA, TdB, T57, T5i; TdA = Tbo + Tbp; TdB = Tb8 + Tb9; TdC = TdA - TdB; Teo = TdA + TdB; T57 = T53 - T56; T5i = KP707106781 * (T5c - T5h); T5j = T57 - T5i; T6V = T57 + T5i; } { E T5M, T5P, T8w, T8x; T5M = T5I + T5L; T5P = KP707106781 * (T5N - T5O); T5Q = T5M - T5P; T6Y = T5M + T5P; T8w = T5L - T5I; T8x = KP707106781 * (T5c + T5h); T8y = T8w - T8x; T9C = T8w + T8x; } { E Tb7, Tba, T8l, T8m; Tb7 = T1z - T1C; Tba = Tb8 - Tb9; Tbb = Tb7 - Tba; Tct = Tb7 + Tba; T8l = T53 + T56; T8m = KP707106781 * (T5O + T5N); T8n = T8l - T8m; T9z = T8l + T8m; } } { E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; E T3X; { E TL, TM, T2R, T2S; TL = ri[WS(is, 62)]; TM = ri[WS(is, 30)]; TN = TL + TM; T40 = TL - TM; { E T2O, T2P, TO, TP; T2O = ii[WS(is, 62)]; T2P = ii[WS(is, 30)]; T2Q = T2O + T2P; T3Q = T2O - T2P; TO = ri[WS(is, 14)]; TP = ri[WS(is, 46)]; TQ = TO + TP; T3P = TO - TP; } T2R = ii[WS(is, 14)]; T2S = ii[WS(is, 46)]; T2T = T2R + T2S; T41 = T2R - T2S; { E TV, TW, T3S, T2Y, T2Z, T3T; TV = ri[WS(is, 54)]; TW = ri[WS(is, 22)]; T3S = TV - TW; T2Y = ii[WS(is, 54)]; T2Z = ii[WS(is, 22)]; T3T = T2Y - T2Z; TX = TV + TW; T44 = T3S + T3T; T30 = T2Y + T2Z; T3U = T3S - T3T; } { E TS, TT, T3V, T2V, T2W, T3W; TS = ri[WS(is, 6)]; TT = ri[WS(is, 38)]; T3V = TS - TT; T2V = ii[WS(is, 6)]; T2W = ii[WS(is, 38)]; T3W = T2V - T2W; TU = TS + TT; T43 = T3W - T3V; T2X = T2V + T2W; T3X = T3V + T3W; } } { E TR, TY, Tax, Tay; TR = TN + TQ; TY = TU + TX; TZ = TR + TY; Tdf = TR - TY; Tax = T2Q - T2T; Tay = TX - TU; Taz = Tax - Tay; Tch = Tay + Tax; } { E TaA, TaB, T2U, T31; TaA = TN - TQ; TaB = T2X - T30; TaC = TaA - TaB; Tci = TaA + TaB; T2U = T2Q + T2T; T31 = T2X + T30; T32 = T2U + T31; Tdg = T2U - T31; } { E T3R, T3Y, T7T, T7U; T3R = T3P + T3Q; T3Y = KP707106781 * (T3U - T3X); T3Z = T3R - T3Y; T6J = T3R + T3Y; T7T = T40 + T41; T7U = KP707106781 * (T3X + T3U); T7V = T7T - T7U; T9n = T7T + T7U; } { E T7W, T7X, T42, T45; T7W = T3Q - T3P; T7X = KP707106781 * (T43 + T44); T7Y = T7W - T7X; T9o = T7W + T7X; T42 = T40 - T41; T45 = KP707106781 * (T43 - T44); T46 = T42 - T45; T6K = T42 + T45; } } { E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o; E T4U; { E T12, T13, T4Q, T4R; T12 = ri[WS(is, 1)]; T13 = ri[WS(is, 33)]; T14 = T12 + T13; T4P = T12 - T13; { E T4b, T4c, T15, T16; T4b = ii[WS(is, 1)]; T4c = ii[WS(is, 33)]; T4d = T4b - T4c; TaG = T4b + T4c; T15 = ri[WS(is, 17)]; T16 = ri[WS(is, 49)]; T17 = T15 + T16; T4a = T15 - T16; } T4Q = ii[WS(is, 17)]; T4R = ii[WS(is, 49)]; T4S = T4Q - T4R; TaH = T4Q + T4R; { E T1c, T1d, T4f, T4g, T4h, T4i; T1c = ri[WS(is, 57)]; T1d = ri[WS(is, 25)]; T4f = T1c - T1d; T4g = ii[WS(is, 57)]; T4h = ii[WS(is, 25)]; T4i = T4g - T4h; T1e = T1c + T1d; TaZ = T4g + T4h; T4j = T4f - T4i; T4V = T4f + T4i; } { E T19, T1a, T4k, T4l, T4m, T4n; T19 = ri[WS(is, 9)]; T1a = ri[WS(is, 41)]; T4k = T19 - T1a; T4l = ii[WS(is, 9)]; T4m = ii[WS(is, 41)]; T4n = T4l - T4m; T1b = T19 + T1a; TaY = T4l + T4m; T4o = T4k + T4n; T4U = T4n - T4k; } } { E T18, T1f, TaX, Tb0; T18 = T14 + T17; T1f = T1b + T1e; T1g = T18 + T1f; Tdp = T18 - T1f; TaX = T14 - T17; Tb0 = TaY - TaZ; Tb1 = TaX - Tb0; Tcm = TaX + Tb0; } { E Tdk, Tdl, T4e, T4p; Tdk = TaG + TaH; Tdl = TaY + TaZ; Tdm = Tdk - Tdl; Tej = Tdk + Tdl; T4e = T4a + T4d; T4p = KP707106781 * (T4j - T4o); T4q = T4e - T4p; T6R = T4e + T4p; } { E T4T, T4W, T8d, T8e; T4T = T4P - T4S; T4W = KP707106781 * (T4U - T4V); T4X = T4T - T4W; T6O = T4T + T4W; T8d = T4P + T4S; T8e = KP707106781 * (T4o + T4j); T8f = T8d - T8e; T9s = T8d + T8e; } { E TaI, TaJ, T82, T83; TaI = TaG - TaH; TaJ = T1e - T1b; TaK = TaI - TaJ; Tcp = TaJ + TaI; T82 = T4d - T4a; T83 = KP707106781 * (T4U + T4V); T84 = T82 - T83; T9v = T82 + T83; } } { E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v; E T4A, TaO, TaL, T86, T85; { E T4H, T4F, T4C, T4K; { E T1h, T1i, T4D, T4E; T1h = ri[WS(is, 5)]; T1i = ri[WS(is, 37)]; T1j = T1h + T1i; T4H = T1h - T1i; T4D = ii[WS(is, 5)]; T4E = ii[WS(is, 37)]; T4F = T4D - T4E; TaR = T4D + T4E; } { E T1k, T1l, T4I, T4J; T1k = ri[WS(is, 21)]; T1l = ri[WS(is, 53)]; T1m = T1k + T1l; T4C = T1k - T1l; T4I = ii[WS(is, 21)]; T4J = ii[WS(is, 53)]; T4K = T4I - T4J; TaS = T4I + T4J; } T4G = T4C + T4F; T4L = T4H - T4K; TaT = TaR - TaS; TaQ = T1j - T1m; T89 = T4H + T4K; T88 = T4F - T4C; } { E T4r, T4z, T4w, T4u; { E T1o, T1p, T4x, T4y; T1o = ri[WS(is, 61)]; T1p = ri[WS(is, 29)]; T1q = T1o + T1p; T4r = T1o - T1p; T4x = ii[WS(is, 61)]; T4y = ii[WS(is, 29)]; T4z = T4x - T4y; TaM = T4x + T4y; } { E T1r, T1s, T4s, T4t; T1r = ri[WS(is, 13)]; T1s = ri[WS(is, 45)]; T1t = T1r + T1s; T4w = T1r - T1s; T4s = ii[WS(is, 13)]; T4t = ii[WS(is, 45)]; T4u = T4s - T4t; TaN = T4s + T4t; } T4v = T4r - T4u; T4A = T4w + T4z; TaO = TaM - TaN; TaL = T1q - T1t; T86 = T4z - T4w; T85 = T4r + T4u; } { E T1n, T1u, Tb2, Tb3; T1n = T1j + T1m; T1u = T1q + T1t; T1v = T1n + T1u; Tdn = T1u - T1n; Tb2 = TaT - TaQ; Tb3 = TaL + TaO; Tb4 = KP707106781 * (Tb2 - Tb3); Tcq = KP707106781 * (Tb2 + Tb3); } { E Tdq, Tdr, T4B, T4M; Tdq = TaR + TaS; Tdr = TaM + TaN; Tds = Tdq - Tdr; Tek = Tdq + Tdr; T4B = FNMS(KP923879532, T4A, KP382683432 * T4v); T4M = FMA(KP923879532, T4G, KP382683432 * T4L); T4N = T4B - T4M; T6P = T4M + T4B; } { E T4Y, T4Z, T8g, T8h; T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G); T4Z = FMA(KP382683432, T4A, KP923879532 * T4v); T50 = T4Y - T4Z; T6S = T4Y + T4Z; T8g = FNMS(KP382683432, T89, KP923879532 * T88); T8h = FMA(KP923879532, T86, KP382683432 * T85); T8i = T8g - T8h; T9w = T8g + T8h; } { E TaP, TaU, T87, T8a; TaP = TaL - TaO; TaU = TaQ + TaT; TaV = KP707106781 * (TaP - TaU); Tcn = KP707106781 * (TaU + TaP); T87 = FNMS(KP382683432, T86, KP923879532 * T85); T8a = FMA(KP382683432, T88, KP923879532 * T89); T8b = T87 - T8a; T9t = T8a + T87; } } { E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z; E T5E, Tbk, Tbh, T8s, T8r; { E T5p, T5n, T5k, T5s; { E T1M, T1N, T5l, T5m; T1M = ri[WS(is, 3)]; T1N = ri[WS(is, 35)]; T1O = T1M + T1N; T5p = T1M - T1N; T5l = ii[WS(is, 3)]; T5m = ii[WS(is, 35)]; T5n = T5l - T5m; Tbc = T5l + T5m; } { E T1P, T1Q, T5q, T5r; T1P = ri[WS(is, 19)]; T1Q = ri[WS(is, 51)]; T1R = T1P + T1Q; T5k = T1P - T1Q; T5q = ii[WS(is, 19)]; T5r = ii[WS(is, 51)]; T5s = T5q - T5r; Tbd = T5q + T5r; } T5o = T5k + T5n; T5t = T5p - T5s; Tbf = T1O - T1R; Tbe = Tbc - Tbd; T8p = T5p + T5s; T8o = T5n - T5k; } { E T5A, T5y, T5v, T5D; { E T1T, T1U, T5w, T5x; T1T = ri[WS(is, 59)]; T1U = ri[WS(is, 27)]; T1V = T1T + T1U; T5A = T1T - T1U; T5w = ii[WS(is, 59)]; T5x = ii[WS(is, 27)]; T5y = T5w - T5x; Tbi = T5w + T5x; } { E T1W, T1X, T5B, T5C; T1W = ri[WS(is, 11)]; T1X = ri[WS(is, 43)]; T1Y = T1W + T1X; T5v = T1W - T1X; T5B = ii[WS(is, 11)]; T5C = ii[WS(is, 43)]; T5D = T5B - T5C; Tbj = T5B + T5C; } T5z = T5v + T5y; T5E = T5A - T5D; Tbk = Tbi - Tbj; Tbh = T1V - T1Y; T8s = T5A + T5D; T8r = T5y - T5v; } { E T1S, T1Z, Tbt, Tbu; T1S = T1O + T1R; T1Z = T1V + T1Y; T20 = T1S + T1Z; TdD = T1Z - T1S; Tbt = Tbh - Tbk; Tbu = Tbf + Tbe; Tbv = KP707106781 * (Tbt - Tbu); Tcu = KP707106781 * (Tbu + Tbt); } { E Tdw, Tdx, T5u, T5F; Tdw = Tbc + Tbd; Tdx = Tbi + Tbj; Tdy = Tdw - Tdx; Tep = Tdw + Tdx; T5u = FNMS(KP923879532, T5t, KP382683432 * T5o); T5F = FMA(KP382683432, T5z, KP923879532 * T5E); T5G = T5u - T5F; T6Z = T5u + T5F; } { E T5R, T5S, T8z, T8A; T5R = FNMS(KP923879532, T5z, KP382683432 * T5E); T5S = FMA(KP923879532, T5o, KP382683432 * T5t); T5T = T5R - T5S; T6W = T5S + T5R; T8z = FNMS(KP382683432, T8r, KP923879532 * T8s); T8A = FMA(KP382683432, T8o, KP923879532 * T8p); T8B = T8z - T8A; T9A = T8A + T8z; } { E Tbg, Tbl, T8q, T8t; Tbg = Tbe - Tbf; Tbl = Tbh + Tbk; Tbm = KP707106781 * (Tbg - Tbl); Tcx = KP707106781 * (Tbg + Tbl); T8q = FNMS(KP382683432, T8p, KP923879532 * T8o); T8t = FMA(KP923879532, T8r, KP382683432 * T8s); T8u = T8q - T8t; T9D = T8q + T8t; } } { E T11, TeD, TeG, TeI, T22, T23, T34, TeH; { E Tv, T10, TeE, TeF; Tv = Tf + Tu; T10 = TK + TZ; T11 = Tv + T10; TeD = Tv - T10; TeE = Tej + Tek; TeF = Teo + Tep; TeG = TeE - TeF; TeI = TeE + TeF; } { E T1w, T21, T2y, T33; T1w = T1g + T1v; T21 = T1L + T20; T22 = T1w + T21; T23 = T21 - T1w; T2y = T2i + T2x; T33 = T2N + T32; T34 = T2y - T33; TeH = T2y + T33; } ro[WS(os, 32)] = T11 - T22; io[WS(os, 32)] = TeH - TeI; ro[0] = T11 + T22; io[0] = TeH + TeI; io[WS(os, 16)] = T23 + T34; ro[WS(os, 16)] = TeD + TeG; io[WS(os, 48)] = T34 - T23; ro[WS(os, 48)] = TeD - TeG; } { E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; { E Tef, Teg, Tet, Teu; Tef = Tf - Tu; Teg = T2N - T32; Teh = Tef + Teg; Tex = Tef - Teg; Tet = T2i - T2x; Teu = TZ - TK; Tev = Tet - Teu; TeB = Teu + Tet; } { E Tei, Tel, Ten, Teq; Tei = T1g - T1v; Tel = Tej - Tek; Tem = Tei + Tel; Tey = Tel - Tei; Ten = T1L - T20; Teq = Teo - Tep; Ter = Ten - Teq; Tez = Ten + Teq; } { E Tes, TeC, Tew, TeA; Tes = KP707106781 * (Tem + Ter); ro[WS(os, 40)] = Teh - Tes; ro[WS(os, 8)] = Teh + Tes; TeC = KP707106781 * (Tey + Tez); io[WS(os, 40)] = TeB - TeC; io[WS(os, 8)] = TeB + TeC; Tew = KP707106781 * (Ter - Tem); io[WS(os, 56)] = Tev - Tew; io[WS(os, 24)] = Tev + Tew; TeA = KP707106781 * (Tey - Tez); ro[WS(os, 56)] = Tex - TeA; ro[WS(os, 24)] = Tex + TeA; } } { E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF; E TdR; { E Tde, Tdh, Tdo, Tdt; Tdb = Td9 - Tda; TdV = Td9 + Tda; Te5 = TdI + TdH; TdJ = TdH - TdI; Tde = Tdc - Tdd; Tdh = Tdf + Tdg; Tdi = KP707106781 * (Tde - Tdh); Te6 = KP707106781 * (Tde + Tdh); { E Te1, Te2, TdK, TdL; Te1 = Tdv + Tdy; Te2 = TdD + TdC; Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1); Teb = FMA(KP923879532, Te2, KP382683432 * Te1); TdK = Tdf - Tdg; TdL = Tdd + Tdc; TdM = KP707106781 * (TdK - TdL); TdW = KP707106781 * (TdL + TdK); } Tdo = Tdm - Tdn; Tdt = Tdp - Tds; Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt); TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo); { E TdY, TdZ, Tdz, TdE; TdY = Tdn + Tdm; TdZ = Tdp + Tds; Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ); Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY); Tdz = Tdv - Tdy; TdE = TdC - TdD; TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz); TdR = FMA(KP382683432, TdE, KP923879532 * Tdz); } } { E Tdj, TdG, TdT, TdU; Tdj = Tdb + Tdi; TdG = Tdu + TdF; ro[WS(os, 44)] = Tdj - TdG; ro[WS(os, 12)] = Tdj + TdG; TdT = TdJ + TdM; TdU = TdQ + TdR; io[WS(os, 44)] = TdT - TdU; io[WS(os, 12)] = TdT + TdU; } { E TdN, TdO, TdP, TdS; TdN = TdJ - TdM; TdO = TdF - Tdu; io[WS(os, 60)] = TdN - TdO; io[WS(os, 28)] = TdN + TdO; TdP = Tdb - Tdi; TdS = TdQ - TdR; ro[WS(os, 60)] = TdP - TdS; ro[WS(os, 28)] = TdP + TdS; } { E TdX, Te4, Ted, Tee; TdX = TdV + TdW; Te4 = Te0 + Te3; ro[WS(os, 36)] = TdX - Te4; ro[WS(os, 4)] = TdX + Te4; Ted = Te5 + Te6; Tee = Tea + Teb; io[WS(os, 36)] = Ted - Tee; io[WS(os, 4)] = Ted + Tee; } { E Te7, Te8, Te9, Tec; Te7 = Te5 - Te6; Te8 = Te3 - Te0; io[WS(os, 52)] = Te7 - Te8; io[WS(os, 20)] = Te7 + Te8; Te9 = TdV - TdW; Tec = Tea - Teb; ro[WS(os, 52)] = Te9 - Tec; ro[WS(os, 20)] = Te9 + Tec; } } { E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz; E TcL, Tcc, TcC; Tcc = KP707106781 * (TbD + TbC); Tcd = Tcb - Tcc; TcP = Tcb + Tcc; TcC = KP707106781 * (Tak + Tan); TcD = TcB - TcC; TcZ = TcB + TcC; { E Tcg, Tcj, TcV, TcW; Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce); Tcj = FMA(KP923879532, Tch, KP382683432 * Tci); Tck = Tcg - Tcj; Td0 = Tcg + Tcj; TcV = Tct + Tcu; TcW = Tcw + Tcx; TcX = FNMS(KP195090322, TcW, KP980785280 * TcV); Td5 = FMA(KP195090322, TcV, KP980785280 * TcW); } { E Tco, Tcr, TcE, TcF; Tco = Tcm - Tcn; Tcr = Tcp - Tcq; Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr); TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr); TcE = FNMS(KP382683432, Tch, KP923879532 * Tci); TcF = FMA(KP382683432, Tce, KP923879532 * Tcf); TcG = TcE - TcF; TcQ = TcF + TcE; } { E TcS, TcT, Tcv, Tcy; TcS = Tcm + Tcn; TcT = Tcp + Tcq; TcU = FMA(KP980785280, TcS, KP195090322 * TcT); Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT); Tcv = Tct - Tcu; Tcy = Tcw - Tcx; Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv); TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy); } { E Tcl, TcA, TcN, TcO; Tcl = Tcd + Tck; TcA = Tcs + Tcz; ro[WS(os, 42)] = Tcl - TcA; ro[WS(os, 10)] = Tcl + TcA; TcN = TcD + TcG; TcO = TcK + TcL; io[WS(os, 42)] = TcN - TcO; io[WS(os, 10)] = TcN + TcO; } { E TcH, TcI, TcJ, TcM; TcH = TcD - TcG; TcI = Tcz - Tcs; io[WS(os, 58)] = TcH - TcI; io[WS(os, 26)] = TcH + TcI; TcJ = Tcd - Tck; TcM = TcK - TcL; ro[WS(os, 58)] = TcJ - TcM; ro[WS(os, 26)] = TcJ + TcM; } { E TcR, TcY, Td7, Td8; TcR = TcP + TcQ; TcY = TcU + TcX; ro[WS(os, 34)] = TcR - TcY; ro[WS(os, 2)] = TcR + TcY; Td7 = TcZ + Td0; Td8 = Td4 + Td5; io[WS(os, 34)] = Td7 - Td8; io[WS(os, 2)] = Td7 + Td8; } { E Td1, Td2, Td3, Td6; Td1 = TcZ - Td0; Td2 = TcX - TcU; io[WS(os, 50)] = Td1 - Td2; io[WS(os, 18)] = Td1 + Td2; Td3 = TcP - TcQ; Td6 = Td4 - Td5; ro[WS(os, 50)] = Td3 - Td6; ro[WS(os, 18)] = Td3 + Td6; } } { E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx; E TbN, Tao, TbE; Tao = KP707106781 * (Tak - Tan); Tap = Tah - Tao; TbR = Tah + Tao; TbE = KP707106781 * (TbC - TbD); TbF = TbB - TbE; Tc1 = TbB + TbE; { E Taw, TaD, TbX, TbY; Taw = FNMS(KP923879532, Tav, KP382683432 * Tas); TaD = FMA(KP382683432, Taz, KP923879532 * TaC); TaE = Taw - TaD; Tc2 = Taw + TaD; TbX = Tbb + Tbm; TbY = Tbs + Tbv; TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX); Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX); } { E TaW, Tb5, TbG, TbH; TaW = TaK - TaV; Tb5 = Tb1 - Tb4; Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5); TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW); TbG = FNMS(KP923879532, Taz, KP382683432 * TaC); TbH = FMA(KP923879532, Tas, KP382683432 * Tav); TbI = TbG - TbH; TbS = TbH + TbG; } { E TbU, TbV, Tbn, Tbw; TbU = TaK + TaV; TbV = Tb1 + Tb4; TbW = FMA(KP555570233, TbU, KP831469612 * TbV); Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU); Tbn = Tbb - Tbm; Tbw = Tbs - Tbv; Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn); TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn); } { E TaF, Tby, TbP, TbQ; TaF = Tap + TaE; Tby = Tb6 + Tbx; ro[WS(os, 46)] = TaF - Tby; ro[WS(os, 14)] = TaF + Tby; TbP = TbF + TbI; TbQ = TbM + TbN; io[WS(os, 46)] = TbP - TbQ; io[WS(os, 14)] = TbP + TbQ; } { E TbJ, TbK, TbL, TbO; TbJ = TbF - TbI; TbK = Tbx - Tb6; io[WS(os, 62)] = TbJ - TbK; io[WS(os, 30)] = TbJ + TbK; TbL = Tap - TaE; TbO = TbM - TbN; ro[WS(os, 62)] = TbL - TbO; ro[WS(os, 30)] = TbL + TbO; } { E TbT, Tc0, Tc9, Tca; TbT = TbR + TbS; Tc0 = TbW + TbZ; ro[WS(os, 38)] = TbT - Tc0; ro[WS(os, 6)] = TbT + Tc0; Tc9 = Tc1 + Tc2; Tca = Tc6 + Tc7; io[WS(os, 38)] = Tc9 - Tca; io[WS(os, 6)] = Tc9 + Tca; } { E Tc3, Tc4, Tc5, Tc8; Tc3 = Tc1 - Tc2; Tc4 = TbZ - TbW; io[WS(os, 54)] = Tc3 - Tc4; io[WS(os, 22)] = Tc3 + Tc4; Tc5 = TbR - TbS; Tc8 = Tc6 - Tc7; ro[WS(os, 54)] = Tc5 - Tc8; ro[WS(os, 22)] = Tc5 + Tc8; } } { E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; E T7d; { E T6D, T6E, T7k, T7l; T6D = T37 + T3e; T6E = T65 + T64; T6F = T6D - T6E; T7h = T6D + T6E; T7k = T6O + T6P; T7l = T6R + T6S; T7m = FMA(KP956940335, T7k, KP290284677 * T7l); T7w = FNMS(KP290284677, T7k, KP956940335 * T7l); } { E T7n, T7o, T6I, T6L; T7n = T6V + T6W; T7o = T6Y + T6Z; T7p = FNMS(KP290284677, T7o, KP956940335 * T7n); T7x = FMA(KP290284677, T7n, KP956940335 * T7o); T6I = FNMS(KP555570233, T6H, KP831469612 * T6G); T6L = FMA(KP831469612, T6J, KP555570233 * T6K); T6M = T6I - T6L; T7s = T6I + T6L; } { E T6Q, T6T, T73, T74; T6Q = T6O - T6P; T6T = T6R - T6S; T6U = FMA(KP471396736, T6Q, KP881921264 * T6T); T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T); T73 = T5Z + T62; T74 = T3m + T3t; T75 = T73 - T74; T7r = T73 + T74; } { E T76, T77, T6X, T70; T76 = FNMS(KP555570233, T6J, KP831469612 * T6K); T77 = FMA(KP555570233, T6G, KP831469612 * T6H); T78 = T76 - T77; T7i = T77 + T76; T6X = T6V - T6W; T70 = T6Y - T6Z; T71 = FNMS(KP881921264, T70, KP471396736 * T6X); T7d = FMA(KP881921264, T6X, KP471396736 * T70); } { E T6N, T72, T7f, T7g; T6N = T6F + T6M; T72 = T6U + T71; ro[WS(os, 43)] = T6N - T72; ro[WS(os, 11)] = T6N + T72; T7f = T75 + T78; T7g = T7c + T7d; io[WS(os, 43)] = T7f - T7g; io[WS(os, 11)] = T7f + T7g; } { E T79, T7a, T7b, T7e; T79 = T75 - T78; T7a = T71 - T6U; io[WS(os, 59)] = T79 - T7a; io[WS(os, 27)] = T79 + T7a; T7b = T6F - T6M; T7e = T7c - T7d; ro[WS(os, 59)] = T7b - T7e; ro[WS(os, 27)] = T7b + T7e; } { E T7j, T7q, T7z, T7A; T7j = T7h + T7i; T7q = T7m + T7p; ro[WS(os, 35)] = T7j - T7q; ro[WS(os, 3)] = T7j + T7q; T7z = T7r + T7s; T7A = T7w + T7x; io[WS(os, 35)] = T7z - T7A; io[WS(os, 3)] = T7z + T7A; } { E T7t, T7u, T7v, T7y; T7t = T7r - T7s; T7u = T7p - T7m; io[WS(os, 51)] = T7t - T7u; io[WS(os, 19)] = T7t + T7u; T7v = T7h - T7i; T7y = T7w - T7x; ro[WS(os, 51)] = T7v - T7y; ro[WS(os, 19)] = T7v + T7y; } } { E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; E T9R; { E T9h, T9i, T9Y, T9Z; T9h = T7B + T7C; T9i = T8J + T8I; T9j = T9h - T9i; T9V = T9h + T9i; T9Y = T9s + T9t; T9Z = T9v + T9w; Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z); Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z); } { E Ta1, Ta2, T9m, T9p; Ta1 = T9z + T9A; Ta2 = T9C + T9D; Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1); Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2); T9m = FNMS(KP195090322, T9l, KP980785280 * T9k); T9p = FMA(KP195090322, T9n, KP980785280 * T9o); T9q = T9m - T9p; Ta6 = T9m + T9p; } { E T9u, T9x, T9H, T9I; T9u = T9s - T9t; T9x = T9v - T9w; T9y = FMA(KP634393284, T9u, KP773010453 * T9x); T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x); T9H = T8F + T8G; T9I = T7G + T7J; T9J = T9H - T9I; Ta5 = T9H + T9I; } { E T9K, T9L, T9B, T9E; T9K = FNMS(KP195090322, T9o, KP980785280 * T9n); T9L = FMA(KP980785280, T9l, KP195090322 * T9k); T9M = T9K - T9L; T9W = T9L + T9K; T9B = T9z - T9A; T9E = T9C - T9D; T9F = FNMS(KP773010453, T9E, KP634393284 * T9B); T9R = FMA(KP773010453, T9B, KP634393284 * T9E); } { E T9r, T9G, T9T, T9U; T9r = T9j + T9q; T9G = T9y + T9F; ro[WS(os, 41)] = T9r - T9G; ro[WS(os, 9)] = T9r + T9G; T9T = T9J + T9M; T9U = T9Q + T9R; io[WS(os, 41)] = T9T - T9U; io[WS(os, 9)] = T9T + T9U; } { E T9N, T9O, T9P, T9S; T9N = T9J - T9M; T9O = T9F - T9y; io[WS(os, 57)] = T9N - T9O; io[WS(os, 25)] = T9N + T9O; T9P = T9j - T9q; T9S = T9Q - T9R; ro[WS(os, 57)] = T9P - T9S; ro[WS(os, 25)] = T9P + T9S; } { E T9X, Ta4, Tad, Tae; T9X = T9V + T9W; Ta4 = Ta0 + Ta3; ro[WS(os, 33)] = T9X - Ta4; ro[WS(os, 1)] = T9X + Ta4; Tad = Ta5 + Ta6; Tae = Taa + Tab; io[WS(os, 33)] = Tad - Tae; io[WS(os, 1)] = Tad + Tae; } { E Ta7, Ta8, Ta9, Tac; Ta7 = Ta5 - Ta6; Ta8 = Ta3 - Ta0; io[WS(os, 49)] = Ta7 - Ta8; io[WS(os, 17)] = Ta7 + Ta8; Ta9 = T9V - T9W; Tac = Taa - Tab; ro[WS(os, 49)] = Ta9 - Tac; ro[WS(os, 17)] = Ta9 + Tac; } } { E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V; E T6f; { E T3f, T3u, T6m, T6n; T3f = T37 - T3e; T3u = T3m - T3t; T3v = T3f - T3u; T6j = T3f + T3u; T6m = T4q + T4N; T6n = T4X + T50; T6o = FMA(KP634393284, T6m, KP773010453 * T6n); T6y = FNMS(KP634393284, T6n, KP773010453 * T6m); } { E T6p, T6q, T3O, T47; T6p = T5j + T5G; T6q = T5Q + T5T; T6r = FNMS(KP634393284, T6q, KP773010453 * T6p); T6z = FMA(KP773010453, T6q, KP634393284 * T6p); T3O = FNMS(KP980785280, T3N, KP195090322 * T3G); T47 = FMA(KP195090322, T3Z, KP980785280 * T46); T48 = T3O - T47; T6u = T3O + T47; } { E T4O, T51, T63, T66; T4O = T4q - T4N; T51 = T4X - T50; T52 = FMA(KP995184726, T4O, KP098017140 * T51); T6e = FNMS(KP995184726, T51, KP098017140 * T4O); T63 = T5Z - T62; T66 = T64 - T65; T67 = T63 - T66; T6t = T63 + T66; } { E T68, T69, T5H, T5U; T68 = FNMS(KP980785280, T3Z, KP195090322 * T46); T69 = FMA(KP980785280, T3G, KP195090322 * T3N); T6a = T68 - T69; T6k = T69 + T68; T5H = T5j - T5G; T5U = T5Q - T5T; T5V = FNMS(KP995184726, T5U, KP098017140 * T5H); T6f = FMA(KP098017140, T5U, KP995184726 * T5H); } { E T49, T5W, T6h, T6i; T49 = T3v + T48; T5W = T52 + T5V; ro[WS(os, 47)] = T49 - T5W; ro[WS(os, 15)] = T49 + T5W; T6h = T67 + T6a; T6i = T6e + T6f; io[WS(os, 47)] = T6h - T6i; io[WS(os, 15)] = T6h + T6i; } { E T6b, T6c, T6d, T6g; T6b = T67 - T6a; T6c = T5V - T52; io[WS(os, 63)] = T6b - T6c; io[WS(os, 31)] = T6b + T6c; T6d = T3v - T48; T6g = T6e - T6f; ro[WS(os, 63)] = T6d - T6g; ro[WS(os, 31)] = T6d + T6g; } { E T6l, T6s, T6B, T6C; T6l = T6j + T6k; T6s = T6o + T6r; ro[WS(os, 39)] = T6l - T6s; ro[WS(os, 7)] = T6l + T6s; T6B = T6t + T6u; T6C = T6y + T6z; io[WS(os, 39)] = T6B - T6C; io[WS(os, 7)] = T6B + T6C; } { E T6v, T6w, T6x, T6A; T6v = T6t - T6u; T6w = T6r - T6o; io[WS(os, 55)] = T6v - T6w; io[WS(os, 23)] = T6v + T6w; T6x = T6j - T6k; T6A = T6y - T6z; ro[WS(os, 55)] = T6x - T6A; ro[WS(os, 23)] = T6x + T6A; } } { E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D; E T8T; { E T7D, T7K, T90, T91; T7D = T7B - T7C; T7K = T7G - T7J; T7L = T7D - T7K; T8X = T7D + T7K; T90 = T84 + T8b; T91 = T8f + T8i; T92 = FMA(KP471396736, T90, KP881921264 * T91); T9c = FNMS(KP471396736, T91, KP881921264 * T90); } { E T93, T94, T7S, T7Z; T93 = T8n + T8u; T94 = T8y + T8B; T95 = FNMS(KP471396736, T94, KP881921264 * T93); T9d = FMA(KP881921264, T94, KP471396736 * T93); T7S = FNMS(KP831469612, T7R, KP555570233 * T7O); T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y); T80 = T7S - T7Z; T98 = T7S + T7Z; } { E T8c, T8j, T8H, T8K; T8c = T84 - T8b; T8j = T8f - T8i; T8k = FMA(KP956940335, T8c, KP290284677 * T8j); T8S = FNMS(KP956940335, T8j, KP290284677 * T8c); T8H = T8F - T8G; T8K = T8I - T8J; T8L = T8H - T8K; T97 = T8H + T8K; } { E T8M, T8N, T8v, T8C; T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V); T8N = FMA(KP555570233, T7R, KP831469612 * T7O); T8O = T8M - T8N; T8Y = T8N + T8M; T8v = T8n - T8u; T8C = T8y - T8B; T8D = FNMS(KP956940335, T8C, KP290284677 * T8v); T8T = FMA(KP290284677, T8C, KP956940335 * T8v); } { E T81, T8E, T8V, T8W; T81 = T7L + T80; T8E = T8k + T8D; ro[WS(os, 45)] = T81 - T8E; ro[WS(os, 13)] = T81 + T8E; T8V = T8L + T8O; T8W = T8S + T8T; io[WS(os, 45)] = T8V - T8W; io[WS(os, 13)] = T8V + T8W; } { E T8P, T8Q, T8R, T8U; T8P = T8L - T8O; T8Q = T8D - T8k; io[WS(os, 61)] = T8P - T8Q; io[WS(os, 29)] = T8P + T8Q; T8R = T7L - T80; T8U = T8S - T8T; ro[WS(os, 61)] = T8R - T8U; ro[WS(os, 29)] = T8R + T8U; } { E T8Z, T96, T9f, T9g; T8Z = T8X + T8Y; T96 = T92 + T95; ro[WS(os, 37)] = T8Z - T96; ro[WS(os, 5)] = T8Z + T96; T9f = T97 + T98; T9g = T9c + T9d; io[WS(os, 37)] = T9f - T9g; io[WS(os, 5)] = T9f + T9g; } { E T99, T9a, T9b, T9e; T99 = T97 - T98; T9a = T95 - T92; io[WS(os, 53)] = T99 - T9a; io[WS(os, 21)] = T99 + T9a; T9b = T8X - T8Y; T9e = T9c - T9d; ro[WS(os, 53)] = T9b - T9e; ro[WS(os, 21)] = T9b + T9e; } } } } static void m1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs) { int i; for (i = v; i > 0; i -= 1) { m1_64_0(ri, ii, ro, io, is, os); ri += ivs; ii += ivs; ro += ovs; io += ovs; } } static const kdft_desc desc = { 64, "m1_64", {808, 144, 104, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_m1_64) (planner *p) { X(kdft_register) (p, m1_64, &desc); }