/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: rank0.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* plans for rank-0 DFTs (copy operations) */ #include "dft.h" #ifdef HAVE_STRING_H #include /* for memcpy() */ #endif typedef struct { dftapply apply; int (*applicable)(const problem_dft *p); const char *nam; } rnk0adt; typedef struct { solver super; const rnk0adt *adt; } S; typedef struct { plan_dft super; int vl; int ivs, ovs; const S *slv; } P; /* generic applicability function */ static int applicable(const solver *ego_, const problem *p_) { if (DFTP(p_)) { const S *ego = (const S *) ego_; const problem_dft *p = (const problem_dft *) p_; return (1 && p->ri != p->ro && p->sz->rnk == 0 && ego->adt->applicable(p) ); } return 0; } /*-----------------------------------------------------------------------*/ /* rank-0 dft, vl == 1: just a copy */ static void apply_1(const plan *ego_, R *ri, R *ii, R *ro, R *io) { UNUSED(ego_); *ro = *ri; *io = *ii; } static int applicable_1(const problem_dft *p) { return (p->vecsz->rnk == 0); } static const rnk0adt adt_cpy1 = { apply_1, applicable_1, "dft-rank0-cpy1" }; /*-----------------------------------------------------------------------*/ /* rank-0 dft, vl > 1: just a copy loop (unroll 4) */ static void apply_vec(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; int i, vl = ego->vl; int ivs = ego->ivs, ovs = ego->ovs; int imi = ii - ri, imo = io - ro; for (i = vl; i > 0; --i) { R r0 = ri[0], i0 = ri[imi]; ro[0] = r0; ro[imo] = i0; ri += ivs; ro += ovs; } } static int applicable_vec(const problem_dft *p) { return (p->vecsz->rnk == 1 && p->ro != p->ri); } static const rnk0adt adt_vec = { apply_vec, applicable_vec, "dft-rank0-vec" }; /*-----------------------------------------------------------------------*/ /* rank-0 dft, vl > 1, [io]vs == 1, using memcpy */ static void apply_io1(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; int vl = ego->vl; memcpy(ro, ri, vl * sizeof(R)); memcpy(io, ii, vl * sizeof(R)); } static int applicable_io1(const problem_dft *p) { return (1 && applicable_vec(p) && p->vecsz->dims[0].is == 1 && p->vecsz->dims[0].os == 1 ); } static const rnk0adt adt_io1 = { apply_io1, applicable_io1, "dft-rank0-io1-memcpy" }; /*-----------------------------------------------------------------------*/ /* rank-0 dft, vl > 1, [io]vs == 2 (interleaved) using memcpy */ static void apply_io2r(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; int vl = ego->vl; UNUSED(ii); UNUSED(io); /* i{in,out}put == r{in,out}put + 1 */ memcpy(ro, ri, vl * sizeof(R) * 2); } static int applicable_io2r(const problem_dft *p) { return (1 && applicable_vec(p) && p->vecsz->dims[0].is == 2 && p->vecsz->dims[0].os == 2 && p->ii == p->ri + 1 && p->io == p->ro + 1 ); } static const rnk0adt adt_io2r = { apply_io2r, applicable_io2r, "dft-rank0-io2r-memcpy" }; static void apply_io2i(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; int vl = ego->vl; UNUSED(ri); UNUSED(ro); /* r{in,out}put == i{in,out}put + 1 */ memcpy(io, ii, vl * sizeof(R) * 2); } static int applicable_io2i(const problem_dft *p) { return (1 && applicable_vec(p) && p->vecsz->dims[0].is == 2 && p->vecsz->dims[0].os == 2 && p->ri == p->ii + 1 && p->ro == p->io + 1 ); } static const rnk0adt adt_io2i = { apply_io2i, applicable_io2i, "dft-rank0-io2i-memcpy" }; /*-----------------------------------------------------------------------*/ /* generic stuff: */ static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(%s%v)", ego->slv->adt->nam, ego->vl); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const S *ego = (const S *) ego_; const problem_dft *p; P *pln; static const plan_adt padt = { X(dft_solve), X(null_awake), print, X(plan_null_destroy) }; UNUSED(plnr); if (!applicable(ego_, p_)) return (plan *) 0; p = (const problem_dft *) p_; pln = MKPLAN_DFT(P, &padt, ego->adt->apply); X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); pln->slv = ego; /* 2*vl loads, 2*vl stores */ X(ops_other)(4 * pln->vl, &pln->super.super.ops); return &(pln->super.super); } static solver *mksolver(const rnk0adt *adt) { static const solver_adt sadt = { mkplan }; S *slv = MKSOLVER(S, &sadt); slv->adt = adt; return &(slv->super); } void X(dft_rank0_register)(planner *p) { unsigned i; static const rnk0adt *const adts[] = { &adt_cpy1, &adt_vec, &adt_io1, &adt_io2r, &adt_io2i }; for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) REGISTER_SOLVER(p, mksolver(adts[i])); }