/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: vrank3-transpose.c,v 1.1 2008/10/17 06:11:08 scuri Exp $ */ /* rank-0, vector-rank-3, square transposition */ #include "dft.h" /* transposition routine. TODO: optimize? */ static void t(R *rA, R *iA, int n, int is, int js, int vn, int vs) { int i, j, iv; int im = iA - rA; for (i = 1; i < n; ++i) { for (j = 0; j < i; ++j) { R *p0 = rA + i * is + j * js; R *p1 = rA + j * is + i * js; for (iv = 0; iv < vn; ++iv) { R ar = p0[0], ai = p0[im]; R br = p1[0], bi = p1[im]; p1[0] = ar; p1[im] = ai; p1 += vs; p0[0] = br; p0[im] = bi; p0 += vs; } } } } typedef solver S; typedef struct { plan_dft super; int n, vl; int s0, s1, vs; int m; int offset; int nd, md, d; /* d = gcd(n,m), nd = n / d, md = m / d */ } P; static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; UNUSED(ro); UNUSED(io); A(ego->n == ego->m); t(ri, ii, ego->n, ego->s0, ego->s1, ego->vl, ego->vs); } static void apply_general(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; int nd = ego->nd, md = ego->md, d = ego->d, vl = ego->vl; R *buf = (R *)MALLOC((sizeof(R) * 2) * vl * nd * md * d, BUFFERS); UNUSED(ii); UNUSED(ro); UNUSED(io); X(transpose)(ri + ego->offset, nd, md, d, 2*vl, buf); X(ifree)(buf); } static void apply_slow(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; int n = ego->n, m = ego->m, vl = ego->vl; R *buf = (R *)MALLOC((sizeof(R) * 4) * vl, BUFFERS); int move_size = (n + m) / 2; char *move; UNUSED(ii); UNUSED(ro); UNUSED(io); STACK_MALLOC(char *, move, move_size); X(transpose_slow)(ri + ego->offset, n, m, 2*vl, move, move_size, buf); STACK_FREE(move); X(ifree)(buf); } static int pickdim(const tensor *s, int *pdim0, int *pdim1, int *pdim2, R *ri, R *ii) { int dim0, dim1; for (dim0 = 0; dim0 < s->rnk; ++dim0) for (dim1 = dim0 + 1; dim1 < s->rnk; ++dim1) { int dim2 = 3 - dim0 - dim1; if (s->dims[dim2].is == s->dims[dim2].os && X(transposable)(s->dims + dim0, s->dims + dim1, s->dims[dim2].n, s->dims[dim2].is, ri, ii)) { *pdim0 = dim0; *pdim1 = dim1; *pdim2 = dim2; return 1; } } return 0; } static int applicable0(const problem *p_, int *dim0, int *dim1, int *dim2) { if (DFTP(p_)) { const problem_dft *p = (const problem_dft *)p_; return (1 && p->ri == p->ro && p->sz->rnk == 0 && p->vecsz->rnk == 3 && pickdim(p->vecsz, dim0, dim1, dim2, p->ri, p->ii) ); } return 0; } static int applicable(const problem *p_, const planner *plnr, int *dim0, int *dim1, int *dim2) { const problem_dft *p; if (!applicable0(p_, dim0, dim1, dim2)) return 0; p = (const problem_dft *) p_; if (NO_UGLYP(plnr)) if (p->vecsz->dims[*dim2].is > X(imax)(p->vecsz->dims[*dim0].is, p->vecsz->dims[*dim0].os)) /* loops are in the wrong order for locality */ return 0; if (NO_UGLYP(plnr) && p->vecsz->dims[*dim0].n != p->vecsz->dims[*dim1].n) return 0; return 1; } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; p->print(p, "(dft-transpose-%dx%d%v)", ego->n, ego->m, ego->vl); } static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) { const problem_dft *p; P *pln; const iodim *d; int dim0, dim1, dim2; int vl; static const plan_adt padt = { X(dft_solve), X(null_awake), print, X(plan_null_destroy) }; UNUSED(plnr); UNUSED(ego); if (!applicable(p_, plnr, &dim0, &dim1, &dim2)) return (plan *) 0; p = (const problem_dft *) p_; d = p->vecsz->dims; vl = d[dim2].n; pln = MKPLAN_DFT(P, &padt, X(transpose_simplep)(d+dim0, d+dim1, vl, p->vecsz->dims[dim2].is, p->ri, p->ii) ? apply : (X(transpose_slowp)(d+dim0, d+dim1, 2*vl) ? apply_slow : apply_general)); X(transpose_dims)(d+dim0, d+dim1, &pln->n, &pln->m, &pln->d, &pln->nd, &pln->md); pln->offset = (p->ri - p->ii == 1) ? -1 : 0; pln->s0 = d[dim0].is; pln->s1 = d[dim0].os; pln->vl = vl; pln->vs = d[dim2].is; /* == os */ /* pln->vl * (4 loads + 4 stores) * (pln->n \choose 2) (FIXME? underestimate for non-square) */ X(ops_other)(4 * pln->vl * pln->n * (pln->m - 1), &pln->super.super.ops); return &(pln->super.super); } static solver *mksolver(void) { static const solver_adt sadt = { mkplan }; return MKSOLVER(S, &sadt); } void X(dft_vrank3_transpose_register)(planner *p) { REGISTER_SOLVER(p, mksolver()); }