/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: ct-ditf.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* decimation in time Cooley-Tukey */ #include "dft.h" #include "ct.h" static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const plan_ct *ego = (const plan_ct *) ego_; plan *cld0 = ego->cld; plan_dft *cld = (plan_dft *) cld0; UNUSED(ro); /* == ri */ UNUSED(io); /* == ii */ ego->k.difsq(ri, ii, ego->td->W, ego->ios, ego->vs, ego->m, ego->is); /* two-dimensional r x vl sub-transform: */ cld->apply(cld0, ri, ii, ri, ii); } static int applicable(const solver_ct *ego, const problem *p_, const planner *plnr) { UNUSED(plnr); if (X(dft_ct_applicable)(ego, p_)) { const ct_desc *e = ego->desc; const problem_dft *p = (const problem_dft *) p_; iodim *d = p->sz->dims, *vd = p->vecsz->dims; int m = d[0].n / e->radix; return (1 && p->ri == p->ro /* inplace only */ && p->vecsz->rnk == 1 && vd[0].n == e->radix && d[0].os == vd[0].is && d[0].is == (int)e->radix * vd[0].is && vd[0].os == (int)d[0].n * vd[0].is && (e->genus->okp(e, p->ri, p->ii, vd[0].os, vd[0].is, m, d[0].is, plnr)) ); } return 0; } static void finish(plan_ct *ego) { const ct_desc *d = ego->slv->desc; ego->ios = X(mkstride)(ego->r, ego->ovs); ego->vs = X(mkstride)(ego->r, ego->ivs); X(ops_madd)(ego->m / d->genus->vl, &ego->slv->desc->ops, &ego->cld->ops, &ego->super.super.ops); } static problem *mkcld(const solver_ct *ego, const problem_dft *p) { iodim *d = p->sz->dims; iodim *vd = p->vecsz->dims; const ct_desc *e = ego->desc; return X(mkproblem_dft_d)( X(mktensor_1d)(d[0].n / e->radix, d[0].is, d[0].is), X(mktensor_2d)(vd[0].n, vd[0].os, vd[0].os, e->radix, vd[0].is,vd[0].is), p->ro, p->io, p->ro, p->io); } static plan *mkplan(const solver *ego, const problem *p, planner *plnr) { static const ctadt adt = { sizeof(plan_ct), mkcld, finish, applicable, apply }; return X(mkplan_dft_ct)((const solver_ct *) ego, p, plnr, &adt); } solver *X(mksolver_dft_ct_ditf)(kdft_difsq codelet, const ct_desc *desc) { static const solver_adt sadt = { mkplan }; static const char name[] = "dft-ditf"; union kct k; k.difsq = codelet; return X(mksolver_dft_ct)(k, desc, name, &sadt); }