/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 21:30:12 EDT 2003 */ #include "codelet-dft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 16 -name t2_16 -include t.h */ /* * This function contains 196 FP additions, 108 FP multiplications, * (or, 156 additions, 68 multiplications, 40 fused multiply/add), * 104 stack variables, and 64 memory accesses */ /* * Generator Id's : * $Id: t2_16.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t2_16.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ * $Id: t2_16.c,v 1.1 2008/10/17 06:11:09 scuri Exp $ */ #include "t.h" static const R *t2_16(R *ri, R *ii, const R *W, stride ios, int m, int dist) { DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8) { E T1, T3d, T18, T26, T29, T2R, Tq, T1r, T1E, T2k, T2g, T1O, Te, T3c, Tz; E T1P, T1S, T1T, T1U, TG, TL, T1V, T1Y, T1Z, T20, TT, TY, T1X, T1A, T2l; E T1J, T2h, T1h, T2b, T1m, T2a; T1 = ri[0]; T3d = ii[0]; { E T9, Td, Tl, Tp, Ty, Tu, TD, TF, TI, TK, TV, TQ, TS, TX, T1z; E T1v, T1C, T1D, T1G, T1I, T1q, T1p, T1l, T1j, T1c, T1g, T2, T5, Ti, Tg; E T4, Tw, Ts, Ta, Tv, T7, Tb, Tr, Tk, TW, TJ, TC, TU, To, TE; E TH, T14, T24, T17, T25, TN, TO, TP, TR; T9 = ri[WS(ios, 8)]; Td = ii[WS(ios, 8)]; Tl = ri[WS(ios, 4)]; Tp = ii[WS(ios, 4)]; Ty = ii[WS(ios, 12)]; Tu = ri[WS(ios, 12)]; TD = ri[WS(ios, 2)]; TF = ii[WS(ios, 2)]; TI = ri[WS(ios, 10)]; TK = ii[WS(ios, 10)]; TV = ri[WS(ios, 6)]; TQ = ri[WS(ios, 14)]; TS = ii[WS(ios, 14)]; TX = ii[WS(ios, 6)]; T1z = ii[WS(ios, 7)]; T1v = ri[WS(ios, 7)]; T1C = ri[WS(ios, 3)]; T1D = ii[WS(ios, 3)]; T1G = ri[WS(ios, 11)]; T1I = ii[WS(ios, 11)]; T1q = ii[WS(ios, 15)]; T1p = ri[WS(ios, 15)]; T1l = ii[WS(ios, 13)]; T1j = ri[WS(ios, 13)]; T1c = ri[WS(ios, 5)]; T1g = ii[WS(ios, 5)]; { E T12, T13, T15, T16, T3, T6, Tm, Tj, Tn, Th; T12 = ri[WS(ios, 1)]; T13 = ii[WS(ios, 1)]; T15 = ri[WS(ios, 9)]; T16 = ii[WS(ios, 9)]; T2 = W[4]; T5 = W[5]; T3 = W[0]; T6 = W[1]; Ti = W[3]; Tg = W[2]; T4 = T2 * T3; Tw = T5 * Tg; Ts = T5 * Ti; Ta = T2 * T6; Tv = T2 * Ti; T7 = T5 * T6; Tb = T5 * T3; Tr = T2 * Tg; Tm = Tg * T6; Tj = Ti * T6; Tn = Ti * T3; Th = Tg * T3; Tk = Th - Tj; TW = Tv - Tw; TJ = Ta + Tb; TC = Th + Tj; TU = Tr + Ts; To = Tm + Tn; TE = Tm - Tn; TH = T4 - T7; T14 = FMA(T3, T12, T6 * T13); T24 = FNMS(T6, T12, T3 * T13); T17 = FMA(T2, T15, T5 * T16); T25 = FNMS(T5, T15, T2 * T16); TN = W[6]; TO = W[7]; TP = FMA(TN, T3, TO * T6); TR = FNMS(TO, T3, TN * T6); } T18 = T14 + T17; T26 = T24 - T25; T29 = T14 - T17; T2R = T24 + T25; Tq = FMA(Tk, Tl, To * Tp); T1r = FMA(TN, T1p, TO * T1q); T1E = FMA(Tg, T1C, Ti * T1D); T2k = FNMS(TO, T1p, TN * T1q); T2g = FNMS(Ti, T1C, Tg * T1D); { E T8, Tc, Tt, Tx; T1O = FNMS(To, Tl, Tk * Tp); T8 = T4 + T7; Tc = Ta - Tb; Te = FNMS(Tc, Td, T8 * T9); T3c = FMA(Tc, T9, T8 * Td); Tt = Tr - Ts; Tx = Tv + Tw; Tz = FMA(Tt, Tu, Tx * Ty); T1P = FNMS(Tx, Tu, Tt * Ty); T1S = FMA(TE, TD, TC * TF); T1T = FNMS(TJ, TI, TH * TK); T1U = T1S - T1T; } TG = FNMS(TE, TF, TC * TD); TL = FMA(TH, TI, TJ * TK); T1V = TG - TL; T1Y = FMA(TR, TQ, TP * TS); T1Z = FMA(TW, TV, TU * TX); T20 = T1Y - T1Z; TT = FNMS(TR, TS, TP * TQ); TY = FNMS(TW, TX, TU * TV); T1X = TT - TY; { E T1u, T1F, T1y, T1H; { E T1s, T1t, T1w, T1x; T1s = T2 * TC; T1t = T5 * TE; T1u = T1s - T1t; T1F = T1s + T1t; T1w = T2 * TE; T1x = T5 * TC; T1y = T1w + T1x; T1H = T1w - T1x; } T1A = FMA(T1u, T1v, T1y * T1z); T2l = FNMS(T1y, T1v, T1u * T1z); T1J = FNMS(T1H, T1I, T1F * T1G); T2h = FMA(T1H, T1G, T1F * T1I); } { E T1b, T1i, T1f, T1k; { E T19, T1a, T1d, T1e; T19 = T2 * Tk; T1a = T5 * To; T1b = T19 + T1a; T1i = T19 - T1a; T1d = T2 * To; T1e = T5 * Tk; T1f = T1d - T1e; T1k = T1d + T1e; } T1h = FNMS(T1f, T1g, T1b * T1c); T2b = FNMS(T1k, T1j, T1i * T1l); T1m = FMA(T1i, T1j, T1k * T1l); T2a = FMA(T1f, T1c, T1b * T1g); } } { E TB, T2L, T10, T3k, T3f, T3l, T2O, T3a, T1o, T36, T2U, T32, T1L, T37, T2Z; E T33; { E Tf, TA, T2M, T2N; Tf = T1 + Te; TA = Tq + Tz; TB = Tf + TA; T2L = Tf - TA; { E TM, TZ, T3b, T3e; TM = TG + TL; TZ = TT + TY; T10 = TM + TZ; T3k = TZ - TM; T3b = T1O + T1P; T3e = T3c + T3d; T3f = T3b + T3e; T3l = T3e - T3b; } T2M = T1S + T1T; T2N = T1Y + T1Z; T2O = T2M - T2N; T3a = T2M + T2N; { E T1n, T2Q, T2S, T2T; T1n = T1h + T1m; T2Q = T18 - T1n; T2S = T2a + T2b; T2T = T2R - T2S; T1o = T18 + T1n; T36 = T2R + T2S; T2U = T2Q + T2T; T32 = T2T - T2Q; } { E T1B, T1K, T2V, T2W, T2X, T2Y; T1B = T1r + T1A; T1K = T1E + T1J; T2V = T1B - T1K; T2W = T2k + T2l; T2X = T2g + T2h; T2Y = T2W - T2X; T1L = T1B + T1K; T37 = T2W + T2X; T2Z = T2V - T2Y; T33 = T2V + T2Y; } } { E T11, T1M, T39, T3g; T11 = TB + T10; T1M = T1o + T1L; ri[WS(ios, 8)] = T11 - T1M; ri[0] = T11 + T1M; T39 = T36 + T37; T3g = T3a + T3f; ii[0] = T39 + T3g; ii[WS(ios, 8)] = T3g - T39; } { E T2P, T30, T3j, T3m; T2P = T2L + T2O; T30 = KP707106781 * (T2U + T2Z); ri[WS(ios, 10)] = T2P - T30; ri[WS(ios, 2)] = T2P + T30; T3j = KP707106781 * (T32 + T33); T3m = T3k + T3l; ii[WS(ios, 2)] = T3j + T3m; ii[WS(ios, 10)] = T3m - T3j; } { E T31, T34, T3n, T3o; T31 = T2L - T2O; T34 = KP707106781 * (T32 - T33); ri[WS(ios, 14)] = T31 - T34; ri[WS(ios, 6)] = T31 + T34; T3n = KP707106781 * (T2Z - T2U); T3o = T3l - T3k; ii[WS(ios, 6)] = T3n + T3o; ii[WS(ios, 14)] = T3o - T3n; } { E T35, T38, T3h, T3i; T35 = TB - T10; T38 = T36 - T37; ri[WS(ios, 12)] = T35 - T38; ri[WS(ios, 4)] = T35 + T38; T3h = T1L - T1o; T3i = T3f - T3a; ii[WS(ios, 4)] = T3h + T3i; ii[WS(ios, 12)] = T3i - T3h; } } { E T1R, T2v, T22, T3q, T3t, T3z, T2y, T3y, T2e, T2I, T2s, T2C, T2p, T2J, T2t; E T2F; { E T1N, T1Q, T2w, T2x; T1N = T1 - Te; T1Q = T1O - T1P; T1R = T1N - T1Q; T2v = T1N + T1Q; { E T1W, T21, T3r, T3s; T1W = T1U - T1V; T21 = T1X + T20; T22 = KP707106781 * (T1W - T21); T3q = KP707106781 * (T1W + T21); T3r = T3d - T3c; T3s = Tq - Tz; T3t = T3r - T3s; T3z = T3s + T3r; } T2w = T1V + T1U; T2x = T1X - T20; T2y = KP707106781 * (T2w + T2x); T3y = KP707106781 * (T2x - T2w); { E T28, T2A, T2d, T2B, T27, T2c; T27 = T1h - T1m; T28 = T26 + T27; T2A = T26 - T27; T2c = T2a - T2b; T2d = T29 - T2c; T2B = T29 + T2c; T2e = FMA(KP923879532, T28, KP382683432 * T2d); T2I = FNMS(KP382683432, T2B, KP923879532 * T2A); T2s = FNMS(KP923879532, T2d, KP382683432 * T28); T2C = FMA(KP382683432, T2A, KP923879532 * T2B); } { E T2j, T2D, T2o, T2E; { E T2f, T2i, T2m, T2n; T2f = T1r - T1A; T2i = T2g - T2h; T2j = T2f - T2i; T2D = T2f + T2i; T2m = T2k - T2l; T2n = T1E - T1J; T2o = T2m + T2n; T2E = T2m - T2n; } T2p = FNMS(KP923879532, T2o, KP382683432 * T2j); T2J = FMA(KP923879532, T2E, KP382683432 * T2D); T2t = FMA(KP382683432, T2o, KP923879532 * T2j); T2F = FNMS(KP382683432, T2E, KP923879532 * T2D); } } { E T23, T2q, T3x, T3A; T23 = T1R + T22; T2q = T2e + T2p; ri[WS(ios, 11)] = T23 - T2q; ri[WS(ios, 3)] = T23 + T2q; T3x = T2s + T2t; T3A = T3y + T3z; ii[WS(ios, 3)] = T3x + T3A; ii[WS(ios, 11)] = T3A - T3x; } { E T2r, T2u, T3B, T3C; T2r = T1R - T22; T2u = T2s - T2t; ri[WS(ios, 15)] = T2r - T2u; ri[WS(ios, 7)] = T2r + T2u; T3B = T2p - T2e; T3C = T3z - T3y; ii[WS(ios, 7)] = T3B + T3C; ii[WS(ios, 15)] = T3C - T3B; } { E T2z, T2G, T3p, T3u; T2z = T2v + T2y; T2G = T2C + T2F; ri[WS(ios, 9)] = T2z - T2G; ri[WS(ios, 1)] = T2z + T2G; T3p = T2I + T2J; T3u = T3q + T3t; ii[WS(ios, 1)] = T3p + T3u; ii[WS(ios, 9)] = T3u - T3p; } { E T2H, T2K, T3v, T3w; T2H = T2v - T2y; T2K = T2I - T2J; ri[WS(ios, 13)] = T2H - T2K; ri[WS(ios, 5)] = T2H + T2K; T3v = T2F - T2C; T3w = T3t - T3q; ii[WS(ios, 5)] = T3v + T3w; ii[WS(ios, 13)] = T3w - T3v; } } } return W; } static const tw_instr twinstr[] = { {TW_COS, 0, 1}, {TW_SIN, 0, 1}, {TW_COS, 0, 3}, {TW_SIN, 0, 3}, {TW_COS, 0, 9}, {TW_SIN, 0, 9}, {TW_COS, 0, 15}, {TW_SIN, 0, 15}, {TW_NEXT, 1, 0} }; static const ct_desc desc = { 16, "t2_16", twinstr, {156, 68, 40, 0}, &GENUS, 0, 0, 0 }; void X(codelet_t2_16) (planner *p) { X(kdft_dit_register) (p, t2_16, &desc); }