/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:29:32 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw -compact -variables 4 -n 5 -name n1_5 -include n.h */ /* * This function contains 32 FP additions, 12 FP multiplications, * (or, 26 additions, 6 multiplications, 6 fused multiply/add), * 21 stack variables, and 20 memory accesses */ /* * Generator Id's : * $Id: n1_5.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: n1_5.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: n1_5.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "n.h" static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs) { DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); int i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs) { E T1, To, T8, Tt, T9, Ts, Te, Tp, Th, Tn; T1 = ri[0]; To = ii[0]; { E T2, T3, T4, T5, T6, T7; T2 = ri[WS(is, 1)]; T3 = ri[WS(is, 4)]; T4 = T2 + T3; T5 = ri[WS(is, 2)]; T6 = ri[WS(is, 3)]; T7 = T5 + T6; T8 = T4 + T7; Tt = T5 - T6; T9 = KP559016994 * (T4 - T7); Ts = T2 - T3; } { E Tc, Td, Tl, Tf, Tg, Tm; Tc = ii[WS(is, 1)]; Td = ii[WS(is, 4)]; Tl = Tc + Td; Tf = ii[WS(is, 2)]; Tg = ii[WS(is, 3)]; Tm = Tf + Tg; Te = Tc - Td; Tp = Tl + Tm; Th = Tf - Tg; Tn = KP559016994 * (Tl - Tm); } ro[0] = T1 + T8; io[0] = To + Tp; { E Ti, Tk, Tb, Tj, Ta; Ti = FMA(KP951056516, Te, KP587785252 * Th); Tk = FNMS(KP587785252, Te, KP951056516 * Th); Ta = FNMS(KP250000000, T8, T1); Tb = T9 + Ta; Tj = Ta - T9; ro[WS(os, 4)] = Tb - Ti; ro[WS(os, 3)] = Tj + Tk; ro[WS(os, 1)] = Tb + Ti; ro[WS(os, 2)] = Tj - Tk; } { E Tu, Tv, Tr, Tw, Tq; Tu = FMA(KP951056516, Ts, KP587785252 * Tt); Tv = FNMS(KP587785252, Ts, KP951056516 * Tt); Tq = FNMS(KP250000000, Tp, To); Tr = Tn + Tq; Tw = Tq - Tn; io[WS(os, 1)] = Tr - Tu; io[WS(os, 3)] = Tw - Tv; io[WS(os, 4)] = Tu + Tr; io[WS(os, 2)] = Tv + Tw; } } } static const kdft_desc desc = { 5, "n1_5", {26, 6, 6, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc); }