/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: direct.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* direct DFT solver, if we have a codelet */ #include "dft.h" typedef struct { solver super; const kdft_desc *desc; kdft k; } S; typedef struct { plan_dft super; stride is, os; int vl; int ivs, ovs; kdft k; const S *slv; } P; static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; ASSERT_ALIGNED_DOUBLE; ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs); } static void destroy(plan *ego_) { P *ego = (P *) ego_; X(stride_destroy)(ego->is); X(stride_destroy)(ego->os); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->slv; const kdft_desc *d = s->desc; p->print(p, "(dft-direct-%d%v \"%s\")", d->sz, ego->vl, d->nam); } static int applicable(const solver *ego_, const problem *p_, const planner *plnr) { if (DFTP(p_)) { const S *ego = (const S *) ego_; const problem_dft *p = (const problem_dft *) p_; const kdft_desc *d = ego->desc; int vl; int ivs, ovs; return ( 1 && p->sz->rnk == 1 && p->vecsz->rnk <= 1 && p->sz->dims[0].n == d->sz /* check strides etc */ && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) && (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, p->sz->dims[0].is, p->sz->dims[0].os, vl, ivs, ovs, plnr)) && (0 /* can operate out-of-place */ || p->ri != p->ro /* * can compute one transform in-place, no matter * what the strides are. */ || p->vecsz->rnk == 0 /* can operate in-place as long as strides are the same */ || (X(tensor_inplace_strides2)(p->sz, p->vecsz)) ) ); } return 0; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; P *pln; const problem_dft *p; iodim *d; const kdft_desc *e = ego->desc; static const plan_adt padt = { X(dft_solve), X(null_awake), print, destroy }; UNUSED(plnr); if (!applicable(ego_, p_, plnr)) return (plan *)0; p = (const problem_dft *) p_; pln = MKPLAN_DFT(P, &padt, apply); d = p->sz->dims; pln->k = ego->k; pln->is = X(mkstride)(e->sz, d[0].is); pln->os = X(mkstride)(e->sz, d[0].os); X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->slv = ego; X(ops_zero)(&pln->super.super.ops); X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops); return &(pln->super.super); } /* constructor */ solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->k = k; slv->desc = desc; return &(slv->super); }