/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:30:00 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 9 -name t1_9 -include t.h */ /* * This function contains 96 FP additions, 72 FP multiplications, * (or, 60 additions, 36 multiplications, 36 fused multiply/add), * 41 stack variables, and 36 memory accesses */ /* * Generator Id's : * $Id: t1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t1_9.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "t.h" static const R *t1_9(R *ri, R *ii, const R *W, stride ios, int m, int dist) { DK(KP939692620, +0.939692620785908384054109277324731469936208134); DK(KP342020143, +0.342020143325668733044099614682259580763083368); DK(KP984807753, +0.984807753012208059366743024589523013670643252); DK(KP173648177, +0.173648177666930348851716626769314796000375677); DK(KP642787609, +0.642787609686539326322643409907263432907559884); DK(KP766044443, +0.766044443118978035202392650555416673935832457); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP866025403, +0.866025403784438646763723170752936183471402627); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 16) { E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu; E T1w, TW, T1k, T11, T1l; { E T6, TO, Tb, TP; T1 = ri[0]; T1B = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(ios, 3)]; T5 = ii[WS(ios, 3)]; T2 = W[4]; T4 = W[5]; T6 = FMA(T2, T3, T4 * T5); TO = FNMS(T4, T3, T2 * T5); } { E T8, Ta, T7, T9; T8 = ri[WS(ios, 6)]; Ta = ii[WS(ios, 6)]; T7 = W[10]; T9 = W[11]; Tb = FMA(T7, T8, T9 * Ta); TP = FNMS(T9, T8, T7 * Ta); } TQ = KP866025403 * (TO - TP); T1G = KP866025403 * (Tb - T6); Tc = T6 + Tb; TN = FNMS(KP500000000, Tc, T1); T1A = TO + TP; T1H = FNMS(KP500000000, T1A, T1B); } { E Tz, T19, TE, T14, TJ, T15, TK, T1a; { E Tw, Ty, Tv, Tx; Tw = ri[WS(ios, 2)]; Ty = ii[WS(ios, 2)]; Tv = W[2]; Tx = W[3]; Tz = FMA(Tv, Tw, Tx * Ty); T19 = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = ri[WS(ios, 5)]; TD = ii[WS(ios, 5)]; TA = W[8]; TC = W[9]; TE = FMA(TA, TB, TC * TD); T14 = FNMS(TC, TB, TA * TD); } { E TG, TI, TF, TH; TG = ri[WS(ios, 8)]; TI = ii[WS(ios, 8)]; TF = W[14]; TH = W[15]; TJ = FMA(TF, TG, TH * TI); T15 = FNMS(TH, TG, TF * TI); } TK = TE + TJ; T1a = T14 + T15; TL = Tz + TK; T1x = T19 + T1a; { E T13, T16, T18, T1b; T13 = FNMS(KP500000000, TK, Tz); T16 = KP866025403 * (T14 - T15); T17 = T13 + T16; T1o = T13 - T16; T18 = KP866025403 * (TJ - TE); T1b = FNMS(KP500000000, T1a, T19); T1c = T18 + T1b; T1n = T1b - T18; } } { E Ti, TY, Tn, TT, Ts, TU, Tt, TZ; { E Tf, Th, Te, Tg; Tf = ri[WS(ios, 1)]; Th = ii[WS(ios, 1)]; Te = W[0]; Tg = W[1]; Ti = FMA(Te, Tf, Tg * Th); TY = FNMS(Tg, Tf, Te * Th); } { E Tk, Tm, Tj, Tl; Tk = ri[WS(ios, 4)]; Tm = ii[WS(ios, 4)]; Tj = W[6]; Tl = W[7]; Tn = FMA(Tj, Tk, Tl * Tm); TT = FNMS(Tl, Tk, Tj * Tm); } { E Tp, Tr, To, Tq; Tp = ri[WS(ios, 7)]; Tr = ii[WS(ios, 7)]; To = W[12]; Tq = W[13]; Ts = FMA(To, Tp, Tq * Tr); TU = FNMS(Tq, Tp, To * Tr); } Tt = Tn + Ts; TZ = TT + TU; Tu = Ti + Tt; T1w = TY + TZ; { E TS, TV, TX, T10; TS = FNMS(KP500000000, Tt, Ti); TV = KP866025403 * (TT - TU); TW = TS + TV; T1k = TS - TV; TX = KP866025403 * (Ts - Tn); T10 = FNMS(KP500000000, TZ, TY); T11 = TX + T10; T1l = T10 - TX; } } { E T1y, Td, TM, T1v; T1y = KP866025403 * (T1w - T1x); Td = T1 + Tc; TM = Tu + TL; T1v = FNMS(KP500000000, TM, Td); ri[0] = Td + TM; ri[WS(ios, 3)] = T1v + T1y; ri[WS(ios, 6)] = T1v - T1y; } { E T1D, T1z, T1C, T1E; T1D = KP866025403 * (TL - Tu); T1z = T1w + T1x; T1C = T1A + T1B; T1E = FNMS(KP500000000, T1z, T1C); ii[0] = T1z + T1C; ii[WS(ios, 6)] = T1E - T1D; ii[WS(ios, 3)] = T1D + T1E; } { E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K; TR = TN + TQ; T1I = T1G + T1H; { E T12, T1d, T1g, T1h; T12 = FMA(KP766044443, TW, KP642787609 * T11); T1d = FMA(KP173648177, T17, KP984807753 * T1c); T1e = T12 + T1d; T1J = KP866025403 * (T1d - T12); T1g = FNMS(KP642787609, TW, KP766044443 * T11); T1h = FNMS(KP984807753, T17, KP173648177 * T1c); T1i = KP866025403 * (T1g - T1h); T1F = T1g + T1h; } ri[WS(ios, 1)] = TR + T1e; ii[WS(ios, 1)] = T1F + T1I; T1f = FNMS(KP500000000, T1e, TR); ri[WS(ios, 7)] = T1f - T1i; ri[WS(ios, 4)] = T1f + T1i; T1K = FNMS(KP500000000, T1F, T1I); ii[WS(ios, 4)] = T1J + T1K; ii[WS(ios, 7)] = T1K - T1J; } { E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O; T1j = TN - TQ; T1M = T1H - T1G; { E T1m, T1p, T1s, T1t; T1m = FMA(KP173648177, T1k, KP984807753 * T1l); T1p = FNMS(KP939692620, T1o, KP342020143 * T1n); T1q = T1m + T1p; T1N = KP866025403 * (T1p - T1m); T1s = FNMS(KP984807753, T1k, KP173648177 * T1l); T1t = FMA(KP342020143, T1o, KP939692620 * T1n); T1u = KP866025403 * (T1s + T1t); T1L = T1s - T1t; } ri[WS(ios, 2)] = T1j + T1q; ii[WS(ios, 2)] = T1L + T1M; T1r = FNMS(KP500000000, T1q, T1j); ri[WS(ios, 8)] = T1r - T1u; ri[WS(ios, 5)] = T1r + T1u; T1O = FNMS(KP500000000, T1L, T1M); ii[WS(ios, 5)] = T1N + T1O; ii[WS(ios, 8)] = T1O - T1N; } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 9}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 9, "t1_9", twinstr, {60, 36, 36, 0}, &GENUS, 0, 0, 0 }; void X(codelet_t1_9) (planner *p) { X(kdft_dit_register) (p, t1_9, &desc); }