/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: ct-ditbuf.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* decimation in time Cooley-Tukey. Codelet operates on contiguous buffer rather than directly on the output array. */ /* FIXME: find a way to use rank-0 transforms for this stuff */ #include "dft.h" #include "ct.h" /* Copy A -> B, where A and B are n0 x n1 complex matrices such that the (i0, i1) element has index (i0 * s0 + i1 * s1). */ static void cpy(int n0, int n1, const R *rA, const R *iA, int sa0, int sa1, R *rB, R *iB, int sb0, int sb1) { int i0, i1; int ima = iA - rA, imb = iB - rB; for (i0 = 0; i0 < n0; ++i0) { const R *pa; R *pb; pa = rA; rA += sa0; pb = rB; rB += sb0; for (i1 = 0; i1 < n1; ++i1) { R xr = pa[0], xi = pa[ima]; pb[0] = xr; pb[imb] = xi; pa += sa1; pb += sb1; } } } static const R *doit(kdft_dit k, R *rA, R *iA, const R *W, int ios, int dist, int r, int batchsz, R *buf, stride bufstride) { cpy(r, batchsz, rA, iA, ios, dist, buf, buf + 1, 2, 2 * r); W = k(buf, buf + 1, W, bufstride, batchsz, 2 * r); cpy(r, batchsz, buf, buf + 1, 2, 2 * r, rA, iA, ios, dist); return W; } #define BATCHSZ 4 /* FIXME: parametrize? */ static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const plan_ct *ego = (const plan_ct *) ego_; plan *cld0 = ego->cld; plan_dft *cld = (plan_dft *) cld0; /* two-dimensional r x vl sub-transform: */ cld->apply(cld0, ri, ii, ro, io); { int i, j, m = ego->m, vl = ego->vl, r = ego->r; int os = ego->os, ovs = ego->ovs, ios = ego->iios; R *buf; STACK_MALLOC(R *, buf, r * BATCHSZ * 2 * sizeof(R)); for (i = 0; i < vl; ++i) { R *rA = ro + i * ovs, *iA = io + i * ovs; const R *W = ego->td->W; for (j = m; j >= BATCHSZ; j -= BATCHSZ) { W = doit(ego->k.dit, rA, iA, W, ios, os, r, BATCHSZ, buf, ego->vs); rA += os * (int)BATCHSZ; iA += os * (int)BATCHSZ; } /* do remaining j calls, if any */ if (j > 0) doit(ego->k.dit, rA, iA, W, ios, os, r, j, buf, ego->vs); } STACK_FREE(buf); } } static int applicable0(const solver_ct *ego, const problem *p_, const planner *plnr) { UNUSED(plnr); if (X(dft_ct_applicable)(ego, p_)) { const ct_desc *e = ego->desc; const problem_dft *p = (const problem_dft *) p_; iodim *d = p->sz->dims; int m = d[0].n / e->radix; return (1 /* check both batch size and remainder */ && (m < BATCHSZ || (e->genus->okp(e, 0, ((const R *)0)+1, 2, 0, BATCHSZ, 2 * e->radix, plnr))) && (e->genus->okp(e, 0, ((const R *)0)+1, 2, 0, m % BATCHSZ, 2 * e->radix, plnr)) ); } return 0; } static int applicable(const solver_ct *ego, const problem *p_, const planner *plnr) { const problem_dft *p; if (!applicable0(ego, p_, plnr)) return 0; p = (const problem_dft *) p_; /* emulate fftw2 behavior */ if (NO_VRECURSEP(plnr) && (p->vecsz->rnk > 0)) return 0; if (NO_UGLYP(plnr) && X(ct_uglyp)(512, p->sz->dims[0].n, ego->desc->radix)) return 0; return 1; } static void finish(plan_ct *ego) { const ct_desc *d = ego->slv->desc; ego->iios = ego->m * ego->os; ego->vs = X(mkstride)(ego->r, 2); X(ops_madd)(ego->vl * ego->m / d->genus->vl, &d->ops, &ego->cld->ops, &ego->super.super.ops); /* 4 load/stores * N * VL */ ego->super.super.ops.other += 4 * ego->r * ego->m * ego->vl; } static plan *mkplan(const solver *ego, const problem *p, planner *plnr) { static const ctadt adt = { sizeof(plan_ct), X(dft_mkcld_dit), finish, applicable, apply }; return X(mkplan_dft_ct)((const solver_ct *) ego, p, plnr, &adt); } solver *X(mksolver_dft_ct_ditbuf)(kdft_dit codelet, const ct_desc *desc) { static const solver_adt sadt = { mkplan }; static const char name[] = "dft-ditbuf"; union kct k; k.dit = codelet; return X(mksolver_dft_ct)(k, desc, name, &sadt); }