/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:30:08 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 64 -name t1_64 -include t.h */ /* * This function contains 1038 FP additions, 500 FP multiplications, * (or, 808 additions, 270 multiplications, 230 fused multiply/add), * 176 stack variables, and 256 memory accesses */ /* * Generator Id's : * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_64.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "t.h" static const R *t1_64(R *ri, R *ii, const R *W, stride ios, int m, int dist) { DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 126) { E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; { E T1, TgR, T6, TgQ, Tc, T68, Th, T69; T1 = ri[0]; TgR = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(ios, 32)]; T5 = ii[WS(ios, 32)]; T2 = W[62]; T4 = W[63]; T6 = FMA(T2, T3, T4 * T5); TgQ = FNMS(T4, T3, T2 * T5); } { E T9, Tb, T8, Ta; T9 = ri[WS(ios, 16)]; Tb = ii[WS(ios, 16)]; T8 = W[30]; Ta = W[31]; Tc = FMA(T8, T9, Ta * Tb); T68 = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = ri[WS(ios, 48)]; Tg = ii[WS(ios, 48)]; Td = W[94]; Tf = W[95]; Th = FMA(Td, Te, Tf * Tg); T69 = FNMS(Tf, Te, Td * Tg); } { E T7, Ti, ThR, ThS; T7 = T1 + T6; Ti = Tc + Th; Tj = T7 + Ti; TcL = T7 - Ti; ThR = TgR - TgQ; ThS = Tc - Th; ThT = ThR - ThS; Tin = ThS + ThR; } { E T67, T6a, TgP, TgS; T67 = T1 - T6; T6a = T68 - T69; T6b = T67 - T6a; Taz = T67 + T6a; TgP = T68 + T69; TgS = TgQ + TgR; TgT = TgP + TgS; Thn = TgS - TgP; } } { E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; { E Tl, Tn, Tk, Tm; Tl = ri[WS(ios, 8)]; Tn = ii[WS(ios, 8)]; Tk = W[14]; Tm = W[15]; To = FMA(Tk, Tl, Tm * Tn); T6c = FNMS(Tm, Tl, Tk * Tn); } { E Tq, Ts, Tp, Tr; Tq = ri[WS(ios, 40)]; Ts = ii[WS(ios, 40)]; Tp = W[78]; Tr = W[79]; Tt = FMA(Tp, Tq, Tr * Ts); T6d = FNMS(Tr, Tq, Tp * Ts); } T6e = T6c - T6d; T6f = To - Tt; { E Tw, Ty, Tv, Tx; Tw = ri[WS(ios, 56)]; Ty = ii[WS(ios, 56)]; Tv = W[110]; Tx = W[111]; Tz = FMA(Tv, Tw, Tx * Ty); T6i = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = ri[WS(ios, 24)]; TD = ii[WS(ios, 24)]; TA = W[46]; TC = W[47]; TE = FMA(TA, TB, TC * TD); T6j = FNMS(TC, TB, TA * TD); } T6h = Tz - TE; T6k = T6i - T6j; { E Tu, TF, TcM, TcN; Tu = To + Tt; TF = Tz + TE; TG = Tu + TF; Thm = TF - Tu; TcM = T6c + T6d; TcN = T6i + T6j; TcO = TcM - TcN; TgO = TcM + TcN; } { E T6g, T6l, TaA, TaB; T6g = T6e - T6f; T6l = T6h + T6k; T6m = KP707106781 * (T6g - T6l); ThQ = KP707106781 * (T6g + T6l); TaA = T6f + T6e; TaB = T6h - T6k; TaC = KP707106781 * (TaA + TaB); Tim = KP707106781 * (TaB - TaA); } } { E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; { E TM, T6o, TR, T6p; { E TJ, TL, TI, TK; TJ = ri[WS(ios, 4)]; TL = ii[WS(ios, 4)]; TI = W[6]; TK = W[7]; TM = FMA(TI, TJ, TK * TL); T6o = FNMS(TK, TJ, TI * TL); } { E TO, TQ, TN, TP; TO = ri[WS(ios, 36)]; TQ = ii[WS(ios, 36)]; TN = W[70]; TP = W[71]; TR = FMA(TN, TO, TP * TQ); T6p = FNMS(TP, TO, TN * TQ); } TS = TM + TR; TcQ = T6o + T6p; T6q = T6o - T6p; T6t = TM - TR; } { E TX, T6u, T12, T6v; { E TU, TW, TT, TV; TU = ri[WS(ios, 20)]; TW = ii[WS(ios, 20)]; TT = W[38]; TV = W[39]; TX = FMA(TT, TU, TV * TW); T6u = FNMS(TV, TU, TT * TW); } { E TZ, T11, TY, T10; TZ = ri[WS(ios, 52)]; T11 = ii[WS(ios, 52)]; TY = W[102]; T10 = W[103]; T12 = FMA(TY, TZ, T10 * T11); T6v = FNMS(T10, TZ, TY * T11); } T13 = TX + T12; TcR = T6u + T6v; T6r = TX - T12; T6w = T6u - T6v; } T14 = TS + T13; Tfq = TcQ + TcR; T6s = T6q + T6r; T6x = T6t - T6w; T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); T9O = FMA(KP923879532, T6s, KP382683432 * T6x); { E TaE, TaF, TcS, TcT; TaE = T6q - T6r; TaF = T6t + T6w; TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); TcS = TcQ - TcR; TcT = TS - T13; TcU = TcS - TcT; TeE = TcT + TcS; } } { E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; { E T19, T6z, T1e, T6A; { E T16, T18, T15, T17; T16 = ri[WS(ios, 60)]; T18 = ii[WS(ios, 60)]; T15 = W[118]; T17 = W[119]; T19 = FMA(T15, T16, T17 * T18); T6z = FNMS(T17, T16, T15 * T18); } { E T1b, T1d, T1a, T1c; T1b = ri[WS(ios, 28)]; T1d = ii[WS(ios, 28)]; T1a = W[54]; T1c = W[55]; T1e = FMA(T1a, T1b, T1c * T1d); T6A = FNMS(T1c, T1b, T1a * T1d); } T1f = T19 + T1e; TcW = T6z + T6A; T6B = T6z - T6A; T6E = T19 - T1e; } { E T1k, T6F, T1p, T6G; { E T1h, T1j, T1g, T1i; T1h = ri[WS(ios, 12)]; T1j = ii[WS(ios, 12)]; T1g = W[22]; T1i = W[23]; T1k = FMA(T1g, T1h, T1i * T1j); T6F = FNMS(T1i, T1h, T1g * T1j); } { E T1m, T1o, T1l, T1n; T1m = ri[WS(ios, 44)]; T1o = ii[WS(ios, 44)]; T1l = W[86]; T1n = W[87]; T1p = FMA(T1l, T1m, T1n * T1o); T6G = FNMS(T1n, T1m, T1l * T1o); } T1q = T1k + T1p; TcX = T6F + T6G; T6C = T1k - T1p; T6H = T6F - T6G; } T1r = T1f + T1q; Tfr = TcW + TcX; T6D = T6B + T6C; T6I = T6E - T6H; T6J = FMA(KP382683432, T6D, KP923879532 * T6I); T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); { E TaH, TaI, TcV, TcY; TaH = T6B - T6C; TaI = T6E + T6H; TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); TcV = T1f - T1q; TcY = TcW - TcX; TcZ = TcV + TcY; TeF = TcV - TcY; } } { E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; E T6Z, T2c, Td9, T6R, T6U; { E T1v, T1x, T1u, T1w; T1v = ri[WS(ios, 2)]; T1x = ii[WS(ios, 2)]; T1u = W[2]; T1w = W[3]; T1y = FMA(T1u, T1v, T1w * T1x); T6M = FNMS(T1w, T1v, T1u * T1x); } { E T1A, T1C, T1z, T1B; T1A = ri[WS(ios, 34)]; T1C = ii[WS(ios, 34)]; T1z = W[66]; T1B = W[67]; T1D = FMA(T1z, T1A, T1B * T1C); T6N = FNMS(T1B, T1A, T1z * T1C); } T1E = T1y + T1D; Td2 = T6M + T6N; { E T1G, T1I, T1F, T1H; T1G = ri[WS(ios, 18)]; T1I = ii[WS(ios, 18)]; T1F = W[34]; T1H = W[35]; T1J = FMA(T1F, T1G, T1H * T1I); T74 = FNMS(T1H, T1G, T1F * T1I); } { E T1L, T1N, T1K, T1M; T1L = ri[WS(ios, 50)]; T1N = ii[WS(ios, 50)]; T1K = W[98]; T1M = W[99]; T1O = FMA(T1K, T1L, T1M * T1N); T75 = FNMS(T1M, T1L, T1K * T1N); } T1P = T1J + T1O; Td3 = T74 + T75; { E T1V, T6X, T20, T6Y; { E T1S, T1U, T1R, T1T; T1S = ri[WS(ios, 10)]; T1U = ii[WS(ios, 10)]; T1R = W[18]; T1T = W[19]; T1V = FMA(T1R, T1S, T1T * T1U); T6X = FNMS(T1T, T1S, T1R * T1U); } { E T1X, T1Z, T1W, T1Y; T1X = ri[WS(ios, 42)]; T1Z = ii[WS(ios, 42)]; T1W = W[82]; T1Y = W[83]; T20 = FMA(T1W, T1X, T1Y * T1Z); T6Y = FNMS(T1Y, T1X, T1W * T1Z); } T21 = T1V + T20; Td8 = T6X + T6Y; T6W = T1V - T20; T6Z = T6X - T6Y; } { E T26, T6S, T2b, T6T; { E T23, T25, T22, T24; T23 = ri[WS(ios, 58)]; T25 = ii[WS(ios, 58)]; T22 = W[114]; T24 = W[115]; T26 = FMA(T22, T23, T24 * T25); T6S = FNMS(T24, T23, T22 * T25); } { E T28, T2a, T27, T29; T28 = ri[WS(ios, 26)]; T2a = ii[WS(ios, 26)]; T27 = W[50]; T29 = W[51]; T2b = FMA(T27, T28, T29 * T2a); T6T = FNMS(T29, T28, T27 * T2a); } T2c = T26 + T2b; Td9 = T6S + T6T; T6R = T26 - T2b; T6U = T6S - T6T; } T1Q = T1E + T1P; T2d = T21 + T2c; Tfx = T1Q - T2d; Tfu = Td2 + Td3; Tfv = Td8 + Td9; Tfw = Tfu - Tfv; { E T6O, T6P, Td7, Tda; T6O = T6M - T6N; T6P = T1J - T1O; T6Q = T6O + T6P; TaM = T6O - T6P; Td7 = T1E - T1P; Tda = Td8 - Td9; Tdb = Td7 - Tda; TeJ = Td7 + Tda; } { E T6V, T70, T78, T79; T6V = T6R - T6U; T70 = T6W + T6Z; T71 = KP707106781 * (T6V - T70); TaQ = KP707106781 * (T70 + T6V); T78 = T6Z - T6W; T79 = T6R + T6U; T7a = KP707106781 * (T78 - T79); TaN = KP707106781 * (T78 + T79); } { E Td4, Td5, T73, T76; Td4 = Td2 - Td3; Td5 = T2c - T21; Td6 = Td4 - Td5; TeI = Td4 + Td5; T73 = T1y - T1D; T76 = T74 - T75; T77 = T73 - T76; TaP = T73 + T76; } } { E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; E T7q, T2X, Tdk, T7i, T7l; { E T2g, T2i, T2f, T2h; T2g = ri[WS(ios, 62)]; T2i = ii[WS(ios, 62)]; T2f = W[122]; T2h = W[123]; T2j = FMA(T2f, T2g, T2h * T2i); T7d = FNMS(T2h, T2g, T2f * T2i); } { E T2l, T2n, T2k, T2m; T2l = ri[WS(ios, 30)]; T2n = ii[WS(ios, 30)]; T2k = W[58]; T2m = W[59]; T2o = FMA(T2k, T2l, T2m * T2n); T7e = FNMS(T2m, T2l, T2k * T2n); } T2p = T2j + T2o; Tdd = T7d + T7e; { E T2r, T2t, T2q, T2s; T2r = ri[WS(ios, 14)]; T2t = ii[WS(ios, 14)]; T2q = W[26]; T2s = W[27]; T2u = FMA(T2q, T2r, T2s * T2t); T7v = FNMS(T2s, T2r, T2q * T2t); } { E T2w, T2y, T2v, T2x; T2w = ri[WS(ios, 46)]; T2y = ii[WS(ios, 46)]; T2v = W[90]; T2x = W[91]; T2z = FMA(T2v, T2w, T2x * T2y); T7w = FNMS(T2x, T2w, T2v * T2y); } T2A = T2u + T2z; Tde = T7v + T7w; { E T2G, T7o, T2L, T7p; { E T2D, T2F, T2C, T2E; T2D = ri[WS(ios, 6)]; T2F = ii[WS(ios, 6)]; T2C = W[10]; T2E = W[11]; T2G = FMA(T2C, T2D, T2E * T2F); T7o = FNMS(T2E, T2D, T2C * T2F); } { E T2I, T2K, T2H, T2J; T2I = ri[WS(ios, 38)]; T2K = ii[WS(ios, 38)]; T2H = W[74]; T2J = W[75]; T2L = FMA(T2H, T2I, T2J * T2K); T7p = FNMS(T2J, T2I, T2H * T2K); } T2M = T2G + T2L; Tdj = T7o + T7p; T7n = T2G - T2L; T7q = T7o - T7p; } { E T2R, T7j, T2W, T7k; { E T2O, T2Q, T2N, T2P; T2O = ri[WS(ios, 54)]; T2Q = ii[WS(ios, 54)]; T2N = W[106]; T2P = W[107]; T2R = FMA(T2N, T2O, T2P * T2Q); T7j = FNMS(T2P, T2O, T2N * T2Q); } { E T2T, T2V, T2S, T2U; T2T = ri[WS(ios, 22)]; T2V = ii[WS(ios, 22)]; T2S = W[42]; T2U = W[43]; T2W = FMA(T2S, T2T, T2U * T2V); T7k = FNMS(T2U, T2T, T2S * T2V); } T2X = T2R + T2W; Tdk = T7j + T7k; T7i = T2R - T2W; T7l = T7j - T7k; } T2B = T2p + T2A; T2Y = T2M + T2X; Tfz = T2B - T2Y; TfA = Tdd + Tde; TfB = Tdj + Tdk; TfC = TfA - TfB; { E T7f, T7g, Tdi, Tdl; T7f = T7d - T7e; T7g = T2u - T2z; T7h = T7f + T7g; TaW = T7f - T7g; Tdi = T2p - T2A; Tdl = Tdj - Tdk; Tdm = Tdi - Tdl; TeM = Tdi + Tdl; } { E T7m, T7r, T7z, T7A; T7m = T7i - T7l; T7r = T7n + T7q; T7s = KP707106781 * (T7m - T7r); TaU = KP707106781 * (T7r + T7m); T7z = T7q - T7n; T7A = T7i + T7l; T7B = KP707106781 * (T7z - T7A); TaX = KP707106781 * (T7z + T7A); } { E Tdf, Tdg, T7u, T7x; Tdf = Tdd - Tde; Tdg = T2X - T2M; Tdh = Tdf - Tdg; TeL = Tdf + Tdg; T7u = T2j - T2o; T7x = T7v - T7w; T7y = T7u - T7x; TaT = T7u + T7x; } } { E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; E T8H, T5h, TdT, T8J, T8M; { E T4A, T4C, T4z, T4B; T4A = ri[WS(ios, 63)]; T4C = ii[WS(ios, 63)]; T4z = W[124]; T4B = W[125]; T4D = FMA(T4z, T4A, T4B * T4C); T9e = FNMS(T4B, T4A, T4z * T4C); } { E T4F, T4H, T4E, T4G; T4F = ri[WS(ios, 31)]; T4H = ii[WS(ios, 31)]; T4E = W[60]; T4G = W[61]; T4I = FMA(T4E, T4F, T4G * T4H); T9f = FNMS(T4G, T4F, T4E * T4H); } T4J = T4D + T4I; Te8 = T9e + T9f; { E T4L, T4N, T4K, T4M; T4L = ri[WS(ios, 15)]; T4N = ii[WS(ios, 15)]; T4K = W[28]; T4M = W[29]; T4O = FMA(T4K, T4L, T4M * T4N); T8A = FNMS(T4M, T4L, T4K * T4N); } { E T4Q, T4S, T4P, T4R; T4Q = ri[WS(ios, 47)]; T4S = ii[WS(ios, 47)]; T4P = W[92]; T4R = W[93]; T4T = FMA(T4P, T4Q, T4R * T4S); T8B = FNMS(T4R, T4Q, T4P * T4S); } T4U = T4O + T4T; Te9 = T8A + T8B; { E T50, T8E, T55, T8F; { E T4X, T4Z, T4W, T4Y; T4X = ri[WS(ios, 7)]; T4Z = ii[WS(ios, 7)]; T4W = W[12]; T4Y = W[13]; T50 = FMA(T4W, T4X, T4Y * T4Z); T8E = FNMS(T4Y, T4X, T4W * T4Z); } { E T52, T54, T51, T53; T52 = ri[WS(ios, 39)]; T54 = ii[WS(ios, 39)]; T51 = W[76]; T53 = W[77]; T55 = FMA(T51, T52, T53 * T54); T8F = FNMS(T53, T52, T51 * T54); } T56 = T50 + T55; TdS = T8E + T8F; T8G = T8E - T8F; T8H = T50 - T55; } { E T5b, T8K, T5g, T8L; { E T58, T5a, T57, T59; T58 = ri[WS(ios, 55)]; T5a = ii[WS(ios, 55)]; T57 = W[108]; T59 = W[109]; T5b = FMA(T57, T58, T59 * T5a); T8K = FNMS(T59, T58, T57 * T5a); } { E T5d, T5f, T5c, T5e; T5d = ri[WS(ios, 23)]; T5f = ii[WS(ios, 23)]; T5c = W[44]; T5e = W[45]; T5g = FMA(T5c, T5d, T5e * T5f); T8L = FNMS(T5e, T5d, T5c * T5f); } T5h = T5b + T5g; TdT = T8K + T8L; T8J = T5b - T5g; T8M = T8K - T8L; } { E T4V, T5i, Tea, Teb; T4V = T4J + T4U; T5i = T56 + T5h; T5j = T4V + T5i; TfR = T4V - T5i; Tea = Te8 - Te9; Teb = T5h - T56; Tec = Tea - Teb; Tf0 = Tea + Teb; } { E TfW, TfX, T8z, T8C; TfW = Te8 + Te9; TfX = TdS + TdT; TfY = TfW - TfX; Tgy = TfW + TfX; T8z = T4D - T4I; T8C = T8A - T8B; T8D = T8z - T8C; Tbl = T8z + T8C; } { E T8I, T8N, T9j, T9k; T8I = T8G - T8H; T8N = T8J + T8M; T8O = KP707106781 * (T8I - T8N); Tbx = KP707106781 * (T8I + T8N); T9j = T8J - T8M; T9k = T8H + T8G; T9l = KP707106781 * (T9j - T9k); Tbm = KP707106781 * (T9k + T9j); } { E TdR, TdU, T9g, T9h; TdR = T4J - T4U; TdU = TdS - TdT; TdV = TdR - TdU; TeX = TdR + TdU; T9g = T9e - T9f; T9h = T4O - T4T; T9i = T9g + T9h; Tbw = T9g - T9h; } } { E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; E T7T, T3K, TdJ, T7L, T7O; { E T33, T35, T32, T34; T33 = ri[WS(ios, 1)]; T35 = ii[WS(ios, 1)]; T32 = W[0]; T34 = W[1]; T36 = FMA(T32, T33, T34 * T35); T7G = FNMS(T34, T33, T32 * T35); } { E T38, T3a, T37, T39; T38 = ri[WS(ios, 33)]; T3a = ii[WS(ios, 33)]; T37 = W[64]; T39 = W[65]; T3b = FMA(T37, T38, T39 * T3a); T7H = FNMS(T39, T38, T37 * T3a); } T3c = T36 + T3b; Tdq = T7G + T7H; { E T3e, T3g, T3d, T3f; T3e = ri[WS(ios, 17)]; T3g = ii[WS(ios, 17)]; T3d = W[32]; T3f = W[33]; T3h = FMA(T3d, T3e, T3f * T3g); T8m = FNMS(T3f, T3e, T3d * T3g); } { E T3j, T3l, T3i, T3k; T3j = ri[WS(ios, 49)]; T3l = ii[WS(ios, 49)]; T3i = W[96]; T3k = W[97]; T3m = FMA(T3i, T3j, T3k * T3l); T8n = FNMS(T3k, T3j, T3i * T3l); } T3n = T3h + T3m; Tdr = T8m + T8n; { E T3t, T7R, T3y, T7S; { E T3q, T3s, T3p, T3r; T3q = ri[WS(ios, 9)]; T3s = ii[WS(ios, 9)]; T3p = W[16]; T3r = W[17]; T3t = FMA(T3p, T3q, T3r * T3s); T7R = FNMS(T3r, T3q, T3p * T3s); } { E T3v, T3x, T3u, T3w; T3v = ri[WS(ios, 41)]; T3x = ii[WS(ios, 41)]; T3u = W[80]; T3w = W[81]; T3y = FMA(T3u, T3v, T3w * T3x); T7S = FNMS(T3w, T3v, T3u * T3x); } T3z = T3t + T3y; TdI = T7R + T7S; T7Q = T3t - T3y; T7T = T7R - T7S; } { E T3E, T7M, T3J, T7N; { E T3B, T3D, T3A, T3C; T3B = ri[WS(ios, 57)]; T3D = ii[WS(ios, 57)]; T3A = W[112]; T3C = W[113]; T3E = FMA(T3A, T3B, T3C * T3D); T7M = FNMS(T3C, T3B, T3A * T3D); } { E T3G, T3I, T3F, T3H; T3G = ri[WS(ios, 25)]; T3I = ii[WS(ios, 25)]; T3F = W[48]; T3H = W[49]; T3J = FMA(T3F, T3G, T3H * T3I); T7N = FNMS(T3H, T3G, T3F * T3I); } T3K = T3E + T3J; TdJ = T7M + T7N; T7L = T3E - T3J; T7O = T7M - T7N; } { E T3o, T3L, TdH, TdK; T3o = T3c + T3n; T3L = T3z + T3K; T3M = T3o + T3L; TfL = T3o - T3L; TdH = T3c - T3n; TdK = TdI - TdJ; TdL = TdH - TdK; TeQ = TdH + TdK; } { E TfG, TfH, T7I, T7J; TfG = Tdq + Tdr; TfH = TdI + TdJ; TfI = TfG - TfH; Tgt = TfG + TfH; T7I = T7G - T7H; T7J = T3h - T3m; T7K = T7I + T7J; Tb2 = T7I - T7J; } { E T7P, T7U, T8q, T8r; T7P = T7L - T7O; T7U = T7Q + T7T; T7V = KP707106781 * (T7P - T7U); Tbe = KP707106781 * (T7U + T7P); T8q = T7T - T7Q; T8r = T7L + T7O; T8s = KP707106781 * (T8q - T8r); Tb3 = KP707106781 * (T8q + T8r); } { E Tds, Tdt, T8l, T8o; Tds = Tdq - Tdr; Tdt = T3K - T3z; Tdu = Tds - Tdt; TeT = Tds + Tdt; T8l = T36 - T3b; T8o = T8m - T8n; T8p = T8l - T8o; Tbd = T8l + T8o; } } { E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; E T84; { E T3R, T88, T3W, T89; { E T3O, T3Q, T3N, T3P; T3O = ri[WS(ios, 5)]; T3Q = ii[WS(ios, 5)]; T3N = W[8]; T3P = W[9]; T3R = FMA(T3N, T3O, T3P * T3Q); T88 = FNMS(T3P, T3O, T3N * T3Q); } { E T3T, T3V, T3S, T3U; T3T = ri[WS(ios, 37)]; T3V = ii[WS(ios, 37)]; T3S = W[72]; T3U = W[73]; T3W = FMA(T3S, T3T, T3U * T3V); T89 = FNMS(T3U, T3T, T3S * T3V); } T3X = T3R + T3W; TdB = T88 + T89; T8a = T88 - T89; T8d = T3R - T3W; } { E T4p, T7Y, T4u, T7Z; { E T4m, T4o, T4l, T4n; T4m = ri[WS(ios, 13)]; T4o = ii[WS(ios, 13)]; T4l = W[24]; T4n = W[25]; T4p = FMA(T4l, T4m, T4n * T4o); T7Y = FNMS(T4n, T4m, T4l * T4o); } { E T4r, T4t, T4q, T4s; T4r = ri[WS(ios, 45)]; T4t = ii[WS(ios, 45)]; T4q = W[88]; T4s = W[89]; T4u = FMA(T4q, T4r, T4s * T4t); T7Z = FNMS(T4s, T4r, T4q * T4t); } T4v = T4p + T4u; Tdx = T7Y + T7Z; T80 = T7Y - T7Z; T85 = T4p - T4u; } { E T42, T8e, T47, T8f; { E T3Z, T41, T3Y, T40; T3Z = ri[WS(ios, 21)]; T41 = ii[WS(ios, 21)]; T3Y = W[40]; T40 = W[41]; T42 = FMA(T3Y, T3Z, T40 * T41); T8e = FNMS(T40, T3Z, T3Y * T41); } { E T44, T46, T43, T45; T44 = ri[WS(ios, 53)]; T46 = ii[WS(ios, 53)]; T43 = W[104]; T45 = W[105]; T47 = FMA(T43, T44, T45 * T46); T8f = FNMS(T45, T44, T43 * T46); } T48 = T42 + T47; TdC = T8e + T8f; T8b = T42 - T47; T8g = T8e - T8f; } { E T4e, T82, T4j, T83; { E T4b, T4d, T4a, T4c; T4b = ri[WS(ios, 61)]; T4d = ii[WS(ios, 61)]; T4a = W[120]; T4c = W[121]; T4e = FMA(T4a, T4b, T4c * T4d); T82 = FNMS(T4c, T4b, T4a * T4d); } { E T4g, T4i, T4f, T4h; T4g = ri[WS(ios, 29)]; T4i = ii[WS(ios, 29)]; T4f = W[56]; T4h = W[57]; T4j = FMA(T4f, T4g, T4h * T4i); T83 = FNMS(T4h, T4g, T4f * T4i); } T4k = T4e + T4j; Tdw = T82 + T83; T7X = T4e - T4j; T84 = T82 - T83; } { E T49, T4w, TdA, TdD; T49 = T3X + T48; T4w = T4k + T4v; T4x = T49 + T4w; TfJ = T4w - T49; TdA = T3X - T48; TdD = TdB - TdC; TdE = TdA + TdD; TdM = TdD - TdA; } { E TfM, TfN, T81, T86; TfM = TdB + TdC; TfN = Tdw + Tdx; TfO = TfM - TfN; Tgu = TfM + TfN; T81 = T7X - T80; T86 = T84 + T85; T87 = FNMS(KP923879532, T86, KP382683432 * T81); T8v = FMA(KP382683432, T86, KP923879532 * T81); } { E T8c, T8h, Tb8, Tb9; T8c = T8a + T8b; T8h = T8d - T8g; T8i = FMA(KP923879532, T8c, KP382683432 * T8h); T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); Tb8 = T8a - T8b; Tb9 = T8d + T8g; Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); } { E Tdv, Tdy, Tb5, Tb6; Tdv = T4k - T4v; Tdy = Tdw - Tdx; Tdz = Tdv - Tdy; TdN = Tdv + Tdy; Tb5 = T7X + T80; Tb6 = T84 - T85; Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); } } { E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; E T96; { E T5o, T8Q, T5t, T8R; { E T5l, T5n, T5k, T5m; T5l = ri[WS(ios, 3)]; T5n = ii[WS(ios, 3)]; T5k = W[4]; T5m = W[5]; T5o = FMA(T5k, T5l, T5m * T5n); T8Q = FNMS(T5m, T5l, T5k * T5n); } { E T5q, T5s, T5p, T5r; T5q = ri[WS(ios, 35)]; T5s = ii[WS(ios, 35)]; T5p = W[68]; T5r = W[69]; T5t = FMA(T5p, T5q, T5r * T5s); T8R = FNMS(T5r, T5q, T5p * T5s); } T5u = T5o + T5t; TdW = T8Q + T8R; T8S = T8Q - T8R; T8V = T5o - T5t; } { E T5W, T97, T61, T98; { E T5T, T5V, T5S, T5U; T5T = ri[WS(ios, 11)]; T5V = ii[WS(ios, 11)]; T5S = W[20]; T5U = W[21]; T5W = FMA(T5S, T5T, T5U * T5V); T97 = FNMS(T5U, T5T, T5S * T5V); } { E T5Y, T60, T5X, T5Z; T5Y = ri[WS(ios, 43)]; T60 = ii[WS(ios, 43)]; T5X = W[84]; T5Z = W[85]; T61 = FMA(T5X, T5Y, T5Z * T60); T98 = FNMS(T5Z, T5Y, T5X * T60); } T62 = T5W + T61; Te3 = T97 + T98; T94 = T5W - T61; T99 = T97 - T98; } { E T5z, T8W, T5E, T8X; { E T5w, T5y, T5v, T5x; T5w = ri[WS(ios, 19)]; T5y = ii[WS(ios, 19)]; T5v = W[36]; T5x = W[37]; T5z = FMA(T5v, T5w, T5x * T5y); T8W = FNMS(T5x, T5w, T5v * T5y); } { E T5B, T5D, T5A, T5C; T5B = ri[WS(ios, 51)]; T5D = ii[WS(ios, 51)]; T5A = W[100]; T5C = W[101]; T5E = FMA(T5A, T5B, T5C * T5D); T8X = FNMS(T5C, T5B, T5A * T5D); } T5F = T5z + T5E; TdX = T8W + T8X; T8T = T5z - T5E; T8Y = T8W - T8X; } { E T5L, T91, T5Q, T92; { E T5I, T5K, T5H, T5J; T5I = ri[WS(ios, 59)]; T5K = ii[WS(ios, 59)]; T5H = W[116]; T5J = W[117]; T5L = FMA(T5H, T5I, T5J * T5K); T91 = FNMS(T5J, T5I, T5H * T5K); } { E T5N, T5P, T5M, T5O; T5N = ri[WS(ios, 27)]; T5P = ii[WS(ios, 27)]; T5M = W[52]; T5O = W[53]; T5Q = FMA(T5M, T5N, T5O * T5P); T92 = FNMS(T5O, T5N, T5M * T5P); } T5R = T5L + T5Q; Te2 = T91 + T92; T93 = T91 - T92; T96 = T5L - T5Q; } { E T5G, T63, Te1, Te4; T5G = T5u + T5F; T63 = T5R + T62; T64 = T5G + T63; TfZ = T63 - T5G; Te1 = T5R - T62; Te4 = Te2 - Te3; Te5 = Te1 + Te4; Ted = Te1 - Te4; } { E TfS, TfT, T8U, T8Z; TfS = TdW + TdX; TfT = Te2 + Te3; TfU = TfS - TfT; Tgz = TfS + TfT; T8U = T8S + T8T; T8Z = T8V - T8Y; T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); } { E T95, T9a, Tbr, Tbs; T95 = T93 + T94; T9a = T96 - T99; T9b = FMA(KP382683432, T95, KP923879532 * T9a); T9n = FNMS(KP923879532, T95, KP382683432 * T9a); Tbr = T93 - T94; Tbs = T96 + T99; Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); } { E TdY, TdZ, Tbo, Tbp; TdY = TdW - TdX; TdZ = T5u - T5F; Te0 = TdY - TdZ; Tee = TdZ + TdY; Tbo = T8S - T8T; Tbp = T8V + T8Y; Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); } } { E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; E TgM; { E TH, T1s, TgI, TgJ; TH = Tj + TG; T1s = T14 + T1r; T1t = TH + T1s; Tgn = TH - T1s; TgI = Tgt + Tgu; TgJ = Tgy + Tgz; TgK = TgI - TgJ; TgL = TgI + TgJ; } { E TgN, TgU, T2e, T2Z; TgN = Tfq + Tfr; TgU = TgO + TgT; TgV = TgN + TgU; Th1 = TgU - TgN; T2e = T1Q + T2d; T2Z = T2B + T2Y; T30 = T2e + T2Z; Th0 = T2Z - T2e; } { E T4y, T65, Tgs, Tgv; T4y = T3M + T4x; T65 = T5j + T64; T66 = T4y + T65; TgX = T65 - T4y; Tgs = T3M - T4x; Tgv = Tgt - Tgu; Tgw = Tgs + Tgv; TgE = Tgv - Tgs; } { E Tgx, TgA, Tgo, Tgp; Tgx = T5j - T64; TgA = Tgy - Tgz; TgB = Tgx - TgA; TgF = Tgx + TgA; Tgo = Tfu + Tfv; Tgp = TfA + TfB; Tgq = Tgo - Tgp; TgM = Tgo + Tgp; } { E T31, TgW, TgH, TgY; T31 = T1t + T30; ri[WS(ios, 32)] = T31 - T66; ri[0] = T31 + T66; TgW = TgM + TgV; ii[0] = TgL + TgW; ii[WS(ios, 32)] = TgW - TgL; TgH = T1t - T30; ri[WS(ios, 48)] = TgH - TgK; ri[WS(ios, 16)] = TgH + TgK; TgY = TgV - TgM; ii[WS(ios, 16)] = TgX + TgY; ii[WS(ios, 48)] = TgY - TgX; } { E Tgr, TgC, TgZ, Th2; Tgr = Tgn + Tgq; TgC = KP707106781 * (Tgw + TgB); ri[WS(ios, 40)] = Tgr - TgC; ri[WS(ios, 8)] = Tgr + TgC; TgZ = KP707106781 * (TgE + TgF); Th2 = Th0 + Th1; ii[WS(ios, 8)] = TgZ + Th2; ii[WS(ios, 40)] = Th2 - TgZ; } { E TgD, TgG, Th3, Th4; TgD = Tgn - Tgq; TgG = KP707106781 * (TgE - TgF); ri[WS(ios, 56)] = TgD - TgG; ri[WS(ios, 24)] = TgD + TgG; Th3 = KP707106781 * (TgB - Tgw); Th4 = Th1 - Th0; ii[WS(ios, 24)] = Th3 + Th4; ii[WS(ios, 56)] = Th4 - Th3; } } { E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; E Tg5; { E Tfp, Tfs, Tgf, Tgg; Tfp = Tj - TG; Tfs = Tfq - Tfr; Tft = Tfp - Tfs; Tg7 = Tfp + Tfs; Tgf = TfR + TfU; Tgg = TfY + TfZ; Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); } { E Th7, Th8, Tfy, TfD; Th7 = T1r - T14; Th8 = TgT - TgO; Th9 = Th7 + Th8; Thf = Th8 - Th7; Tfy = Tfw - Tfx; TfD = Tfz + TfC; TfE = KP707106781 * (Tfy - TfD); Th6 = KP707106781 * (Tfy + TfD); } { E TfK, TfP, Tg8, Tg9; TfK = TfI - TfJ; TfP = TfL - TfO; TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); Tg8 = Tfx + Tfw; Tg9 = Tfz - TfC; Tga = KP707106781 * (Tg8 + Tg9); The = KP707106781 * (Tg9 - Tg8); } { E Tgc, Tgd, TfV, Tg0; Tgc = TfI + TfJ; Tgd = TfL + TfO; Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); TfV = TfR - TfU; Tg0 = TfY - TfZ; Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); } { E TfF, Tg2, Thd, Thg; TfF = Tft + TfE; Tg2 = TfQ + Tg1; ri[WS(ios, 44)] = TfF - Tg2; ri[WS(ios, 12)] = TfF + Tg2; Thd = Tg4 + Tg5; Thg = The + Thf; ii[WS(ios, 12)] = Thd + Thg; ii[WS(ios, 44)] = Thg - Thd; } { E Tg3, Tg6, Thh, Thi; Tg3 = Tft - TfE; Tg6 = Tg4 - Tg5; ri[WS(ios, 60)] = Tg3 - Tg6; ri[WS(ios, 28)] = Tg3 + Tg6; Thh = Tg1 - TfQ; Thi = Thf - The; ii[WS(ios, 28)] = Thh + Thi; ii[WS(ios, 60)] = Thi - Thh; } { E Tgb, Tgi, Th5, Tha; Tgb = Tg7 + Tga; Tgi = Tge + Tgh; ri[WS(ios, 36)] = Tgb - Tgi; ri[WS(ios, 4)] = Tgb + Tgi; Th5 = Tgk + Tgl; Tha = Th6 + Th9; ii[WS(ios, 4)] = Th5 + Tha; ii[WS(ios, 36)] = Tha - Th5; } { E Tgj, Tgm, Thb, Thc; Tgj = Tg7 - Tga; Tgm = Tgk - Tgl; ri[WS(ios, 52)] = Tgj - Tgm; ri[WS(ios, 20)] = Tgj + Tgm; Thb = Tgh - Tge; Thc = Th9 - Th6; ii[WS(ios, 20)] = Thb + Thc; ii[WS(ios, 52)] = Thc - Thb; } } { E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; E Teu; { E TcP, Td0, Teo, Tep; TcP = TcL - TcO; Td0 = KP707106781 * (TcU - TcZ); Td1 = TcP - Td0; Ten = TcP + Td0; { E Tdc, Tdn, ThB, ThC; Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); Tdo = Tdc - Tdn; ThA = Tdc + Tdn; ThB = KP707106781 * (TeF - TeE); ThC = Thn - Thm; ThD = ThB + ThC; ThJ = ThC - ThB; } Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); Teq = Teo + Tep; ThI = Tep - Teo; { E Te7, Tev, Teg, Tew, Te6, Tef; Te6 = KP707106781 * (Te0 - Te5); Te7 = TdV - Te6; Tev = TdV + Te6; Tef = KP707106781 * (Ted - Tee); Teg = Tec - Tef; Tew = Tec + Tef; Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); TeB = FMA(KP831469612, Tew, KP555570233 * Tev); Tel = FMA(KP195090322, Teg, KP980785280 * Te7); Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); } { E TdG, Tes, TdP, Tet, TdF, TdO; TdF = KP707106781 * (Tdz - TdE); TdG = Tdu - TdF; Tes = Tdu + TdF; TdO = KP707106781 * (TdM - TdN); TdP = TdL - TdO; Tet = TdL + TdO; TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); Teu = FMA(KP555570233, Tes, KP831469612 * Tet); } } { E Tdp, Tei, ThH, ThK; Tdp = Td1 + Tdo; Tei = TdQ + Teh; ri[WS(ios, 46)] = Tdp - Tei; ri[WS(ios, 14)] = Tdp + Tei; ThH = Tek + Tel; ThK = ThI + ThJ; ii[WS(ios, 14)] = ThH + ThK; ii[WS(ios, 46)] = ThK - ThH; } { E Tej, Tem, ThL, ThM; Tej = Td1 - Tdo; Tem = Tek - Tel; ri[WS(ios, 62)] = Tej - Tem; ri[WS(ios, 30)] = Tej + Tem; ThL = Teh - TdQ; ThM = ThJ - ThI; ii[WS(ios, 30)] = ThL + ThM; ii[WS(ios, 62)] = ThM - ThL; } { E Ter, Tey, Thz, ThE; Ter = Ten + Teq; Tey = Teu + Tex; ri[WS(ios, 38)] = Ter - Tey; ri[WS(ios, 6)] = Ter + Tey; Thz = TeA + TeB; ThE = ThA + ThD; ii[WS(ios, 6)] = Thz + ThE; ii[WS(ios, 38)] = ThE - Thz; } { E Tez, TeC, ThF, ThG; Tez = Ten - Teq; TeC = TeA - TeB; ri[WS(ios, 54)] = Tez - TeC; ri[WS(ios, 22)] = Tez + TeC; ThF = Tex - Teu; ThG = ThD - ThA; ii[WS(ios, 22)] = ThF + ThG; ii[WS(ios, 54)] = ThG - ThF; } } { E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; E Tfg; { E TeD, TeG, Tfa, Tfb; TeD = TcL + TcO; TeG = KP707106781 * (TeE + TeF); TeH = TeD - TeG; Tf9 = TeD + TeG; { E TeK, TeN, Thl, Tho; TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); TeN = FMA(KP923879532, TeL, KP382683432 * TeM); TeO = TeK - TeN; Thk = TeK + TeN; Thl = KP707106781 * (TcU + TcZ); Tho = Thm + Thn; Thp = Thl + Tho; Thv = Tho - Thl; } Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); Tfc = Tfa + Tfb; Thu = Tfb - Tfa; { E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; TeY = KP707106781 * (Tee + Ted); TeZ = TeX - TeY; Tfh = TeX + TeY; Tf1 = KP707106781 * (Te0 + Te5); Tf2 = Tf0 - Tf1; Tfi = Tf0 + Tf1; Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); } { E TeS, Tfe, TeV, Tff, TeR, TeU; TeR = KP707106781 * (TdE + Tdz); TeS = TeQ - TeR; Tfe = TeQ + TeR; TeU = KP707106781 * (TdM + TdN); TeV = TeT - TeU; Tff = TeT + TeU; TeW = FMA(KP555570233, TeS, KP831469612 * TeV); Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); } } { E TeP, Tf4, Tht, Thw; TeP = TeH + TeO; Tf4 = TeW + Tf3; ri[WS(ios, 42)] = TeP - Tf4; ri[WS(ios, 10)] = TeP + Tf4; Tht = Tf6 + Tf7; Thw = Thu + Thv; ii[WS(ios, 10)] = Tht + Thw; ii[WS(ios, 42)] = Thw - Tht; } { E Tf5, Tf8, Thx, Thy; Tf5 = TeH - TeO; Tf8 = Tf6 - Tf7; ri[WS(ios, 58)] = Tf5 - Tf8; ri[WS(ios, 26)] = Tf5 + Tf8; Thx = Tf3 - TeW; Thy = Thv - Thu; ii[WS(ios, 26)] = Thx + Thy; ii[WS(ios, 58)] = Thy - Thx; } { E Tfd, Tfk, Thj, Thq; Tfd = Tf9 + Tfc; Tfk = Tfg + Tfj; ri[WS(ios, 34)] = Tfd - Tfk; ri[WS(ios, 2)] = Tfd + Tfk; Thj = Tfm + Tfn; Thq = Thk + Thp; ii[WS(ios, 2)] = Thj + Thq; ii[WS(ios, 34)] = Thq - Thj; } { E Tfl, Tfo, Thr, Ths; Tfl = Tf9 - Tfc; Tfo = Tfm - Tfn; ri[WS(ios, 50)] = Tfl - Tfo; ri[WS(ios, 18)] = Tfl + Tfo; Thr = Tfj - Tfg; Ths = Thp - Thk; ii[WS(ios, 18)] = Thr + Ths; ii[WS(ios, 50)] = Ths - Thr; } } { E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; E T9H; { E T6n, T6K, TiB, TiC; T6n = T6b - T6m; T6K = T6y - T6J; T6L = T6n - T6K; T9x = T6n + T6K; TiB = T9P - T9O; TiC = Tin - Tim; TiD = TiB + TiC; TiJ = TiC - TiB; } { E T7c, T9y, T7D, T9z; { E T72, T7b, T7t, T7C; T72 = T6Q - T71; T7b = T77 - T7a; T7c = FNMS(KP980785280, T7b, KP195090322 * T72); T9y = FMA(KP980785280, T72, KP195090322 * T7b); T7t = T7h - T7s; T7C = T7y - T7B; T7D = FMA(KP195090322, T7t, KP980785280 * T7C); T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); } T7E = T7c - T7D; TiI = T9z - T9y; T9A = T9y + T9z; TiA = T7c + T7D; } { E T8k, T9C, T8x, T9D; { E T7W, T8j, T8t, T8w; T7W = T7K - T7V; T8j = T87 - T8i; T8k = T7W - T8j; T9C = T7W + T8j; T8t = T8p - T8s; T8w = T8u - T8v; T8x = T8t - T8w; T9D = T8t + T8w; } T8y = FMA(KP995184726, T8k, KP098017140 * T8x); T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); T9E = FMA(KP634393284, T9C, KP773010453 * T9D); } { E T9d, T9F, T9q, T9G; { E T8P, T9c, T9m, T9p; T8P = T8D - T8O; T9c = T90 - T9b; T9d = T8P - T9c; T9F = T8P + T9c; T9m = T9i - T9l; T9p = T9n - T9o; T9q = T9m - T9p; T9G = T9m + T9p; } T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); T9L = FMA(KP773010453, T9G, KP634393284 * T9F); T9v = FMA(KP098017140, T9q, KP995184726 * T9d); T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); } { E T7F, T9s, TiH, TiK; T7F = T6L + T7E; T9s = T8y + T9r; ri[WS(ios, 47)] = T7F - T9s; ri[WS(ios, 15)] = T7F + T9s; TiH = T9u + T9v; TiK = TiI + TiJ; ii[WS(ios, 15)] = TiH + TiK; ii[WS(ios, 47)] = TiK - TiH; } { E T9t, T9w, TiL, TiM; T9t = T6L - T7E; T9w = T9u - T9v; ri[WS(ios, 63)] = T9t - T9w; ri[WS(ios, 31)] = T9t + T9w; TiL = T9r - T8y; TiM = TiJ - TiI; ii[WS(ios, 31)] = TiL + TiM; ii[WS(ios, 63)] = TiM - TiL; } { E T9B, T9I, Tiz, TiE; T9B = T9x + T9A; T9I = T9E + T9H; ri[WS(ios, 39)] = T9B - T9I; ri[WS(ios, 7)] = T9B + T9I; Tiz = T9K + T9L; TiE = TiA + TiD; ii[WS(ios, 7)] = Tiz + TiE; ii[WS(ios, 39)] = TiE - Tiz; } { E T9J, T9M, TiF, TiG; T9J = T9x - T9A; T9M = T9K - T9L; ri[WS(ios, 55)] = T9J - T9M; ri[WS(ios, 23)] = T9J + T9M; TiF = T9H - T9E; TiG = TiD - TiA; ii[WS(ios, 23)] = TiF + TiG; ii[WS(ios, 55)] = TiG - TiF; } } { E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; E TbT; { E TaD, TaK, Ti7, Ti8; TaD = Taz - TaC; TaK = TaG - TaJ; TaL = TaD - TaK; TbJ = TaD + TaK; Ti7 = Tc1 - Tc0; Ti8 = ThT - ThQ; Ti9 = Ti7 + Ti8; Tif = Ti8 - Ti7; } { E TaS, TbK, TaZ, TbL; { E TaO, TaR, TaV, TaY; TaO = TaM - TaN; TaR = TaP - TaQ; TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); TbK = FMA(KP555570233, TaR, KP831469612 * TaO); TaV = TaT - TaU; TaY = TaW - TaX; TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); } Tb0 = TaS - TaZ; Tie = TbL - TbK; TbM = TbK + TbL; Ti6 = TaS + TaZ; } { E Tbc, TbO, Tbj, TbP; { E Tb4, Tbb, Tbf, Tbi; Tb4 = Tb2 - Tb3; Tbb = Tb7 - Tba; Tbc = Tb4 - Tbb; TbO = Tb4 + Tbb; Tbf = Tbd - Tbe; Tbi = Tbg - Tbh; Tbj = Tbf - Tbi; TbP = Tbf + Tbi; } Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); } { E Tbv, TbR, TbC, TbS; { E Tbn, Tbu, Tby, TbB; Tbn = Tbl - Tbm; Tbu = Tbq - Tbt; Tbv = Tbn - Tbu; TbR = Tbn + Tbu; Tby = Tbw - Tbx; TbB = Tbz - TbA; TbC = Tby - TbB; TbS = Tby + TbB; } TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); TbX = FMA(KP881921264, TbS, KP471396736 * TbR); TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); } { E Tb1, TbE, Tid, Tig; Tb1 = TaL + Tb0; TbE = Tbk + TbD; ri[WS(ios, 45)] = Tb1 - TbE; ri[WS(ios, 13)] = Tb1 + TbE; Tid = TbG + TbH; Tig = Tie + Tif; ii[WS(ios, 13)] = Tid + Tig; ii[WS(ios, 45)] = Tig - Tid; } { E TbF, TbI, Tih, Tii; TbF = TaL - Tb0; TbI = TbG - TbH; ri[WS(ios, 61)] = TbF - TbI; ri[WS(ios, 29)] = TbF + TbI; Tih = TbD - Tbk; Tii = Tif - Tie; ii[WS(ios, 29)] = Tih + Tii; ii[WS(ios, 61)] = Tii - Tih; } { E TbN, TbU, Ti5, Tia; TbN = TbJ + TbM; TbU = TbQ + TbT; ri[WS(ios, 37)] = TbN - TbU; ri[WS(ios, 5)] = TbN + TbU; Ti5 = TbW + TbX; Tia = Ti6 + Ti9; ii[WS(ios, 5)] = Ti5 + Tia; ii[WS(ios, 37)] = Tia - Ti5; } { E TbV, TbY, Tib, Tic; TbV = TbJ - TbM; TbY = TbW - TbX; ri[WS(ios, 53)] = TbV - TbY; ri[WS(ios, 21)] = TbV + TbY; Tib = TbT - TbQ; Tic = Ti9 - Ti6; ii[WS(ios, 21)] = Tib + Tic; ii[WS(ios, 53)] = Tic - Tib; } } { E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; E TcF; { E TbZ, Tc2, ThP, ThU; TbZ = Taz + TaC; Tc2 = Tc0 + Tc1; Tc3 = TbZ - Tc2; Tcv = TbZ + Tc2; ThP = TaG + TaJ; ThU = ThQ + ThT; ThV = ThP + ThU; Ti1 = ThU - ThP; } { E Tc6, Tcw, Tc9, Tcx; { E Tc4, Tc5, Tc7, Tc8; Tc4 = TaM + TaN; Tc5 = TaP + TaQ; Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); Tc7 = TaT + TaU; Tc8 = TaW + TaX; Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); } Tca = Tc6 - Tc9; Ti0 = Tcx - Tcw; Tcy = Tcw + Tcx; ThO = Tc6 + Tc9; } { E Tce, TcA, Tch, TcB; { E Tcc, Tcd, Tcf, Tcg; Tcc = Tbd + Tbe; Tcd = Tba + Tb7; Tce = Tcc - Tcd; TcA = Tcc + Tcd; Tcf = Tb2 + Tb3; Tcg = Tbg + Tbh; Tch = Tcf - Tcg; TcB = Tcf + Tcg; } Tci = FMA(KP634393284, Tce, KP773010453 * Tch); TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); TcC = FMA(KP995184726, TcA, KP098017140 * TcB); } { E Tcl, TcD, Tco, TcE; { E Tcj, Tck, Tcm, Tcn; Tcj = Tbl + Tbm; Tck = TbA + Tbz; Tcl = Tcj - Tck; TcD = Tcj + Tck; Tcm = Tbw + Tbx; Tcn = Tbq + Tbt; Tco = Tcm - Tcn; TcE = Tcm + Tcn; } Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); } { E Tcb, Tcq, ThZ, Ti2; Tcb = Tc3 + Tca; Tcq = Tci + Tcp; ri[WS(ios, 41)] = Tcb - Tcq; ri[WS(ios, 9)] = Tcb + Tcq; ThZ = Tcs + Tct; Ti2 = Ti0 + Ti1; ii[WS(ios, 9)] = ThZ + Ti2; ii[WS(ios, 41)] = Ti2 - ThZ; } { E Tcr, Tcu, Ti3, Ti4; Tcr = Tc3 - Tca; Tcu = Tcs - Tct; ri[WS(ios, 57)] = Tcr - Tcu; ri[WS(ios, 25)] = Tcr + Tcu; Ti3 = Tcp - Tci; Ti4 = Ti1 - Ti0; ii[WS(ios, 25)] = Ti3 + Ti4; ii[WS(ios, 57)] = Ti4 - Ti3; } { E Tcz, TcG, ThN, ThW; Tcz = Tcv + Tcy; TcG = TcC + TcF; ri[WS(ios, 33)] = Tcz - TcG; ri[WS(ios, 1)] = Tcz + TcG; ThN = TcI + TcJ; ThW = ThO + ThV; ii[WS(ios, 1)] = ThN + ThW; ii[WS(ios, 33)] = ThW - ThN; } { E TcH, TcK, ThX, ThY; TcH = Tcv - Tcy; TcK = TcI - TcJ; ri[WS(ios, 49)] = TcH - TcK; ri[WS(ios, 17)] = TcH + TcK; ThX = TcF - TcC; ThY = ThV - ThO; ii[WS(ios, 17)] = ThX + ThY; ii[WS(ios, 49)] = ThY - ThX; } } { E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; E Tat; { E T9N, T9Q, Til, Tio; T9N = T6b + T6m; T9Q = T9O + T9P; T9R = T9N - T9Q; Taj = T9N + T9Q; Til = T6y + T6J; Tio = Tim + Tin; Tip = Til + Tio; Tiv = Tio - Til; } { E T9U, Tak, T9X, Tal; { E T9S, T9T, T9V, T9W; T9S = T6Q + T71; T9T = T77 + T7a; T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); Tak = FMA(KP555570233, T9S, KP831469612 * T9T); T9V = T7h + T7s; T9W = T7y + T7B; T9X = FMA(KP831469612, T9V, KP555570233 * T9W); Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); } T9Y = T9U - T9X; Tiu = Tal - Tak; Tam = Tak + Tal; Tik = T9U + T9X; } { E Ta2, Tao, Ta5, Tap; { E Ta0, Ta1, Ta3, Ta4; Ta0 = T8p + T8s; Ta1 = T8i + T87; Ta2 = Ta0 - Ta1; Tao = Ta0 + Ta1; Ta3 = T7K + T7V; Ta4 = T8u + T8v; Ta5 = Ta3 - Ta4; Tap = Ta3 + Ta4; } Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); Taq = FMA(KP956940335, Tao, KP290284677 * Tap); } { E Ta9, Tar, Tac, Tas; { E Ta7, Ta8, Taa, Tab; Ta7 = T8D + T8O; Ta8 = T9o + T9n; Ta9 = Ta7 - Ta8; Tar = Ta7 + Ta8; Taa = T9i + T9l; Tab = T90 + T9b; Tac = Taa - Tab; Tas = Taa + Tab; } Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); Tax = FMA(KP290284677, Tar, KP956940335 * Tas); Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); } { E T9Z, Tae, Tit, Tiw; T9Z = T9R + T9Y; Tae = Ta6 + Tad; ri[WS(ios, 43)] = T9Z - Tae; ri[WS(ios, 11)] = T9Z + Tae; Tit = Tag + Tah; Tiw = Tiu + Tiv; ii[WS(ios, 11)] = Tit + Tiw; ii[WS(ios, 43)] = Tiw - Tit; } { E Taf, Tai, Tix, Tiy; Taf = T9R - T9Y; Tai = Tag - Tah; ri[WS(ios, 59)] = Taf - Tai; ri[WS(ios, 27)] = Taf + Tai; Tix = Tad - Ta6; Tiy = Tiv - Tiu; ii[WS(ios, 27)] = Tix + Tiy; ii[WS(ios, 59)] = Tiy - Tix; } { E Tan, Tau, Tij, Tiq; Tan = Taj + Tam; Tau = Taq + Tat; ri[WS(ios, 35)] = Tan - Tau; ri[WS(ios, 3)] = Tan + Tau; Tij = Taw + Tax; Tiq = Tik + Tip; ii[WS(ios, 3)] = Tij + Tiq; ii[WS(ios, 35)] = Tiq - Tij; } { E Tav, Tay, Tir, Tis; Tav = Taj - Tam; Tay = Taw - Tax; ri[WS(ios, 51)] = Tav - Tay; ri[WS(ios, 19)] = Tav + Tay; Tir = Tat - Taq; Tis = Tip - Tik; ii[WS(ios, 19)] = Tir + Tis; ii[WS(ios, 51)] = Tis - Tir; } } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 64}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 64, "t1_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 }; void X(codelet_t1_64) (planner *p) { X(kdft_dit_register) (p, t1_64, &desc); }