/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 22:11:39 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -sign 1 -n 32 -dif -name hb_32 -include hb.h */ /* * This function contains 434 FP additions, 208 FP multiplications, * (or, 340 additions, 114 multiplications, 94 fused multiply/add), * 98 stack variables, and 128 memory accesses */ /* * Generator Id's : * $Id: hb_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hb_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hb_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ */ #include "hb.h" static const R *hb_32(R *rio, R *iio, const R *W, stride ios, int m, int dist) { DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 62) { E T5n, T6y, T77, T5u, Tf, T3i, T5x, T76, T3G, T47, T1a, T2I, T5k, T6z, T2o; E T2Y, Tu, T3D, T6D, T73, T6G, T74, T1j, T2d, T1s, T2e, T55, T5z, T5c, T5A; E T3l, T48, TK, T3n, T6L, T7t, T6O, T7s, T1D, T2L, T1M, T2M, T4w, T62, T4D; E T61, T3q, T41, TZ, T3s, T6S, T7w, T6V, T7v, T1W, T2O, T25, T2P, T4P, T64; E T4W, T65, T3v, T42; { E T3, T5l, T2j, T5t, T6, T5s, T2m, T5m, Ta, T5i, T15, T5h, Td, T5e, T18; E T5f; { E T1, T2, T2h, T2i; T1 = rio[0]; T2 = iio[-WS(ios, 16)]; T3 = T1 + T2; T5l = T1 - T2; T2h = iio[0]; T2i = rio[WS(ios, 16)]; T2j = T2h - T2i; T5t = T2h + T2i; } { E T4, T5, T2k, T2l; T4 = rio[WS(ios, 8)]; T5 = iio[-WS(ios, 24)]; T6 = T4 + T5; T5s = T4 - T5; T2k = iio[-WS(ios, 8)]; T2l = rio[WS(ios, 24)]; T2m = T2k - T2l; T5m = T2k + T2l; } { E T8, T9, T13, T14; T8 = rio[WS(ios, 4)]; T9 = iio[-WS(ios, 20)]; Ta = T8 + T9; T5i = T8 - T9; T13 = iio[-WS(ios, 4)]; T14 = rio[WS(ios, 20)]; T15 = T13 - T14; T5h = T13 + T14; } { E Tb, Tc, T16, T17; Tb = iio[-WS(ios, 28)]; Tc = rio[WS(ios, 12)]; Td = Tb + Tc; T5e = Tb - Tc; T16 = iio[-WS(ios, 12)]; T17 = rio[WS(ios, 28)]; T18 = T16 - T17; T5f = T17 + T16; } { E T7, Te, T12, T19; T5n = T5l - T5m; T6y = T5t - T5s; T77 = T5l + T5m; T5u = T5s + T5t; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T3i = T7 - Te; { E T5v, T5w, T3E, T3F; T5v = T5i + T5h; T5w = T5e + T5f; T5x = KP707106781 * (T5v - T5w); T76 = KP707106781 * (T5v + T5w); T3E = T2j + T2m; T3F = T15 + T18; T3G = T3E - T3F; T47 = T3F + T3E; } T12 = T3 - T6; T19 = T15 - T18; T1a = T12 + T19; T2I = T12 - T19; { E T5g, T5j, T2g, T2n; T5g = T5e - T5f; T5j = T5h - T5i; T5k = KP707106781 * (T5g - T5j); T6z = KP707106781 * (T5j + T5g); T2g = Td - Ta; T2n = T2j - T2m; T2o = T2g + T2n; T2Y = T2n - T2g; } } } { E Ti, T4Z, T1e, T53, Tl, T52, T1h, T50, Tp, T56, T1n, T5a, Ts, T59, T1q; E T57; { E Tg, Th, T1c, T1d; Tg = rio[WS(ios, 2)]; Th = iio[-WS(ios, 18)]; Ti = Tg + Th; T4Z = Tg - Th; T1c = iio[-WS(ios, 2)]; T1d = rio[WS(ios, 18)]; T1e = T1c - T1d; T53 = T1c + T1d; } { E Tj, Tk, T1f, T1g; Tj = rio[WS(ios, 10)]; Tk = iio[-WS(ios, 26)]; Tl = Tj + Tk; T52 = Tj - Tk; T1f = iio[-WS(ios, 10)]; T1g = rio[WS(ios, 26)]; T1h = T1f - T1g; T50 = T1f + T1g; } { E Tn, To, T1l, T1m; Tn = iio[-WS(ios, 30)]; To = rio[WS(ios, 14)]; Tp = Tn + To; T56 = Tn - To; T1l = iio[-WS(ios, 14)]; T1m = rio[WS(ios, 30)]; T1n = T1l - T1m; T5a = T1m + T1l; } { E Tq, Tr, T1o, T1p; Tq = rio[WS(ios, 6)]; Tr = iio[-WS(ios, 22)]; Ts = Tq + Tr; T59 = Tq - Tr; T1o = iio[-WS(ios, 6)]; T1p = rio[WS(ios, 22)]; T1q = T1o - T1p; T57 = T1o + T1p; } { E Tm, Tt, T6B, T6C; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T3D = Tt - Tm; T6B = T53 - T52; T6C = T4Z + T50; T6D = FNMS(KP382683432, T6C, KP923879532 * T6B); T73 = FMA(KP382683432, T6B, KP923879532 * T6C); } { E T6E, T6F, T1b, T1i; T6E = T56 + T57; T6F = T59 + T5a; T6G = FNMS(KP923879532, T6F, KP382683432 * T6E); T74 = FMA(KP923879532, T6E, KP382683432 * T6F); T1b = Ti - Tl; T1i = T1e - T1h; T1j = T1b + T1i; T2d = T1i - T1b; } { E T1k, T1r, T51, T54; T1k = Tp - Ts; T1r = T1n - T1q; T1s = T1k - T1r; T2e = T1k + T1r; T51 = T4Z - T50; T54 = T52 + T53; T55 = FNMS(KP382683432, T54, KP923879532 * T51); T5z = FMA(KP923879532, T54, KP382683432 * T51); } { E T58, T5b, T3j, T3k; T58 = T56 - T57; T5b = T59 - T5a; T5c = FMA(KP923879532, T58, KP382683432 * T5b); T5A = FNMS(KP382683432, T58, KP923879532 * T5b); T3j = T1e + T1h; T3k = T1q + T1n; T3l = T3j - T3k; T48 = T3j + T3k; } } { E Ty, T4t, T1H, T4y, TB, T4x, T1K, T4u, TI, T4B, T1B, T4o, TF, T4A, T1y; E T4r; { E Tw, Tx, T1I, T1J; Tw = rio[WS(ios, 1)]; Tx = iio[-WS(ios, 17)]; Ty = Tw + Tx; T4t = Tw - Tx; { E T1F, T1G, Tz, TA; T1F = iio[-WS(ios, 1)]; T1G = rio[WS(ios, 17)]; T1H = T1F - T1G; T4y = T1F + T1G; Tz = rio[WS(ios, 9)]; TA = iio[-WS(ios, 25)]; TB = Tz + TA; T4x = Tz - TA; } T1I = iio[-WS(ios, 9)]; T1J = rio[WS(ios, 25)]; T1K = T1I - T1J; T4u = T1I + T1J; { E TG, TH, T4m, T1z, T1A, T4n; TG = iio[-WS(ios, 29)]; TH = rio[WS(ios, 13)]; T4m = TG - TH; T1z = iio[-WS(ios, 13)]; T1A = rio[WS(ios, 29)]; T4n = T1A + T1z; TI = TG + TH; T4B = T4m + T4n; T1B = T1z - T1A; T4o = T4m - T4n; } { E TD, TE, T4q, T1w, T1x, T4p; TD = rio[WS(ios, 5)]; TE = iio[-WS(ios, 21)]; T4q = TD - TE; T1w = iio[-WS(ios, 5)]; T1x = rio[WS(ios, 21)]; T4p = T1w + T1x; TF = TD + TE; T4A = T4q + T4p; T1y = T1w - T1x; T4r = T4p - T4q; } } { E TC, TJ, T6J, T6K; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; T3n = TC - TJ; T6J = T4y - T4x; T6K = KP707106781 * (T4r + T4o); T6L = T6J + T6K; T7t = T6J - T6K; } { E T6M, T6N, T1v, T1C; T6M = KP707106781 * (T4A + T4B); T6N = T4t + T4u; T6O = T6M + T6N; T7s = T6N - T6M; T1v = Ty - TB; T1C = T1y - T1B; T1D = T1v + T1C; T2L = T1v - T1C; } { E T1E, T1L, T4s, T4v; T1E = TI - TF; T1L = T1H - T1K; T1M = T1E + T1L; T2M = T1L - T1E; T4s = KP707106781 * (T4o - T4r); T4v = T4t - T4u; T4w = T4s + T4v; T62 = T4v - T4s; } { E T4z, T4C, T3o, T3p; T4z = T4x + T4y; T4C = KP707106781 * (T4A - T4B); T4D = T4z + T4C; T61 = T4z - T4C; T3o = T1H + T1K; T3p = T1y + T1B; T3q = T3o - T3p; T41 = T3p + T3o; } } { E TN, T4T, T20, T4N, TQ, T4M, T23, T4U, TX, T4Q, T1U, T4K, TU, T4R, T1R; E T4H; { E TL, TM, T21, T22; TL = iio[-WS(ios, 31)]; TM = rio[WS(ios, 15)]; TN = TL + TM; T4T = TL - TM; { E T1Y, T1Z, TO, TP; T1Y = iio[-WS(ios, 15)]; T1Z = rio[WS(ios, 31)]; T20 = T1Y - T1Z; T4N = T1Z + T1Y; TO = rio[WS(ios, 7)]; TP = iio[-WS(ios, 23)]; TQ = TO + TP; T4M = TO - TP; } T21 = iio[-WS(ios, 7)]; T22 = rio[WS(ios, 23)]; T23 = T21 - T22; T4U = T21 + T22; { E TV, TW, T4I, T1S, T1T, T4J; TV = iio[-WS(ios, 27)]; TW = rio[WS(ios, 11)]; T4I = TV - TW; T1S = iio[-WS(ios, 11)]; T1T = rio[WS(ios, 27)]; T4J = T1T + T1S; TX = TV + TW; T4Q = T4I - T4J; T1U = T1S - T1T; T4K = T4I + T4J; } { E TS, TT, T4F, T1P, T1Q, T4G; TS = rio[WS(ios, 3)]; TT = iio[-WS(ios, 19)]; T4F = TS - TT; T1P = iio[-WS(ios, 3)]; T1Q = rio[WS(ios, 19)]; T4G = T1P + T1Q; TU = TS + TT; T4R = T4G - T4F; T1R = T1P - T1Q; T4H = T4F + T4G; } } { E TR, TY, T6Q, T6R; TR = TN + TQ; TY = TU + TX; TZ = TR + TY; T3s = TR - TY; T6Q = KP707106781 * (T4R + T4Q); T6R = T4M + T4N; T6S = T6Q - T6R; T7w = T6Q + T6R; } { E T6T, T6U, T1O, T1V; T6T = KP707106781 * (T4H + T4K); T6U = T4T + T4U; T6V = T6T + T6U; T7v = T6U - T6T; T1O = TN - TQ; T1V = T1R - T1U; T1W = T1O + T1V; T2O = T1O - T1V; } { E T1X, T24, T4L, T4O; T1X = TX - TU; T24 = T20 - T23; T25 = T1X + T24; T2P = T24 - T1X; T4L = KP707106781 * (T4H - T4K); T4O = T4M - T4N; T4P = T4L + T4O; T64 = T4O - T4L; } { E T4S, T4V, T3t, T3u; T4S = KP707106781 * (T4Q - T4R); T4V = T4T - T4U; T4W = T4S + T4V; T65 = T4V - T4S; T3t = T20 + T23; T3u = T1R + T1U; T3v = T3t - T3u; T42 = T3u + T3t; } } { E Tv, T10, T4g, T4i, T4j, T4k, T4f, T4h; Tv = Tf + Tu; T10 = TK + TZ; T4g = Tv - T10; T4i = T48 + T47; T4j = T41 + T42; T4k = T4i - T4j; rio[0] = Tv + T10; iio[-WS(ios, 31)] = T4j + T4i; T4f = W[30]; T4h = W[31]; rio[WS(ios, 16)] = FNMS(T4h, T4k, T4f * T4g); iio[-WS(ios, 15)] = FMA(T4h, T4g, T4f * T4k); } { E T44, T4c, T4a, T4e; { E T40, T43, T46, T49; T40 = Tf - Tu; T43 = T41 - T42; T44 = T40 + T43; T4c = T40 - T43; T46 = TZ - TK; T49 = T47 - T48; T4a = T46 + T49; T4e = T49 - T46; } { E T3Z, T45, T4b, T4d; T3Z = W[46]; T45 = W[47]; rio[WS(ios, 24)] = FNMS(T45, T4a, T3Z * T44); iio[-WS(ios, 7)] = FMA(T45, T44, T3Z * T4a); T4b = W[14]; T4d = W[15]; rio[WS(ios, 8)] = FNMS(T4d, T4e, T4b * T4c); iio[-WS(ios, 23)] = FMA(T4d, T4c, T4b * T4e); } } { E T3m, T3H, T3T, T3O, T3C, T3P, T3x, T3S; T3m = T3i + T3l; T3H = T3D + T3G; T3T = T3G - T3D; T3O = T3i - T3l; { E T3A, T3B, T3r, T3w; T3A = T3q - T3n; T3B = T3s + T3v; T3C = KP707106781 * (T3A + T3B); T3P = KP707106781 * (T3B - T3A); T3r = T3n + T3q; T3w = T3s - T3v; T3x = KP707106781 * (T3r + T3w); T3S = KP707106781 * (T3r - T3w); } { E T3y, T3I, T3h, T3z; T3y = T3m + T3x; T3I = T3C + T3H; T3h = W[54]; T3z = W[55]; rio[WS(ios, 28)] = FNMS(T3z, T3I, T3h * T3y); iio[-WS(ios, 3)] = FMA(T3z, T3y, T3h * T3I); } { E T3W, T3Y, T3V, T3X; T3W = T3O - T3P; T3Y = T3T - T3S; T3V = W[38]; T3X = W[39]; rio[WS(ios, 20)] = FNMS(T3X, T3Y, T3V * T3W); iio[-WS(ios, 11)] = FMA(T3X, T3W, T3V * T3Y); } { E T3K, T3M, T3J, T3L; T3K = T3m - T3x; T3M = T3H - T3C; T3J = W[22]; T3L = W[23]; rio[WS(ios, 12)] = FNMS(T3L, T3M, T3J * T3K); iio[-WS(ios, 19)] = FMA(T3L, T3K, T3J * T3M); } { E T3Q, T3U, T3N, T3R; T3Q = T3O + T3P; T3U = T3S + T3T; T3N = W[6]; T3R = W[7]; rio[WS(ios, 4)] = FNMS(T3R, T3U, T3N * T3Q); iio[-WS(ios, 27)] = FMA(T3R, T3Q, T3N * T3U); } } { E T2K, T36, T2Z, T3b, T2R, T3a, T2W, T37, T2J, T2X; T2J = KP707106781 * (T2e - T2d); T2K = T2I + T2J; T36 = T2I - T2J; T2X = KP707106781 * (T1j - T1s); T2Z = T2X + T2Y; T3b = T2Y - T2X; { E T2N, T2Q, T2U, T2V; T2N = FNMS(KP382683432, T2M, KP923879532 * T2L); T2Q = FMA(KP923879532, T2O, KP382683432 * T2P); T2R = T2N + T2Q; T3a = T2Q - T2N; T2U = FMA(KP382683432, T2L, KP923879532 * T2M); T2V = FNMS(KP382683432, T2O, KP923879532 * T2P); T2W = T2U + T2V; T37 = T2U - T2V; } { E T2S, T30, T2H, T2T; T2S = T2K + T2R; T30 = T2W + T2Z; T2H = W[2]; T2T = W[3]; rio[WS(ios, 2)] = FNMS(T2T, T30, T2H * T2S); iio[-WS(ios, 29)] = FMA(T2T, T2S, T2H * T30); } { E T3e, T3g, T3d, T3f; T3e = T36 - T37; T3g = T3b - T3a; T3d = W[18]; T3f = W[19]; rio[WS(ios, 10)] = FNMS(T3f, T3g, T3d * T3e); iio[-WS(ios, 21)] = FMA(T3f, T3e, T3d * T3g); } { E T32, T34, T31, T33; T32 = T2K - T2R; T34 = T2Z - T2W; T31 = W[34]; T33 = W[35]; rio[WS(ios, 18)] = FNMS(T33, T34, T31 * T32); iio[-WS(ios, 13)] = FMA(T33, T32, T31 * T34); } { E T38, T3c, T35, T39; T38 = T36 + T37; T3c = T3a + T3b; T35 = W[50]; T39 = W[51]; rio[WS(ios, 26)] = FNMS(T39, T3c, T35 * T38); iio[-WS(ios, 5)] = FMA(T39, T38, T35 * T3c); } } { E T1u, T2w, T2p, T2B, T27, T2A, T2c, T2x, T1t, T2f; T1t = KP707106781 * (T1j + T1s); T1u = T1a + T1t; T2w = T1a - T1t; T2f = KP707106781 * (T2d + T2e); T2p = T2f + T2o; T2B = T2o - T2f; { E T1N, T26, T2a, T2b; T1N = FMA(KP923879532, T1D, KP382683432 * T1M); T26 = FNMS(KP382683432, T25, KP923879532 * T1W); T27 = T1N + T26; T2A = T1N - T26; T2a = FNMS(KP382683432, T1D, KP923879532 * T1M); T2b = FMA(KP382683432, T1W, KP923879532 * T25); T2c = T2a + T2b; T2x = T2b - T2a; } { E T28, T2q, T11, T29; T28 = T1u + T27; T2q = T2c + T2p; T11 = W[58]; T29 = W[59]; rio[WS(ios, 30)] = FNMS(T29, T2q, T11 * T28); iio[-WS(ios, 1)] = FMA(T29, T28, T11 * T2q); } { E T2E, T2G, T2D, T2F; T2E = T2w - T2x; T2G = T2B - T2A; T2D = W[42]; T2F = W[43]; rio[WS(ios, 22)] = FNMS(T2F, T2G, T2D * T2E); iio[-WS(ios, 9)] = FMA(T2F, T2E, T2D * T2G); } { E T2s, T2u, T2r, T2t; T2s = T1u - T27; T2u = T2p - T2c; T2r = W[26]; T2t = W[27]; rio[WS(ios, 14)] = FNMS(T2t, T2u, T2r * T2s); iio[-WS(ios, 17)] = FMA(T2t, T2s, T2r * T2u); } { E T2y, T2C, T2v, T2z; T2y = T2w + T2x; T2C = T2A + T2B; T2v = W[10]; T2z = W[11]; rio[WS(ios, 6)] = FNMS(T2z, T2C, T2v * T2y); iio[-WS(ios, 25)] = FMA(T2z, T2y, T2v * T2C); } } { E T4Y, T5N, T5F, T5Q, T5p, T5R, T5C, T5M; { E T4E, T4X, T5D, T5E; T4E = FNMS(KP195090322, T4D, KP980785280 * T4w); T4X = FMA(KP195090322, T4P, KP980785280 * T4W); T4Y = T4E + T4X; T5N = T4X - T4E; T5D = FMA(KP980785280, T4D, KP195090322 * T4w); T5E = FNMS(KP195090322, T4W, KP980785280 * T4P); T5F = T5D + T5E; T5Q = T5D - T5E; } { E T5d, T5o, T5y, T5B; T5d = T55 + T5c; T5o = T5k + T5n; T5p = T5d + T5o; T5R = T5o - T5d; T5y = T5u + T5x; T5B = T5z + T5A; T5C = T5y + T5B; T5M = T5y - T5B; } { E T5q, T5G, T4l, T5r; T5q = T4Y + T5p; T5G = T5C + T5F; T4l = W[0]; T5r = W[1]; rio[WS(ios, 1)] = FNMS(T5r, T5G, T4l * T5q); iio[-WS(ios, 30)] = FMA(T4l, T5G, T5r * T5q); } { E T5U, T5W, T5T, T5V; T5U = T5R - T5Q; T5W = T5M - T5N; T5T = W[16]; T5V = W[17]; rio[WS(ios, 9)] = FNMS(T5V, T5W, T5T * T5U); iio[-WS(ios, 22)] = FMA(T5T, T5W, T5V * T5U); } { E T5I, T5K, T5H, T5J; T5I = T5C - T5F; T5K = T5p - T4Y; T5H = W[32]; T5J = W[33]; iio[-WS(ios, 14)] = FMA(T5H, T5I, T5J * T5K); rio[WS(ios, 17)] = FNMS(T5J, T5I, T5H * T5K); } { E T5O, T5S, T5L, T5P; T5O = T5M + T5N; T5S = T5Q + T5R; T5L = W[48]; T5P = W[49]; iio[-WS(ios, 6)] = FMA(T5L, T5O, T5P * T5S); rio[WS(ios, 25)] = FNMS(T5P, T5O, T5L * T5S); } } { E T60, T6q, T6f, T6n, T67, T6m, T6c, T6r; { E T5Y, T5Z, T6d, T6e; T5Y = T5u - T5x; T5Z = T5c - T55; T60 = T5Y + T5Z; T6q = T5Y - T5Z; T6d = T5z - T5A; T6e = T5n - T5k; T6f = T6d + T6e; T6n = T6e - T6d; } { E T63, T66, T6a, T6b; T63 = FNMS(KP555570233, T62, KP831469612 * T61); T66 = FMA(KP831469612, T64, KP555570233 * T65); T67 = T63 + T66; T6m = T66 - T63; T6a = FMA(KP555570233, T61, KP831469612 * T62); T6b = FNMS(KP555570233, T64, KP831469612 * T65); T6c = T6a + T6b; T6r = T6a - T6b; } { E T68, T6g, T5X, T69; T68 = T60 + T67; T6g = T6c + T6f; T5X = W[56]; T69 = W[57]; iio[-WS(ios, 2)] = FMA(T5X, T68, T69 * T6g); rio[WS(ios, 29)] = FNMS(T69, T68, T5X * T6g); } { E T6u, T6w, T6t, T6v; T6u = T6q - T6r; T6w = T6n - T6m; T6t = W[40]; T6v = W[41]; iio[-WS(ios, 10)] = FMA(T6t, T6u, T6v * T6w); rio[WS(ios, 21)] = FNMS(T6v, T6u, T6t * T6w); } { E T6i, T6k, T6h, T6j; T6i = T6f - T6c; T6k = T60 - T67; T6h = W[24]; T6j = W[25]; rio[WS(ios, 13)] = FNMS(T6j, T6k, T6h * T6i); iio[-WS(ios, 18)] = FMA(T6h, T6k, T6j * T6i); } { E T6o, T6s, T6l, T6p; T6o = T6m + T6n; T6s = T6q + T6r; T6l = W[8]; T6p = W[9]; rio[WS(ios, 5)] = FNMS(T6p, T6s, T6l * T6o); iio[-WS(ios, 26)] = FMA(T6l, T6s, T6p * T6o); } } { E T7y, T7R, T7J, T7U, T7B, T7V, T7G, T7Q; { E T7u, T7x, T7H, T7I; T7u = FNMS(KP555570233, T7t, KP831469612 * T7s); T7x = FNMS(KP555570233, T7w, KP831469612 * T7v); T7y = T7u + T7x; T7R = T7x - T7u; T7H = FMA(KP831469612, T7t, KP555570233 * T7s); T7I = FMA(KP831469612, T7w, KP555570233 * T7v); T7J = T7H - T7I; T7U = T7H + T7I; } { E T7z, T7A, T7E, T7F; T7z = T6G - T6D; T7A = T77 - T76; T7B = T7z + T7A; T7V = T7A - T7z; T7E = T6y - T6z; T7F = T73 - T74; T7G = T7E + T7F; T7Q = T7E - T7F; } { E T7C, T7K, T7r, T7D; T7C = T7y + T7B; T7K = T7G + T7J; T7r = W[4]; T7D = W[5]; rio[WS(ios, 3)] = FNMS(T7D, T7K, T7r * T7C); iio[-WS(ios, 28)] = FMA(T7r, T7K, T7D * T7C); } { E T7Y, T80, T7X, T7Z; T7Y = T7V - T7U; T80 = T7Q - T7R; T7X = W[20]; T7Z = W[21]; rio[WS(ios, 11)] = FNMS(T7Z, T80, T7X * T7Y); iio[-WS(ios, 20)] = FMA(T7X, T80, T7Z * T7Y); } { E T7M, T7O, T7L, T7N; T7M = T7G - T7J; T7O = T7B - T7y; T7L = W[36]; T7N = W[37]; iio[-WS(ios, 12)] = FMA(T7L, T7M, T7N * T7O); rio[WS(ios, 19)] = FNMS(T7N, T7M, T7L * T7O); } { E T7S, T7W, T7P, T7T; T7S = T7Q + T7R; T7W = T7U + T7V; T7P = W[52]; T7T = W[53]; iio[-WS(ios, 4)] = FMA(T7P, T7S, T7T * T7W); rio[WS(ios, 27)] = FNMS(T7T, T7S, T7P * T7W); } } { E T6I, T7k, T79, T7h, T6X, T7g, T72, T7l; { E T6A, T6H, T75, T78; T6A = T6y + T6z; T6H = T6D + T6G; T6I = T6A + T6H; T7k = T6A - T6H; T75 = T73 + T74; T78 = T76 + T77; T79 = T75 + T78; T7h = T78 - T75; } { E T6P, T6W, T70, T71; T6P = FNMS(KP195090322, T6O, KP980785280 * T6L); T6W = FMA(KP980785280, T6S, KP195090322 * T6V); T6X = T6P + T6W; T7g = T6W - T6P; T70 = FMA(KP195090322, T6L, KP980785280 * T6O); T71 = FNMS(KP195090322, T6S, KP980785280 * T6V); T72 = T70 + T71; T7l = T70 - T71; } { E T6Y, T7a, T6x, T6Z; T6Y = T6I + T6X; T7a = T72 + T79; T6x = W[60]; T6Z = W[61]; iio[0] = FMA(T6x, T6Y, T6Z * T7a); rio[WS(ios, 31)] = FNMS(T6Z, T6Y, T6x * T7a); } { E T7o, T7q, T7n, T7p; T7o = T7k - T7l; T7q = T7h - T7g; T7n = W[44]; T7p = W[45]; iio[-WS(ios, 8)] = FMA(T7n, T7o, T7p * T7q); rio[WS(ios, 23)] = FNMS(T7p, T7o, T7n * T7q); } { E T7c, T7e, T7b, T7d; T7c = T79 - T72; T7e = T6I - T6X; T7b = W[28]; T7d = W[29]; rio[WS(ios, 15)] = FNMS(T7d, T7e, T7b * T7c); iio[-WS(ios, 16)] = FMA(T7b, T7e, T7d * T7c); } { E T7i, T7m, T7f, T7j; T7i = T7g + T7h; T7m = T7k + T7l; T7f = W[12]; T7j = W[13]; rio[WS(ios, 7)] = FNMS(T7j, T7m, T7f * T7i); iio[-WS(ios, 24)] = FMA(T7f, T7m, T7j * T7i); } } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 32}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 32, "hb_32", twinstr, {340, 114, 94, 0}, &GENUS, 0, 0, 0 }; void X(codelet_hb_32) (planner *p) { X(khc2hc_dif_register) (p, hb_32, &desc); }