/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:29:56 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 7 -name t1_7 -include t.h */ /* * This function contains 72 FP additions, 60 FP multiplications, * (or, 36 additions, 24 multiplications, 36 fused multiply/add), * 29 stack variables, and 28 memory accesses */ /* * Generator Id's : * $Id: t1_7.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_7.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_7.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "t.h" static const R *t1_7(R *ri, R *ii, const R *W, stride ios, int m, int dist) { DK(KP222520933, +0.222520933956314404288902564496794759466355569); DK(KP900968867, +0.900968867902419126236102319507445051165919162); DK(KP623489801, +0.623489801858733530525004884004239810632274731); DK(KP433883739, +0.433883739117558120475768332848358754609990728); DK(KP781831482, +0.781831482468029808708444526674057750232334519); DK(KP974927912, +0.974927912181823607018131682993931217232785801); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 12) { E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ; T1 = ri[0]; TR = ii[0]; { E T6, TA, Tb, TB; { E T3, T5, T2, T4; T3 = ri[WS(ios, 1)]; T5 = ii[WS(ios, 1)]; T2 = W[0]; T4 = W[1]; T6 = FMA(T2, T3, T4 * T5); TA = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = ri[WS(ios, 6)]; Ta = ii[WS(ios, 6)]; T7 = W[10]; T9 = W[11]; Tb = FMA(T7, T8, T9 * Ta); TB = FNMS(T9, T8, T7 * Ta); } Tc = T6 + Tb; TS = Tb - T6; TC = TA - TB; TO = TA + TB; } { E Th, TG, Tm, TH; { E Te, Tg, Td, Tf; Te = ri[WS(ios, 2)]; Tg = ii[WS(ios, 2)]; Td = W[2]; Tf = W[3]; Th = FMA(Td, Te, Tf * Tg); TG = FNMS(Tf, Te, Td * Tg); } { E Tj, Tl, Ti, Tk; Tj = ri[WS(ios, 5)]; Tl = ii[WS(ios, 5)]; Ti = W[8]; Tk = W[9]; Tm = FMA(Ti, Tj, Tk * Tl); TH = FNMS(Tk, Tj, Ti * Tl); } Tn = Th + Tm; TT = Tm - Th; TI = TG - TH; TP = TG + TH; } { E Ts, TD, Tx, TE; { E Tp, Tr, To, Tq; Tp = ri[WS(ios, 3)]; Tr = ii[WS(ios, 3)]; To = W[4]; Tq = W[5]; Ts = FMA(To, Tp, Tq * Tr); TD = FNMS(Tq, Tp, To * Tr); } { E Tu, Tw, Tt, Tv; Tu = ri[WS(ios, 4)]; Tw = ii[WS(ios, 4)]; Tt = W[6]; Tv = W[7]; Tx = FMA(Tt, Tu, Tv * Tw); TE = FNMS(Tv, Tu, Tt * Tw); } Ty = Ts + Tx; TU = Tx - Ts; TF = TD - TE; TQ = TD + TE; } ri[0] = T1 + Tc + Tn + Ty; ii[0] = TO + TP + TQ + TR; { E TJ, Tz, TX, TY; TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); ri[WS(ios, 5)] = Tz - TJ; ri[WS(ios, 2)] = Tz + TJ; TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT); TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO); ii[WS(ios, 2)] = TX + TY; ii[WS(ios, 5)] = TY - TX; } { E TL, TK, TV, TW; TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); ri[WS(ios, 6)] = TK - TL; ri[WS(ios, 1)] = TK + TL; TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU); TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP); ii[WS(ios, 1)] = TV + TW; ii[WS(ios, 6)] = TW - TV; } { E TN, TM, TZ, T10; TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); ri[WS(ios, 4)] = TM - TN; ri[WS(ios, 3)] = TM + TN; TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT); T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO); ii[WS(ios, 3)] = TZ + T10; ii[WS(ios, 4)] = T10 - TZ; } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 7}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 7, "t1_7", twinstr, {36, 24, 36, 0}, &GENUS, 0, 0, 0 }; void X(codelet_t1_7) (planner *p) { X(kdft_dit_register) (p, t1_7, &desc); }