/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:29:33 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw -compact -variables 4 -n 13 -name n1_13 -include n.h */ /* * This function contains 176 FP additions, 68 FP multiplications, * (or, 138 additions, 30 multiplications, 38 fused multiply/add), * 71 stack variables, and 52 memory accesses */ /* * Generator Id's : * $Id: n1_13.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: n1_13.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: n1_13.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "n.h" static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs) { DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP083333333, +0.083333333333333333333333333333333333333333333); DK(KP251768516, +0.251768516431883313623436926934233488546674281); DK(KP075902986, +0.075902986037193865983102897245103540356428373); DK(KP132983124, +0.132983124607418643793760531921092974399165133); DK(KP258260390, +0.258260390311744861420450644284508567852516811); DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); DK(KP300238635, +0.300238635966332641462884626667381504676006424); DK(KP011599105, +0.011599105605768290721655456654083252189827041); DK(KP156891391, +0.156891391051584611046832726756003269660212636); DK(KP256247671, +0.256247671582936600958684654061725059144125175); DK(KP174138601, +0.174138601152135905005660794929264742616964676); DK(KP575140729, +0.575140729474003121368385547455453388461001608); DK(KP503537032, +0.503537032863766627246873853868466977093348562); DK(KP113854479, +0.113854479055790798974654345867655310534642560); DK(KP265966249, +0.265966249214837287587521063842185948798330267); DK(KP387390585, +0.387390585467617292130675966426762851778775217); DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP300462606, +0.300462606288665774426601772289207995520941381); DK(KP500000000, +0.500000000000000000000000000000000000000000000); int i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs) { E T1, T1q, Tt, Tu, To, T22, T20, T24, TF, TH, TA, TI, T1X, T25, T2a; E T2d, T18, T1n, T2k, T2n, T1l, T1r, T1f, T1o, T2h, T2m; T1 = ri[0]; T1q = ii[0]; { E Tf, Tp, Tb, TC, Tx, T6, TB, Tw, Ti, Tq, Tl, Tr, Tm, Ts, Td; E Te, Tc, Tn; Td = ri[WS(is, 8)]; Te = ri[WS(is, 5)]; Tf = Td + Te; Tp = Td - Te; { E T7, T8, T9, Ta; T7 = ri[WS(is, 12)]; T8 = ri[WS(is, 10)]; T9 = ri[WS(is, 4)]; Ta = T8 + T9; Tb = T7 + Ta; TC = T8 - T9; Tx = FNMS(KP500000000, Ta, T7); } { E T2, T3, T4, T5; T2 = ri[WS(is, 1)]; T3 = ri[WS(is, 3)]; T4 = ri[WS(is, 9)]; T5 = T3 + T4; T6 = T2 + T5; TB = T3 - T4; Tw = FNMS(KP500000000, T5, T2); } { E Tg, Th, Tj, Tk; Tg = ri[WS(is, 11)]; Th = ri[WS(is, 6)]; Ti = Tg + Th; Tq = Tg - Th; Tj = ri[WS(is, 7)]; Tk = ri[WS(is, 2)]; Tl = Tj + Tk; Tr = Tj - Tk; } Tm = Ti + Tl; Ts = Tq + Tr; Tt = Tp + Ts; Tu = T6 - Tb; Tc = T6 + Tb; Tn = Tf + Tm; To = Tc + Tn; T22 = KP300462606 * (Tc - Tn); { E T1Y, T1Z, TD, TE; T1Y = TB + TC; T1Z = Tq - Tr; T20 = T1Y - T1Z; T24 = T1Y + T1Z; TD = KP866025403 * (TB - TC); TE = FNMS(KP500000000, Ts, Tp); TF = TD - TE; TH = TD + TE; } { E Ty, Tz, T1V, T1W; Ty = Tw - Tx; Tz = KP866025403 * (Ti - Tl); TA = Ty + Tz; TI = Ty - Tz; T1V = Tw + Tx; T1W = FNMS(KP500000000, Tm, Tf); T1X = T1V - T1W; T25 = T1V + T1W; } } { E TZ, T2b, TV, T1i, T1a, TQ, T1h, T19, T12, T1d, T15, T1c, T16, T2c, TX; E TY, TW, T17; TX = ii[WS(is, 8)]; TY = ii[WS(is, 5)]; TZ = TX + TY; T2b = TX - TY; { E TR, TS, TT, TU; TR = ii[WS(is, 12)]; TS = ii[WS(is, 10)]; TT = ii[WS(is, 4)]; TU = TS + TT; TV = FNMS(KP500000000, TU, TR); T1i = TR + TU; T1a = TS - TT; } { E TM, TN, TO, TP; TM = ii[WS(is, 1)]; TN = ii[WS(is, 3)]; TO = ii[WS(is, 9)]; TP = TN + TO; TQ = FNMS(KP500000000, TP, TM); T1h = TM + TP; T19 = TN - TO; } { E T10, T11, T13, T14; T10 = ii[WS(is, 11)]; T11 = ii[WS(is, 6)]; T12 = T10 + T11; T1d = T10 - T11; T13 = ii[WS(is, 7)]; T14 = ii[WS(is, 2)]; T15 = T13 + T14; T1c = T13 - T14; } T16 = T12 + T15; T2c = T1d + T1c; T2a = T1h - T1i; T2d = T2b + T2c; TW = TQ + TV; T17 = FNMS(KP500000000, T16, TZ); T18 = TW - T17; T1n = TW + T17; { E T2i, T2j, T1j, T1k; T2i = TQ - TV; T2j = KP866025403 * (T15 - T12); T2k = T2i + T2j; T2n = T2i - T2j; T1j = T1h + T1i; T1k = TZ + T16; T1l = KP300462606 * (T1j - T1k); T1r = T1j + T1k; } { E T1b, T1e, T2f, T2g; T1b = T19 + T1a; T1e = T1c - T1d; T1f = T1b + T1e; T1o = T1e - T1b; T2f = FNMS(KP500000000, T2c, T2b); T2g = KP866025403 * (T1a - T19); T2h = T2f - T2g; T2m = T2g + T2f; } } ro[0] = T1 + To; io[0] = T1q + T1r; { E T1D, T1N, T1y, T1x, T1E, T1O, Tv, TK, T1J, T1Q, T1m, T1R, T1t, T1I, TG; E TJ; { E T1B, T1C, T1v, T1w; T1B = FMA(KP387390585, T1f, KP265966249 * T18); T1C = FMA(KP113854479, T1o, KP503537032 * T1n); T1D = T1B + T1C; T1N = T1C - T1B; T1y = FMA(KP575140729, Tu, KP174138601 * Tt); T1v = FNMS(KP156891391, TH, KP256247671 * TI); T1w = FMA(KP011599105, TF, KP300238635 * TA); T1x = T1v - T1w; T1E = T1y + T1x; T1O = KP1_732050807 * (T1v + T1w); } Tv = FNMS(KP174138601, Tu, KP575140729 * Tt); TG = FNMS(KP300238635, TF, KP011599105 * TA); TJ = FMA(KP256247671, TH, KP156891391 * TI); TK = TG - TJ; T1J = KP1_732050807 * (TJ + TG); T1Q = Tv - TK; { E T1g, T1H, T1p, T1s, T1G; T1g = FNMS(KP132983124, T1f, KP258260390 * T18); T1H = T1l - T1g; T1p = FNMS(KP251768516, T1o, KP075902986 * T1n); T1s = FNMS(KP083333333, T1r, T1q); T1G = T1s - T1p; T1m = FMA(KP2_000000000, T1g, T1l); T1R = T1H + T1G; T1t = FMA(KP2_000000000, T1p, T1s); T1I = T1G - T1H; } { E TL, T1u, T1P, T1S; TL = FMA(KP2_000000000, TK, Tv); T1u = T1m + T1t; io[WS(os, 1)] = TL + T1u; io[WS(os, 12)] = T1u - TL; { E T1z, T1A, T1T, T1U; T1z = FMS(KP2_000000000, T1x, T1y); T1A = T1t - T1m; io[WS(os, 5)] = T1z + T1A; io[WS(os, 8)] = T1A - T1z; T1T = T1R - T1Q; T1U = T1O + T1N; io[WS(os, 4)] = T1T - T1U; io[WS(os, 10)] = T1U + T1T; } T1P = T1N - T1O; T1S = T1Q + T1R; io[WS(os, 3)] = T1P + T1S; io[WS(os, 9)] = T1S - T1P; { E T1L, T1M, T1F, T1K; T1L = T1J + T1I; T1M = T1E + T1D; io[WS(os, 6)] = T1L - T1M; io[WS(os, 11)] = T1M + T1L; T1F = T1D - T1E; T1K = T1I - T1J; io[WS(os, 2)] = T1F + T1K; io[WS(os, 7)] = T1K - T1F; } } } { E T2y, T2I, T2J, T2K, T2B, T2L, T2e, T2p, T2u, T2G, T23, T2F, T28, T2t, T2l; E T2o; { E T2w, T2x, T2z, T2A; T2w = FMA(KP387390585, T20, KP265966249 * T1X); T2x = FNMS(KP503537032, T25, KP113854479 * T24); T2y = T2w + T2x; T2I = T2w - T2x; T2J = FMA(KP575140729, T2a, KP174138601 * T2d); T2z = FNMS(KP300238635, T2n, KP011599105 * T2m); T2A = FNMS(KP156891391, T2h, KP256247671 * T2k); T2K = T2z + T2A; T2B = KP1_732050807 * (T2z - T2A); T2L = T2J + T2K; } T2e = FNMS(KP575140729, T2d, KP174138601 * T2a); T2l = FMA(KP256247671, T2h, KP156891391 * T2k); T2o = FMA(KP300238635, T2m, KP011599105 * T2n); T2p = T2l - T2o; T2u = T2e - T2p; T2G = KP1_732050807 * (T2o + T2l); { E T21, T2r, T26, T27, T2s; T21 = FNMS(KP132983124, T20, KP258260390 * T1X); T2r = T22 - T21; T26 = FMA(KP251768516, T24, KP075902986 * T25); T27 = FNMS(KP083333333, To, T1); T2s = T27 - T26; T23 = FMA(KP2_000000000, T21, T22); T2F = T2s - T2r; T28 = FMA(KP2_000000000, T26, T27); T2t = T2r + T2s; } { E T29, T2q, T2N, T2O; T29 = T23 + T28; T2q = FMA(KP2_000000000, T2p, T2e); ro[WS(os, 12)] = T29 - T2q; ro[WS(os, 1)] = T29 + T2q; { E T2v, T2C, T2P, T2Q; T2v = T2t - T2u; T2C = T2y - T2B; ro[WS(os, 10)] = T2v - T2C; ro[WS(os, 4)] = T2v + T2C; T2P = T28 - T23; T2Q = FMS(KP2_000000000, T2K, T2J); ro[WS(os, 5)] = T2P - T2Q; ro[WS(os, 8)] = T2P + T2Q; } T2N = T2F - T2G; T2O = T2L - T2I; ro[WS(os, 11)] = T2N - T2O; ro[WS(os, 6)] = T2N + T2O; { E T2H, T2M, T2D, T2E; T2H = T2F + T2G; T2M = T2I + T2L; ro[WS(os, 7)] = T2H - T2M; ro[WS(os, 2)] = T2H + T2M; T2D = T2t + T2u; T2E = T2y + T2B; ro[WS(os, 3)] = T2D - T2E; ro[WS(os, 9)] = T2D + T2E; } } } } } static const kdft_desc desc = { 13, "n1_13", {138, 30, 38, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_13) (planner *p) { X(kdft_register) (p, n1_13, &desc); }