/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* transposes of unit-stride arrays, including arrays of N-tuples and non-square matrices, using cache-oblivious recursive algorithms */ #include "ifftw.h" #include /* memcpy */ #define CUTOFF 8 /* size below which we do a naive transpose */ /*************************************************************************/ /* some utilities for the solvers */ static int Ntuple_transposable(const iodim *a, const iodim *b, int vl, int s, R *ri, R *ii) { return(2 == s && (ii == ri + 1 || ri == ii + 1) && ((a->is == b->os && a->is == (vl*2) && a->os == b->n * (vl*2) && b->is == a->n * (vl*2)) || (a->os == b->is && a->os == (vl*2) && a->is == b->n * (vl*2) && b->os == a->n * (vl*2)))); } /* our solvers' transpose routines work for square matrices of arbitrary stride, or for non-square matrices of a given vl*vl2 corresponding to the N of the Ntuple with vl2 == s. */ int X(transposable)(const iodim *a, const iodim *b, int vl, int s, R *ri, R *ii) { return ((a->n == b->n && a->os == b->is && a->is == b->os) || Ntuple_transposable(a, b, vl, s, ri, ii)); } static int gcd(int a, int b) { int r; do { r = a % b; a = b; b = r; } while (r != 0); return a; } /* all of the solvers need to extract n, m, d, n/d, and m/d from the two iodims, so we put it here to save code space */ void X(transpose_dims)(const iodim *a, const iodim *b, int *n, int *m, int *d, int *nd, int *md) { int n0, m0, d0; /* matrix should be n x m, row-major */ if (a->is < b->is) { *n = n0 = b->n; *m = m0 = a->n; } else { *n = n0 = a->n; *m = m0 = b->n; } *d = d0 = gcd(n0, m0); *nd = n0 / d0; *md = m0 / d0; } /* use the simple square transpose in the solver for square matrices that aren't too big or which have the wrong stride */ int X(transpose_simplep)(const iodim *a, const iodim *b, int vl, int s, R *ri, R *ii) { return (a->n == b->n && (a->n*(vl*2) < CUTOFF || !Ntuple_transposable(a, b, vl, s, ri, ii))); } /* use the slow general transpose if the buffer would be more than 1/8 the whole transpose and the transpose is fairly big. (FIXME: use the CONSERVE_MEMORY flag?) */ int X(transpose_slowp)(const iodim *a, const iodim *b, int N) { int d = gcd(a->n, b->n); return (d < 8 && (a->n * b->n * N) / d > 65536); } /*************************************************************************/ /* Out-of-place transposes: */ /* Transpose A (n x m) to B (m x n), where A and B are stored as n x fda and m x fda arrays, respectively, operating on N-tuples: */ static void rec_transpose_Ntuple(R *A, R *B, int n, int m, int fda, int fdb, int N) { if (n == 1 || m == 1 || (n + m) * N < CUTOFF*2) { int i, j, k; for (i = 0; i < n; ++i) { for (j = 0; j < m; ++j) { for (k = 0; k < N; ++k) { /* FIXME: unroll */ B[(j*fdb + i) * N + k] = A[(i*fda + j) * N + k]; } } } } else if (n > m) { int n2 = n / 2; rec_transpose_Ntuple(A, B, n2, m, fda, fdb, N); rec_transpose_Ntuple(A + n2*N*fda, B + n2*N, n - n2, m, fda, fdb, N); } else { int m2 = m / 2; rec_transpose_Ntuple(A, B, n, m2, fda, fdb, N); rec_transpose_Ntuple(A + m2*N, B + m2*N*fdb, n, m - m2, fda, fdb, N); } } /*************************************************************************/ /* In-place transposes of square matrices of N-tuples: */ /* Transpose both A and B, where A is n x m and B is m x n, storing the transpose of A in B and the transpose of B in A. A and B are actually stored as n x fda and m x fda arrays. */ static void rec_transpose_swap_Ntuple(R *A, R *B, int n, int m, int fda, int N) { if (n == 1 || m == 1 || (n + m) * N <= CUTOFF*2) { switch (N) { case 1: { int i, j; for (i = 0; i < n; ++i) { for (j = 0; j < m; ++j) { R a = A[(i*fda + j)]; A[(i*fda + j)] = B[(j*fda + i)]; B[(j*fda + i)] = a; } } break; } case 2: { int i, j; for (i = 0; i < n; ++i) { for (j = 0; j < m; ++j) { R a0 = A[(i*fda + j) * 2 + 0]; R a1 = A[(i*fda + j) * 2 + 1]; A[(i*fda + j) * 2 + 0] = B[(j*fda + i) * 2 + 0]; A[(i*fda + j) * 2 + 1] = B[(j*fda + i) * 2 + 1]; B[(j*fda + i) * 2 + 0] = a0; B[(j*fda + i) * 2 + 1] = a1; } } break; } default: { int i, j, k; for (i = 0; i < n; ++i) { for (j = 0; j < m; ++j) { for (k = 0; k < N; ++k) { R a = A[(i*fda + j) * N + k]; A[(i*fda + j) * N + k] = B[(j*fda + i) * N + k]; B[(j*fda + i) * N + k] = a; } } } } } } else if (n > m) { int n2 = n / 2; rec_transpose_swap_Ntuple(A, B, n2, m, fda, N); rec_transpose_swap_Ntuple(A + n2*N*fda, B + n2*N, n - n2, m, fda, N); } else { int m2 = m / 2; rec_transpose_swap_Ntuple(A, B, n, m2, fda, N); rec_transpose_swap_Ntuple(A + m2*N, B + m2*N*fda, n, m - m2, fda, N); } } /* Transpose A, an n x n matrix (stored as n x fda), in-place. */ static void rec_transpose_sq_ip_Ntuple(R *A, int n, int fda, int N) { if (n == 1) return; else if (n*N <= CUTOFF) { switch (N) { case 1: { int i, j; for (i = 0; i < n; ++i) { for (j = i + 1; j < n; ++j) { R a = A[(i*fda + j)]; A[(i*fda + j)] = A[(j*fda + i)]; A[(j*fda + i)] = a; } } break; } case 2: { int i, j; for (i = 0; i < n; ++i) { for (j = i + 1; j < n; ++j) { R a0 = A[(i*fda + j) * 2 + 0]; R a1 = A[(i*fda + j) * 2 + 1]; A[(i*fda + j) * 2 + 0] = A[(j*fda + i) * 2 + 0]; A[(i*fda + j) * 2 + 1] = A[(j*fda + i) * 2 + 1]; A[(j*fda + i) * 2 + 0] = a0; A[(j*fda + i) * 2 + 1] = a1; } } break; } default: { int i, j, k; for (i = 0; i < n; ++i) { for (j = i + 1; j < n; ++j) { for (k = 0; k < N; ++k) { R a = A[(i*fda + j) * N + k]; A[(i*fda + j) * N + k] = A[(j*fda + i) * N + k]; A[(j*fda + i) * N + k] = a; } } } } } } else { int n2 = n / 2; rec_transpose_sq_ip_Ntuple(A, n2, fda, N); rec_transpose_sq_ip_Ntuple((A + n2*N) + n2*N*fda, n - n2, fda, N); rec_transpose_swap_Ntuple(A + n2*N, A + n2*N*fda, n2, n - n2, fda,N); } } /*************************************************************************/ /* In-place transposes of non-square matrices: */ /* Transpose the matrix A in-place, where A is an (n*d) x (m*d) matrix of N-tuples and buf contains at least n*m*d*N elements. In general, to transpose a p x q matrix, you should call this routine with d = gcd(p, q), n = p/d, and m = q/d. */ void X(transpose)(R *A, int n, int m, int d, int N, R *buf) { A(n > 0 && m > 0 && N > 0 && d > 0); if (d == 1) { rec_transpose_Ntuple(A, buf, n,m, m,n, N); memcpy(A, buf, m*n*N*sizeof(R)); } else if (n*m == 1) { rec_transpose_sq_ip_Ntuple(A, d, d, N); } else { int i, num_el = n*m*d*N; /* treat as (d x n) x (d' x m) matrix. (d' = d) */ /* First, transpose d x (n x d') x m to d x (d' x n) x m, using the buf matrix. This consists of d transposes of contiguous n x d' matrices of m-tuples. */ if (n > 1) { for (i = 0; i < d; ++i) { rec_transpose_Ntuple(A + i*num_el, buf, n,d, d,n, m*N); memcpy(A + i*num_el, buf, num_el*sizeof(R)); } } /* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which is a square in-place transpose of n*m-tuples: */ rec_transpose_sq_ip_Ntuple(A, d, d, n*m*N); /* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)), using the buf matrix. This consists of d' transposes of contiguous d*n x m matrices. */ if (m > 1) { for (i = 0; i < d; ++i) { rec_transpose_Ntuple(A + i*num_el, buf, d*n,m, m,d*n, N); memcpy(A + i*num_el, buf, num_el*sizeof(R)); } } } } /*************************************************************************/ /* In-place transpose routine from TOMS. This routine is much slower than the cache-oblivious algorithm above, but is has the advantage of requiring less buffer space for the case of gcd(nx,ny) small. */ /* * TOMS Transpose. Revised version of algorithm 380. * * These routines do in-place transposes of arrays. * * [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software, * vol. 3, no. 1, 104-110 (1977) ] * * C version by Steven G. Johnson. February 1997. */ /* * "a" is a 1D array of length ny*nx*N which constains the nx x ny * matrix of N-tuples to be transposed. "a" is stored in row-major * order (last index varies fastest). move is a 1D array of length * move_size used to store information to speed up the process. The * value move_size=(ny+nx)/2 is recommended. buf should be an array * of length 2*N. * */ void X(transpose_slow)(R *a, int nx, int ny, int N, char *move, int move_size, R *buf) { int i, j, im, mn; R *b, *c, *d; int ncount; int k; /* check arguments and initialize: */ A(ny > 0 && nx > 0 && N > 0 && move_size > 0); b = buf; if (ny == nx) { /* * if matrix is square, exchange elements a(i,j) and a(j,i): */ for (i = 0; i < nx; ++i) for (j = i + 1; j < nx; ++j) { memcpy(b, &a[N * (i + j * nx)], N * sizeof(R)); memcpy(&a[N * (i + j * nx)], &a[N * (j + i * nx)], N * sizeof(R)); memcpy(&a[N * (j + i * nx)], b, N * sizeof(R)); } return; } c = buf + N; ncount = 2; /* always at least 2 fixed points */ k = (mn = ny * nx) - 1; for (i = 0; i < move_size; ++i) move[i] = 0; if (ny >= 3 && nx >= 3) ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */ i = 1; im = ny; while (1) { int i1, i2, i1c, i2c; int kmi; /** Rearrange the elements of a loop and its companion loop: **/ i1 = i; kmi = k - i; memcpy(b, &a[N * i1], N * sizeof(R)); i1c = kmi; memcpy(c, &a[N * i1c], N * sizeof(R)); while (1) { i2 = ny * i1 - k * (i1 / nx); i2c = k - i2; if (i1 < move_size) move[i1] = 1; if (i1c < move_size) move[i1c] = 1; ncount += 2; if (i2 == i) break; if (i2 == kmi) { d = b; b = c; c = d; break; } memcpy(&a[N * i1], &a[N * i2], N * sizeof(R)); memcpy(&a[N * i1c], &a[N * i2c], N * sizeof(R)); i1 = i2; i1c = i2c; } memcpy(&a[N * i1], b, N * sizeof(R)); memcpy(&a[N * i1c], c, N * sizeof(R)); if (ncount >= mn) break; /* we've moved all elements */ /** Search for loops to rearrange: **/ while (1) { int max = k - i; ++i; A(i <= max); im += ny; if (im > k) im -= k; i2 = im; if (i == i2) continue; if (i >= move_size) { while (i2 > i && i2 < max) { i1 = i2; i2 = ny * i1 - k * (i1 / nx); } if (i2 == i) break; } else if (!move[i]) break; } } }