/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: ct.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* generic Cooley-Tukey routines */ #include "dft.h" #include "ct.h" static void destroy(plan *ego_) { plan_ct *ego = (plan_ct *) ego_; X(plan_destroy_internal)(ego->cld); X(stride_destroy)(ego->ios); X(stride_destroy)(ego->vs); } static void awake(plan *ego_, int flg) { plan_ct *ego = (plan_ct *) ego_; plan *cld = ego->cld; AWAKE(cld, flg); X(twiddle_awake)(flg, &ego->td, ego->slv->desc->tw, ego->r * ego->m, ego->r, ego->m); } static void print(const plan *ego_, printer *p) { const plan_ct *ego = (const plan_ct *) ego_; const solver_ct *slv = ego->slv; const ct_desc *e = slv->desc; p->print(p, "(%s-%d/%d%v \"%s\"%(%p%))", slv->nam, ego->r, X(twiddle_length)(ego->r, e->tw), ego->vl, e->nam, ego->cld); } #define divides(a, b) (((int)(b) % (int)(a)) == 0) int X(dft_ct_applicable)(const solver_ct *ego, const problem *p_) { if (DFTP(p_)) { const problem_dft *p = (const problem_dft *) p_; const ct_desc *d = ego->desc; return (1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && divides(d->radix, p->sz->dims[0].n) ); } return 0; } static const plan_adt padt = { X(dft_solve), awake, print, destroy }; plan *X(mkplan_dft_ct)(const solver_ct *ego, const problem *p_, planner *plnr, const ctadt *adt) { plan_ct *pln; plan *cld; int n, r, m; iodim *d; const problem_dft *p; const ct_desc *e = ego->desc; if (!adt->applicable(ego, p_, plnr)) return (plan *) 0; p = (const problem_dft *) p_; d = p->sz->dims; n = d[0].n; r = e->radix; m = n / r; cld = X(mkplan_d)(plnr, adt->mkcld(ego, p)); if (!cld) return (plan *) 0; A(adt->pln_size >= sizeof(plan_ct)); pln = (plan_ct *) X(mkplan_dft)(adt->pln_size, &padt, adt->apply); pln->slv = ego; pln->cld = cld; pln->k = ego->k; pln->r = r; pln->m = m; pln->is = d[0].is; pln->os = d[0].os; pln->ios = pln->vs = 0; X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->td = 0; adt->finish(pln); return &(pln->super.super); } solver *X(mksolver_dft_ct)(union kct k, const ct_desc *desc, const char *nam, const solver_adt *adt) { solver_ct *slv; slv = MKSOLVER(solver_ct, adt); slv->desc = desc; slv->k = k; slv->nam = nam; return &(slv->super); } /* routines to create children are shared by many solvers */ problem *X(dft_mkcld_dit)(const solver_ct *ego, const problem_dft *p) { iodim *d = p->sz->dims; const ct_desc *e = ego->desc; int m = d[0].n / e->radix; tensor *radix = X(mktensor_1d)(e->radix, d[0].is, m * d[0].os); tensor *cld_vec = X(tensor_append)(radix, p->vecsz); X(tensor_destroy)(radix); return X(mkproblem_dft_d)(X(mktensor_1d)(m, e->radix * d[0].is, d[0].os), cld_vec, p->ri, p->ii, p->ro, p->io); } problem *X(dft_mkcld_dif)(const solver_ct *ego, const problem_dft *p) { iodim *d = p->sz->dims; const ct_desc *e = ego->desc; int m = d[0].n / e->radix; tensor *radix = X(mktensor_1d)(e->radix, m * d[0].is, d[0].os); tensor *cld_vec = X(tensor_append)(radix, p->vecsz); X(tensor_destroy)(radix); return X(mkproblem_dft_d)(X(mktensor_1d)(m, d[0].is, e->radix * d[0].os), cld_vec, p->ri, p->ii, p->ro, p->io); }