/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: ct-dif.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* decimation in time Cooley-Tukey */ #include "dft.h" #include "ct.h" static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const plan_ct *ego = (const plan_ct *) ego_; { int i, m = ego->m, vl = ego->vl; int is = ego->is, ivs = ego->ivs; for (i = 0; i < vl; ++i) ego->k.dif(ri + i * ivs, ii + i * ivs, ego->td->W, ego->ios, m, is); } /* two-dimensional r x vl sub-transform: */ { plan *cld0 = ego->cld; plan_dft *cld = (plan_dft *) cld0; cld->apply(cld0, ri, ii, ro, io); } } static int applicable0(const solver_ct *ego, const problem *p_, const planner *plnr) { if (X(dft_ct_applicable)(ego, p_)) { int ivs, ovs; int vl; const ct_desc *e = ego->desc; const problem_dft *p = (const problem_dft *) p_; iodim *d = p->sz->dims; int m = d[0].n / e->radix; X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); return (1 /* DIF destroys the input and we don't like it */ && (p->ri == p->ro || DESTROY_INPUTP(plnr)) && (e->genus->okp(e, p->ri, p->ii, (int)m * d[0].is, 0, m, d[0].is, plnr)) && (e->genus->okp(e, p->ri + ivs, p->ii + ivs, (int)m * d[0].is, 0, m, d[0].is, plnr)) ); } return 0; } static int applicable(const solver_ct *ego, const problem *p_, const planner *plnr) { const problem_dft *p; if (!applicable0(ego, p_, plnr)) return 0; p = (const problem_dft *) p_; /* emulate fftw2 behavior */ if (NO_VRECURSEP(plnr) && (p->vecsz->rnk > 0)) return 0; if (NO_UGLYP(plnr) && X(ct_uglyp)(16, p->sz->dims[0].n, ego->desc->radix)) return 0; return 1; } static void finish(plan_ct *ego) { const ct_desc *d = ego->slv->desc; ego->ios = X(mkstride)(ego->r, ego->m * ego->is); X(ops_madd)(ego->vl * ego->m / d->genus->vl, &d->ops, &ego->cld->ops, &ego->super.super.ops); } static plan *mkplan(const solver *ego, const problem *p, planner *plnr) { static const ctadt adt = { sizeof(plan_ct), X(dft_mkcld_dif), finish, applicable, apply }; return X(mkplan_dft_ct)((const solver_ct *) ego, p, plnr, &adt); } solver *X(mksolver_dft_ct_dif)(kdft_dif codelet, const ct_desc *desc) { static const solver_adt sadt = { mkplan }; static const char name[] = "dft-dif"; union kct k; k.dif = codelet; return X(mksolver_dft_ct)(k, desc, name, &sadt); }