/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:30:07 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 32 -name t1_32 -include t.h */ /* * This function contains 434 FP additions, 208 FP multiplications, * (or, 340 additions, 114 multiplications, 94 fused multiply/add), * 96 stack variables, and 128 memory accesses */ /* * Generator Id's : * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_32.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "t.h" static const R *t1_32(R *ri, R *ii, const R *W, stride ios, int m, int dist) { DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 62) { E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; E T4m, T5h, T4v, T5e; { E T1, T76, T6, T75, Tc, T32, Th, T33; T1 = ri[0]; T76 = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(ios, 16)]; T5 = ii[WS(ios, 16)]; T2 = W[30]; T4 = W[31]; T6 = FMA(T2, T3, T4 * T5); T75 = FNMS(T4, T3, T2 * T5); } { E T9, Tb, T8, Ta; T9 = ri[WS(ios, 8)]; Tb = ii[WS(ios, 8)]; T8 = W[14]; Ta = W[15]; Tc = FMA(T8, T9, Ta * Tb); T32 = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = ri[WS(ios, 24)]; Tg = ii[WS(ios, 24)]; Td = W[46]; Tf = W[47]; Th = FMA(Td, Te, Tf * Tg); T33 = FNMS(Tf, Te, Td * Tg); } { E T7, Ti, T7A, T7B; T7 = T1 + T6; Ti = Tc + Th; Tj = T7 + Ti; T5F = T7 - Ti; T7A = T76 - T75; T7B = Tc - Th; T7C = T7A - T7B; T7Q = T7B + T7A; } { E T31, T34, T74, T77; T31 = T1 - T6; T34 = T32 - T33; T35 = T31 - T34; T4T = T31 + T34; T74 = T32 + T33; T77 = T75 + T76; T78 = T74 + T77; T7m = T77 - T74; } } { E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; { E T1v, T1x, T1u, T1w; T1v = ri[WS(ios, 1)]; T1x = ii[WS(ios, 1)]; T1u = W[0]; T1w = W[1]; T1y = FMA(T1u, T1v, T1w * T1x); T3G = FNMS(T1w, T1v, T1u * T1x); } { E T1L, T1N, T1K, T1M; T1L = ri[WS(ios, 25)]; T1N = ii[WS(ios, 25)]; T1K = W[48]; T1M = W[49]; T1O = FMA(T1K, T1L, T1M * T1N); T3Z = FNMS(T1M, T1L, T1K * T1N); } { E T1A, T1C, T1z, T1B; T1A = ri[WS(ios, 17)]; T1C = ii[WS(ios, 17)]; T1z = W[32]; T1B = W[33]; T1D = FMA(T1z, T1A, T1B * T1C); T3H = FNMS(T1B, T1A, T1z * T1C); } { E T1G, T1I, T1F, T1H; T1G = ri[WS(ios, 9)]; T1I = ii[WS(ios, 9)]; T1F = W[16]; T1H = W[17]; T1J = FMA(T1F, T1G, T1H * T1I); T3Y = FNMS(T1H, T1G, T1F * T1I); } { E T1E, T1P, T5W, T5X; T1E = T1y + T1D; T1P = T1J + T1O; T1Q = T1E + T1P; T61 = T1E - T1P; T5W = T3G + T3H; T5X = T3Y + T3Z; T5Y = T5W - T5X; T6J = T5W + T5X; } { E T3I, T3J, T3X, T40; T3I = T3G - T3H; T3J = T1J - T1O; T3K = T3I + T3J; T59 = T3I - T3J; T3X = T1y - T1D; T40 = T3Y - T3Z; T41 = T3X - T40; T56 = T3X + T40; } } { E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; { E T2g, T2i, T2f, T2h; T2g = ri[WS(ios, 31)]; T2i = ii[WS(ios, 31)]; T2f = W[60]; T2h = W[61]; T2j = FMA(T2f, T2g, T2h * T2i); T4o = FNMS(T2h, T2g, T2f * T2i); } { E T2w, T2y, T2v, T2x; T2w = ri[WS(ios, 23)]; T2y = ii[WS(ios, 23)]; T2v = W[44]; T2x = W[45]; T2z = FMA(T2v, T2w, T2x * T2y); T49 = FNMS(T2x, T2w, T2v * T2y); } { E T2l, T2n, T2k, T2m; T2l = ri[WS(ios, 15)]; T2n = ii[WS(ios, 15)]; T2k = W[28]; T2m = W[29]; T2o = FMA(T2k, T2l, T2m * T2n); T4p = FNMS(T2m, T2l, T2k * T2n); } { E T2r, T2t, T2q, T2s; T2r = ri[WS(ios, 7)]; T2t = ii[WS(ios, 7)]; T2q = W[12]; T2s = W[13]; T2u = FMA(T2q, T2r, T2s * T2t); T48 = FNMS(T2s, T2r, T2q * T2t); } { E T2p, T2A, T6c, T6d; T2p = T2j + T2o; T2A = T2u + T2z; T2B = T2p + T2A; T67 = T2p - T2A; T6c = T4o + T4p; T6d = T48 + T49; T6e = T6c - T6d; T6O = T6c + T6d; } { E T47, T4a, T4q, T4r; T47 = T2j - T2o; T4a = T48 - T49; T4b = T47 - T4a; T5d = T47 + T4a; T4q = T4o - T4p; T4r = T2u - T2z; T4s = T4q + T4r; T5g = T4q - T4r; } } { E To, T36, TE, T3d, Tt, T37, Tz, T3c; { E Tl, Tn, Tk, Tm; Tl = ri[WS(ios, 4)]; Tn = ii[WS(ios, 4)]; Tk = W[6]; Tm = W[7]; To = FMA(Tk, Tl, Tm * Tn); T36 = FNMS(Tm, Tl, Tk * Tn); } { E TB, TD, TA, TC; TB = ri[WS(ios, 12)]; TD = ii[WS(ios, 12)]; TA = W[22]; TC = W[23]; TE = FMA(TA, TB, TC * TD); T3d = FNMS(TC, TB, TA * TD); } { E Tq, Ts, Tp, Tr; Tq = ri[WS(ios, 20)]; Ts = ii[WS(ios, 20)]; Tp = W[38]; Tr = W[39]; Tt = FMA(Tp, Tq, Tr * Ts); T37 = FNMS(Tr, Tq, Tp * Ts); } { E Tw, Ty, Tv, Tx; Tw = ri[WS(ios, 28)]; Ty = ii[WS(ios, 28)]; Tv = W[54]; Tx = W[55]; Tz = FMA(Tv, Tw, Tx * Ty); T3c = FNMS(Tx, Tw, Tv * Ty); } { E Tu, TF, T5G, T5H; Tu = To + Tt; TF = Tz + TE; TG = Tu + TF; T7l = TF - Tu; T5G = T36 + T37; T5H = T3c + T3d; T5I = T5G - T5H; T73 = T5G + T5H; } { E T38, T39, T3b, T3e; T38 = T36 - T37; T39 = To - Tt; T3a = T38 - T39; T4U = T39 + T38; T3b = Tz - TE; T3e = T3c - T3d; T3f = T3b + T3e; T4V = T3b - T3e; } } { E TM, T3i, T12, T3p, TR, T3j, TX, T3o; { E TJ, TL, TI, TK; TJ = ri[WS(ios, 2)]; TL = ii[WS(ios, 2)]; TI = W[2]; TK = W[3]; TM = FMA(TI, TJ, TK * TL); T3i = FNMS(TK, TJ, TI * TL); } { E TZ, T11, TY, T10; TZ = ri[WS(ios, 26)]; T11 = ii[WS(ios, 26)]; TY = W[50]; T10 = W[51]; T12 = FMA(TY, TZ, T10 * T11); T3p = FNMS(T10, TZ, TY * T11); } { E TO, TQ, TN, TP; TO = ri[WS(ios, 18)]; TQ = ii[WS(ios, 18)]; TN = W[34]; TP = W[35]; TR = FMA(TN, TO, TP * TQ); T3j = FNMS(TP, TO, TN * TQ); } { E TU, TW, TT, TV; TU = ri[WS(ios, 10)]; TW = ii[WS(ios, 10)]; TT = W[18]; TV = W[19]; TX = FMA(TT, TU, TV * TW); T3o = FNMS(TV, TU, TT * TW); } { E TS, T13, T5K, T5L; TS = TM + TR; T13 = TX + T12; T14 = TS + T13; T5N = TS - T13; T5K = T3i + T3j; T5L = T3o + T3p; T5M = T5K - T5L; T6E = T5K + T5L; } { E T3k, T3l, T3n, T3q; T3k = T3i - T3j; T3l = TX - T12; T3m = T3k + T3l; T4Y = T3k - T3l; T3n = TM - TR; T3q = T3o - T3p; T3r = T3n - T3q; T4Z = T3n + T3q; } } { E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; { E T16, T18, T15, T17; T16 = ri[WS(ios, 30)]; T18 = ii[WS(ios, 30)]; T15 = W[58]; T17 = W[59]; T19 = FMA(T15, T16, T17 * T18); T3t = FNMS(T17, T16, T15 * T18); } { E T1m, T1o, T1l, T1n; T1m = ri[WS(ios, 22)]; T1o = ii[WS(ios, 22)]; T1l = W[42]; T1n = W[43]; T1p = FMA(T1l, T1m, T1n * T1o); T3A = FNMS(T1n, T1m, T1l * T1o); } { E T1b, T1d, T1a, T1c; T1b = ri[WS(ios, 14)]; T1d = ii[WS(ios, 14)]; T1a = W[26]; T1c = W[27]; T1e = FMA(T1a, T1b, T1c * T1d); T3u = FNMS(T1c, T1b, T1a * T1d); } { E T1h, T1j, T1g, T1i; T1h = ri[WS(ios, 6)]; T1j = ii[WS(ios, 6)]; T1g = W[10]; T1i = W[11]; T1k = FMA(T1g, T1h, T1i * T1j); T3z = FNMS(T1i, T1h, T1g * T1j); } { E T1f, T1q, T5Q, T5R; T1f = T19 + T1e; T1q = T1k + T1p; T1r = T1f + T1q; T5P = T1f - T1q; T5Q = T3t + T3u; T5R = T3z + T3A; T5S = T5Q - T5R; T6F = T5Q + T5R; } { E T3v, T3w, T3y, T3B; T3v = T3t - T3u; T3w = T1k - T1p; T3x = T3v + T3w; T51 = T3v - T3w; T3y = T19 - T1e; T3B = T3z - T3A; T3C = T3y - T3B; T52 = T3y + T3B; } } { E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; { E T1S, T1U, T1R, T1T; T1S = ri[WS(ios, 5)]; T1U = ii[WS(ios, 5)]; T1R = W[8]; T1T = W[9]; T1V = FMA(T1R, T1S, T1T * T1U); T3R = FNMS(T1T, T1S, T1R * T1U); } { E T1X, T1Z, T1W, T1Y; T1X = ri[WS(ios, 21)]; T1Z = ii[WS(ios, 21)]; T1W = W[40]; T1Y = W[41]; T20 = FMA(T1W, T1X, T1Y * T1Z); T3S = FNMS(T1Y, T1X, T1W * T1Z); } T3Q = T1V - T20; T3T = T3R - T3S; { E T23, T25, T22, T24; T23 = ri[WS(ios, 29)]; T25 = ii[WS(ios, 29)]; T22 = W[56]; T24 = W[57]; T26 = FMA(T22, T23, T24 * T25); T3M = FNMS(T24, T23, T22 * T25); } { E T28, T2a, T27, T29; T28 = ri[WS(ios, 13)]; T2a = ii[WS(ios, 13)]; T27 = W[24]; T29 = W[25]; T2b = FMA(T27, T28, T29 * T2a); T3N = FNMS(T29, T28, T27 * T2a); } T3L = T26 - T2b; T3O = T3M - T3N; { E T21, T2c, T62, T63; T21 = T1V + T20; T2c = T26 + T2b; T2d = T21 + T2c; T5Z = T2c - T21; T62 = T3R + T3S; T63 = T3M + T3N; T64 = T62 - T63; T6K = T62 + T63; } { E T3P, T3U, T42, T43; T3P = T3L - T3O; T3U = T3Q + T3T; T3V = KP707106781 * (T3P - T3U); T57 = KP707106781 * (T3U + T3P); T42 = T3T - T3Q; T43 = T3L + T3O; T44 = KP707106781 * (T42 - T43); T5a = KP707106781 * (T42 + T43); } } { E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; { E T2D, T2F, T2C, T2E; T2D = ri[WS(ios, 3)]; T2F = ii[WS(ios, 3)]; T2C = W[4]; T2E = W[5]; T2G = FMA(T2C, T2D, T2E * T2F); T4c = FNMS(T2E, T2D, T2C * T2F); } { E T2I, T2K, T2H, T2J; T2I = ri[WS(ios, 19)]; T2K = ii[WS(ios, 19)]; T2H = W[36]; T2J = W[37]; T2L = FMA(T2H, T2I, T2J * T2K); T4d = FNMS(T2J, T2I, T2H * T2K); } T4e = T4c - T4d; T4f = T2G - T2L; { E T2O, T2Q, T2N, T2P; T2O = ri[WS(ios, 27)]; T2Q = ii[WS(ios, 27)]; T2N = W[52]; T2P = W[53]; T2R = FMA(T2N, T2O, T2P * T2Q); T4i = FNMS(T2P, T2O, T2N * T2Q); } { E T2T, T2V, T2S, T2U; T2T = ri[WS(ios, 11)]; T2V = ii[WS(ios, 11)]; T2S = W[20]; T2U = W[21]; T2W = FMA(T2S, T2T, T2U * T2V); T4j = FNMS(T2U, T2T, T2S * T2V); } T4h = T2R - T2W; T4k = T4i - T4j; { E T2M, T2X, T68, T69; T2M = T2G + T2L; T2X = T2R + T2W; T2Y = T2M + T2X; T6f = T2X - T2M; T68 = T4c + T4d; T69 = T4i + T4j; T6a = T68 - T69; T6P = T68 + T69; } { E T4g, T4l, T4t, T4u; T4g = T4e - T4f; T4l = T4h + T4k; T4m = KP707106781 * (T4g - T4l); T5h = KP707106781 * (T4g + T4l); T4t = T4h - T4k; T4u = T4f + T4e; T4v = KP707106781 * (T4t - T4u); T5e = KP707106781 * (T4u + T4t); } } { E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; { E TH, T1s, T72, T79; TH = Tj + TG; T1s = T14 + T1r; T1t = TH + T1s; T6X = TH - T1s; T72 = T6E + T6F; T79 = T73 + T78; T7a = T72 + T79; T7c = T79 - T72; } { E T2e, T2Z, T6Y, T6Z; T2e = T1Q + T2d; T2Z = T2B + T2Y; T30 = T2e + T2Z; T7b = T2Z - T2e; T6Y = T6J + T6K; T6Z = T6O + T6P; T70 = T6Y - T6Z; T71 = T6Y + T6Z; } ri[WS(ios, 16)] = T1t - T30; ii[WS(ios, 16)] = T7a - T71; ri[0] = T1t + T30; ii[0] = T71 + T7a; ri[WS(ios, 24)] = T6X - T70; ii[WS(ios, 24)] = T7c - T7b; ri[WS(ios, 8)] = T6X + T70; ii[WS(ios, 8)] = T7b + T7c; } { E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; { E T6D, T6G, T7e, T7f; T6D = Tj - TG; T6G = T6E - T6F; T6H = T6D + T6G; T6T = T6D - T6G; T7e = T1r - T14; T7f = T78 - T73; T7g = T7e + T7f; T7i = T7f - T7e; } { E T6I, T6L, T6N, T6Q; T6I = T1Q - T2d; T6L = T6J - T6K; T6M = T6I + T6L; T6U = T6L - T6I; T6N = T2B - T2Y; T6Q = T6O - T6P; T6R = T6N - T6Q; T6V = T6N + T6Q; } { E T6S, T7d, T6W, T7h; T6S = KP707106781 * (T6M + T6R); ri[WS(ios, 20)] = T6H - T6S; ri[WS(ios, 4)] = T6H + T6S; T7d = KP707106781 * (T6U + T6V); ii[WS(ios, 4)] = T7d + T7g; ii[WS(ios, 20)] = T7g - T7d; T6W = KP707106781 * (T6U - T6V); ri[WS(ios, 28)] = T6T - T6W; ri[WS(ios, 12)] = T6T + T6W; T7h = KP707106781 * (T6R - T6M); ii[WS(ios, 12)] = T7h + T7i; ii[WS(ios, 28)] = T7i - T7h; } } { E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; E T6l; { E T5O, T5T, T60, T65; T5J = T5F - T5I; T7n = T7l + T7m; T7t = T7m - T7l; T6n = T5F + T5I; T5O = T5M - T5N; T5T = T5P + T5S; T5U = KP707106781 * (T5O - T5T); T7k = KP707106781 * (T5O + T5T); { E T6v, T6w, T6o, T6p; T6v = T67 + T6a; T6w = T6e + T6f; T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); T6B = FMA(KP923879532, T6w, KP382683432 * T6v); T6o = T5N + T5M; T6p = T5P - T5S; T6q = KP707106781 * (T6o + T6p); T7s = KP707106781 * (T6p - T6o); } T60 = T5Y - T5Z; T65 = T61 - T64; T66 = FMA(KP923879532, T60, KP382683432 * T65); T6k = FNMS(KP923879532, T65, KP382683432 * T60); { E T6s, T6t, T6b, T6g; T6s = T5Y + T5Z; T6t = T61 + T64; T6u = FMA(KP382683432, T6s, KP923879532 * T6t); T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); T6b = T67 - T6a; T6g = T6e - T6f; T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); T6l = FMA(KP382683432, T6g, KP923879532 * T6b); } } { E T5V, T6i, T7r, T7u; T5V = T5J + T5U; T6i = T66 + T6h; ri[WS(ios, 22)] = T5V - T6i; ri[WS(ios, 6)] = T5V + T6i; T7r = T6k + T6l; T7u = T7s + T7t; ii[WS(ios, 6)] = T7r + T7u; ii[WS(ios, 22)] = T7u - T7r; } { E T6j, T6m, T7v, T7w; T6j = T5J - T5U; T6m = T6k - T6l; ri[WS(ios, 30)] = T6j - T6m; ri[WS(ios, 14)] = T6j + T6m; T7v = T6h - T66; T7w = T7t - T7s; ii[WS(ios, 14)] = T7v + T7w; ii[WS(ios, 30)] = T7w - T7v; } { E T6r, T6y, T7j, T7o; T6r = T6n + T6q; T6y = T6u + T6x; ri[WS(ios, 18)] = T6r - T6y; ri[WS(ios, 2)] = T6r + T6y; T7j = T6A + T6B; T7o = T7k + T7n; ii[WS(ios, 2)] = T7j + T7o; ii[WS(ios, 18)] = T7o - T7j; } { E T6z, T6C, T7p, T7q; T6z = T6n - T6q; T6C = T6A - T6B; ri[WS(ios, 26)] = T6z - T6C; ri[WS(ios, 10)] = T6z + T6C; T7p = T6x - T6u; T7q = T7n - T7k; ii[WS(ios, 10)] = T7p + T7q; ii[WS(ios, 26)] = T7q - T7p; } } { E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; E T4B, T3g, T7P; T3g = KP707106781 * (T3a - T3f); T3h = T35 - T3g; T4D = T35 + T3g; T7P = KP707106781 * (T4V - T4U); T7R = T7P + T7Q; T7X = T7Q - T7P; { E T3s, T3D, T4L, T4M; T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); T3D = FMA(KP382683432, T3x, KP923879532 * T3C); T3E = T3s - T3D; T7O = T3s + T3D; T4L = T4b + T4m; T4M = T4s + T4v; T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); T4R = FMA(KP831469612, T4M, KP555570233 * T4L); } { E T3W, T45, T4E, T4F; T3W = T3K - T3V; T45 = T41 - T44; T46 = FMA(KP980785280, T3W, KP195090322 * T45); T4A = FNMS(KP980785280, T45, KP195090322 * T3W); T4E = FMA(KP923879532, T3m, KP382683432 * T3r); T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); T4G = T4E + T4F; T7W = T4F - T4E; } { E T4I, T4J, T4n, T4w; T4I = T3K + T3V; T4J = T41 + T44; T4K = FMA(KP555570233, T4I, KP831469612 * T4J); T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); T4n = T4b - T4m; T4w = T4s - T4v; T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); T4B = FMA(KP195090322, T4w, KP980785280 * T4n); } { E T3F, T4y, T7V, T7Y; T3F = T3h + T3E; T4y = T46 + T4x; ri[WS(ios, 23)] = T3F - T4y; ri[WS(ios, 7)] = T3F + T4y; T7V = T4A + T4B; T7Y = T7W + T7X; ii[WS(ios, 7)] = T7V + T7Y; ii[WS(ios, 23)] = T7Y - T7V; } { E T4z, T4C, T7Z, T80; T4z = T3h - T3E; T4C = T4A - T4B; ri[WS(ios, 31)] = T4z - T4C; ri[WS(ios, 15)] = T4z + T4C; T7Z = T4x - T46; T80 = T7X - T7W; ii[WS(ios, 15)] = T7Z + T80; ii[WS(ios, 31)] = T80 - T7Z; } { E T4H, T4O, T7N, T7S; T4H = T4D + T4G; T4O = T4K + T4N; ri[WS(ios, 19)] = T4H - T4O; ri[WS(ios, 3)] = T4H + T4O; T7N = T4Q + T4R; T7S = T7O + T7R; ii[WS(ios, 3)] = T7N + T7S; ii[WS(ios, 19)] = T7S - T7N; } { E T4P, T4S, T7T, T7U; T4P = T4D - T4G; T4S = T4Q - T4R; ri[WS(ios, 27)] = T4P - T4S; ri[WS(ios, 11)] = T4P + T4S; T7T = T4N - T4K; T7U = T7R - T7O; ii[WS(ios, 11)] = T7T + T7U; ii[WS(ios, 27)] = T7U - T7T; } } { E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; E T5n, T4W, T7z; T4W = KP707106781 * (T4U + T4V); T4X = T4T - T4W; T5p = T4T + T4W; T7z = KP707106781 * (T3a + T3f); T7D = T7z + T7C; T7J = T7C - T7z; { E T50, T53, T5x, T5y; T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); T53 = FMA(KP923879532, T51, KP382683432 * T52); T54 = T50 - T53; T7y = T50 + T53; T5x = T5d + T5e; T5y = T5g + T5h; T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); T5D = FMA(KP195090322, T5x, KP980785280 * T5y); } { E T58, T5b, T5q, T5r; T58 = T56 - T57; T5b = T59 - T5a; T5c = FMA(KP555570233, T58, KP831469612 * T5b); T5m = FNMS(KP831469612, T58, KP555570233 * T5b); T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); T5r = FNMS(KP382683432, T51, KP923879532 * T52); T5s = T5q + T5r; T7I = T5r - T5q; } { E T5u, T5v, T5f, T5i; T5u = T56 + T57; T5v = T59 + T5a; T5w = FMA(KP980785280, T5u, KP195090322 * T5v); T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); T5f = T5d - T5e; T5i = T5g - T5h; T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); T5n = FMA(KP831469612, T5f, KP555570233 * T5i); } { E T55, T5k, T7H, T7K; T55 = T4X + T54; T5k = T5c + T5j; ri[WS(ios, 21)] = T55 - T5k; ri[WS(ios, 5)] = T55 + T5k; T7H = T5m + T5n; T7K = T7I + T7J; ii[WS(ios, 5)] = T7H + T7K; ii[WS(ios, 21)] = T7K - T7H; } { E T5l, T5o, T7L, T7M; T5l = T4X - T54; T5o = T5m - T5n; ri[WS(ios, 29)] = T5l - T5o; ri[WS(ios, 13)] = T5l + T5o; T7L = T5j - T5c; T7M = T7J - T7I; ii[WS(ios, 13)] = T7L + T7M; ii[WS(ios, 29)] = T7M - T7L; } { E T5t, T5A, T7x, T7E; T5t = T5p + T5s; T5A = T5w + T5z; ri[WS(ios, 17)] = T5t - T5A; ri[WS(ios, 1)] = T5t + T5A; T7x = T5C + T5D; T7E = T7y + T7D; ii[WS(ios, 1)] = T7x + T7E; ii[WS(ios, 17)] = T7E - T7x; } { E T5B, T5E, T7F, T7G; T5B = T5p - T5s; T5E = T5C - T5D; ri[WS(ios, 25)] = T5B - T5E; ri[WS(ios, 9)] = T5B + T5E; T7F = T5z - T5w; T7G = T7D - T7y; ii[WS(ios, 9)] = T7F + T7G; ii[WS(ios, 25)] = T7G - T7F; } } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 32}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 32, "t1_32", twinstr, {340, 114, 94, 0}, &GENUS, 0, 0, 0 }; void X(codelet_t1_32) (planner *p) { X(kdft_dit_register) (p, t1_32, &desc); }