/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:29:32 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw -compact -variables 4 -n 9 -name n1_9 -include n.h */ /* * This function contains 80 FP additions, 40 FP multiplications, * (or, 60 additions, 20 multiplications, 20 fused multiply/add), * 39 stack variables, and 36 memory accesses */ /* * Generator Id's : * $Id: n1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: n1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: n1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "n.h" static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs) { DK(KP939692620, +0.939692620785908384054109277324731469936208134); DK(KP342020143, +0.342020143325668733044099614682259580763083368); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); int i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs) { E T5, TO, Th, Tk, T1g, TR, Ta, T1c, Tq, TW, Tv, TX, Tf, T1d, TB; E T10, TG, TZ; { E T1, T2, T3, T4; T1 = ri[0]; T2 = ri[WS(is, 3)]; T3 = ri[WS(is, 6)]; T4 = T2 + T3; T5 = T1 + T4; TO = KP866025403 * (T3 - T2); Th = FNMS(KP500000000, T4, T1); } { E TP, Ti, Tj, TQ; TP = ii[0]; Ti = ii[WS(is, 3)]; Tj = ii[WS(is, 6)]; TQ = Ti + Tj; Tk = KP866025403 * (Ti - Tj); T1g = TP + TQ; TR = FNMS(KP500000000, TQ, TP); } { E T6, Ts, T9, Tr, Tp, Tt, Tm, Tu; T6 = ri[WS(is, 1)]; Ts = ii[WS(is, 1)]; { E T7, T8, Tn, To; T7 = ri[WS(is, 4)]; T8 = ri[WS(is, 7)]; T9 = T7 + T8; Tr = KP866025403 * (T8 - T7); Tn = ii[WS(is, 4)]; To = ii[WS(is, 7)]; Tp = KP866025403 * (Tn - To); Tt = Tn + To; } Ta = T6 + T9; T1c = Ts + Tt; Tm = FNMS(KP500000000, T9, T6); Tq = Tm + Tp; TW = Tm - Tp; Tu = FNMS(KP500000000, Tt, Ts); Tv = Tr + Tu; TX = Tu - Tr; } { E Tb, TD, Te, TC, TA, TE, Tx, TF; Tb = ri[WS(is, 2)]; TD = ii[WS(is, 2)]; { E Tc, Td, Ty, Tz; Tc = ri[WS(is, 5)]; Td = ri[WS(is, 8)]; Te = Tc + Td; TC = KP866025403 * (Td - Tc); Ty = ii[WS(is, 5)]; Tz = ii[WS(is, 8)]; TA = KP866025403 * (Ty - Tz); TE = Ty + Tz; } Tf = Tb + Te; T1d = TD + TE; Tx = FNMS(KP500000000, Te, Tb); TB = Tx + TA; T10 = Tx - TA; TF = FNMS(KP500000000, TE, TD); TG = TC + TF; TZ = TF - TC; } { E T1e, Tg, T1b, T1f, T1h, T1i; T1e = KP866025403 * (T1c - T1d); Tg = Ta + Tf; T1b = FNMS(KP500000000, Tg, T5); ro[0] = T5 + Tg; ro[WS(os, 3)] = T1b + T1e; ro[WS(os, 6)] = T1b - T1e; T1f = KP866025403 * (Tf - Ta); T1h = T1c + T1d; T1i = FNMS(KP500000000, T1h, T1g); io[WS(os, 3)] = T1f + T1i; io[0] = T1g + T1h; io[WS(os, 6)] = T1i - T1f; } { E Tl, TS, TI, TN, TM, TT, TJ, TU; Tl = Th + Tk; TS = TO + TR; { E Tw, TH, TK, TL; Tw = FMA(KP766044443, Tq, KP642787609 * Tv); TH = FMA(KP173648177, TB, KP984807753 * TG); TI = Tw + TH; TN = KP866025403 * (TH - Tw); TK = FNMS(KP642787609, Tq, KP766044443 * Tv); TL = FNMS(KP984807753, TB, KP173648177 * TG); TM = KP866025403 * (TK - TL); TT = TK + TL; } ro[WS(os, 1)] = Tl + TI; io[WS(os, 1)] = TS + TT; TJ = FNMS(KP500000000, TI, Tl); ro[WS(os, 7)] = TJ - TM; ro[WS(os, 4)] = TJ + TM; TU = FNMS(KP500000000, TT, TS); io[WS(os, 4)] = TN + TU; io[WS(os, 7)] = TU - TN; } { E TV, T14, T12, T13, T17, T1a, T18, T19; TV = Th - Tk; T14 = TR - TO; { E TY, T11, T15, T16; TY = FMA(KP173648177, TW, KP984807753 * TX); T11 = FNMS(KP939692620, T10, KP342020143 * TZ); T12 = TY + T11; T13 = KP866025403 * (T11 - TY); T15 = FNMS(KP984807753, TW, KP173648177 * TX); T16 = FMA(KP342020143, T10, KP939692620 * TZ); T17 = T15 - T16; T1a = KP866025403 * (T15 + T16); } ro[WS(os, 2)] = TV + T12; io[WS(os, 2)] = T14 + T17; T18 = FNMS(KP500000000, T17, T14); io[WS(os, 5)] = T13 + T18; io[WS(os, 8)] = T18 - T13; T19 = FNMS(KP500000000, T12, TV); ro[WS(os, 8)] = T19 - T1a; ro[WS(os, 5)] = T19 + T1a; } } } static const kdft_desc desc = { 9, "n1_9", {60, 20, 20, 0}, &GENUS, 0, 0, 0, 0 }; void X(codelet_n1_9) (planner *p) { X(kdft_register) (p, n1_9, &desc); }