/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 22:11:42 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -sign 1 -n 64 -dif -name hb_64 -include hb.h */ /* * This function contains 1038 FP additions, 500 FP multiplications, * (or, 808 additions, 270 multiplications, 230 fused multiply/add), * 196 stack variables, and 256 memory accesses */ /* * Generator Id's : * $Id: hb_64.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hb_64.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hb_64.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ */ #include "hb.h" static const R *hb_64(R *rio, R *iio, const R *W, stride ios, int m, int dist) { DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 126) { E Tf, T7i, Tfa, ThM, Tgp, ThH, T2c, T5O, T4T, T6n, Tcp, Ted, TcA, TdE, T87; E T9o, TK, T93, T2P, T4F, Tfo, Thz, T5T, T6j, Tbx, TdI, Tfl, ThA, T7r, T81; E TbE, TdH, TZ, T94, T38, T4G, Tfv, ThC, T5W, T6k, TbQ, TdK, Tfs, ThD, T7w; E T82, TbX, TdL, Tu, T84, Tfh, ThG, Tgm, ThN, T2v, T6m, T4K, T5P, Tce, TdF; E TcD, Tec, T7l, T9p, T1L, T20, T9c, T9d, T9e, T9f, T40, T66, Tg1, Thu, Tg8; E Thv, Tg5, Thr, T4n, T67, T4j, T69, T4w, T6a, TaT, TdW, Tb8, TdZ, TfU, Ths; E T7O, T8y, T7T, T8z, Tbc, TdX, Tbj, Te0, T1g, T1v, T97, T98, T99, T9a, T3j; E T5Z, TfI, Thk, TfP, Thl, TfM, Tho, T3G, T60, T3C, T62, T3P, T63, Tak, TdQ; E Tav, TdT, TfB, Thn, T7D, T8v, T7I, T8w, TaD, TdP, TaG, TdS; { E T3, Tcm, T4O, Tcv, T6, Tcu, T4R, Tcn, Td, Tcy, T2a, Tch, Ta, Tcx, T27; E Tck; { E T1, T2, T4P, T4Q; T1 = rio[0]; T2 = iio[-WS(ios, 32)]; T3 = T1 + T2; Tcm = T1 - T2; { E T4M, T4N, T4, T5; T4M = iio[0]; T4N = rio[WS(ios, 32)]; T4O = T4M - T4N; Tcv = T4M + T4N; T4 = rio[WS(ios, 16)]; T5 = iio[-WS(ios, 48)]; T6 = T4 + T5; Tcu = T4 - T5; } T4P = iio[-WS(ios, 16)]; T4Q = rio[WS(ios, 48)]; T4R = T4P - T4Q; Tcn = T4P + T4Q; { E Tb, Tc, Tcf, T28, T29, Tcg; Tb = iio[-WS(ios, 56)]; Tc = rio[WS(ios, 24)]; Tcf = Tb - Tc; T28 = iio[-WS(ios, 24)]; T29 = rio[WS(ios, 56)]; Tcg = T29 + T28; Td = Tb + Tc; Tcy = Tcf + Tcg; T2a = T28 - T29; Tch = Tcf - Tcg; } { E T8, T9, Tcj, T25, T26, Tci; T8 = rio[WS(ios, 8)]; T9 = iio[-WS(ios, 40)]; Tcj = T8 - T9; T25 = iio[-WS(ios, 8)]; T26 = rio[WS(ios, 40)]; Tci = T25 + T26; Ta = T8 + T9; Tcx = Tcj + Tci; T27 = T25 - T26; Tck = Tci - Tcj; } } { E T7, Te, Tf8, Tf9; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; T7i = T7 - Te; Tf8 = Tcv - Tcu; Tf9 = KP707106781 * (Tck + Tch); Tfa = Tf8 + Tf9; ThM = Tf8 - Tf9; } { E Tgn, Tgo, T24, T2b; Tgn = KP707106781 * (Tcx + Tcy); Tgo = Tcm + Tcn; Tgp = Tgn + Tgo; ThH = Tgo - Tgn; T24 = T3 - T6; T2b = T27 - T2a; T2c = T24 + T2b; T5O = T24 - T2b; } { E T4L, T4S, Tcl, Tco; T4L = Td - Ta; T4S = T4O - T4R; T4T = T4L + T4S; T6n = T4S - T4L; Tcl = KP707106781 * (Tch - Tck); Tco = Tcm - Tcn; Tcp = Tcl + Tco; Ted = Tco - Tcl; } { E Tcw, Tcz, T85, T86; Tcw = Tcu + Tcv; Tcz = KP707106781 * (Tcx - Tcy); TcA = Tcw + Tcz; TdE = Tcw - Tcz; T85 = T4O + T4R; T86 = T27 + T2a; T87 = T85 - T86; T9o = T86 + T85; } } { E TC, Tby, T2x, Tbu, T2N, Tbz, T7o, Tbv, TJ, TbB, TbC, T2E, T2G, Tbp, Tbs; E T7p, Tfj, Tfk; { E Tw, Tx, Ty, Tz, TA, TB; Tw = rio[WS(ios, 2)]; Tx = iio[-WS(ios, 34)]; Ty = Tw + Tx; Tz = rio[WS(ios, 18)]; TA = iio[-WS(ios, 50)]; TB = Tz + TA; TC = Ty + TB; Tby = Tz - TA; T2x = Ty - TB; Tbu = Tw - Tx; } { E T2H, T2I, T2J, T2K, T2L, T2M; T2H = iio[-WS(ios, 2)]; T2I = rio[WS(ios, 34)]; T2J = T2H - T2I; T2K = iio[-WS(ios, 18)]; T2L = rio[WS(ios, 50)]; T2M = T2K - T2L; T2N = T2J - T2M; Tbz = T2H + T2I; T7o = T2J + T2M; Tbv = T2K + T2L; } { E TF, Tbr, T2A, Tbq, TI, Tbn, T2D, Tbo; { E TD, TE, T2y, T2z; TD = rio[WS(ios, 10)]; TE = iio[-WS(ios, 42)]; TF = TD + TE; Tbr = TD - TE; T2y = iio[-WS(ios, 10)]; T2z = rio[WS(ios, 42)]; T2A = T2y - T2z; Tbq = T2y + T2z; } { E TG, TH, T2B, T2C; TG = iio[-WS(ios, 58)]; TH = rio[WS(ios, 26)]; TI = TG + TH; Tbn = TG - TH; T2B = iio[-WS(ios, 26)]; T2C = rio[WS(ios, 58)]; T2D = T2B - T2C; Tbo = T2C + T2B; } TJ = TF + TI; TbB = Tbr + Tbq; TbC = Tbn + Tbo; T2E = T2A - T2D; T2G = TI - TF; Tbp = Tbn - Tbo; Tbs = Tbq - Tbr; T7p = T2A + T2D; } TK = TC + TJ; T93 = T7p + T7o; { E T2F, T2O, Tfm, Tfn; T2F = T2x + T2E; T2O = T2G + T2N; T2P = FMA(KP923879532, T2F, KP382683432 * T2O); T4F = FNMS(KP382683432, T2F, KP923879532 * T2O); Tfm = KP707106781 * (TbB + TbC); Tfn = Tbu + Tbv; Tfo = Tfm + Tfn; Thz = Tfn - Tfm; } { E T5R, T5S, Tbt, Tbw; T5R = T2x - T2E; T5S = T2N - T2G; T5T = FNMS(KP382683432, T5S, KP923879532 * T5R); T6j = FMA(KP382683432, T5R, KP923879532 * T5S); Tbt = KP707106781 * (Tbp - Tbs); Tbw = Tbu - Tbv; Tbx = Tbt + Tbw; TdI = Tbw - Tbt; } Tfj = Tbz - Tby; Tfk = KP707106781 * (Tbs + Tbp); Tfl = Tfj + Tfk; ThA = Tfj - Tfk; { E T7n, T7q, TbA, TbD; T7n = TC - TJ; T7q = T7o - T7p; T7r = T7n + T7q; T81 = T7q - T7n; TbA = Tby + Tbz; TbD = KP707106781 * (TbB - TbC); TbE = TbA + TbD; TdH = TbA - TbD; } } { E TR, TbU, T2Q, TbN, T36, TbV, T7t, TbO, TY, TbR, TbS, T2X, T2Z, TbI, TbL; E T7u, Tfq, Tfr; { E TL, TM, TN, TO, TP, TQ; TL = iio[-WS(ios, 62)]; TM = rio[WS(ios, 30)]; TN = TL + TM; TO = rio[WS(ios, 14)]; TP = iio[-WS(ios, 46)]; TQ = TO + TP; TR = TN + TQ; TbU = TL - TM; T2Q = TN - TQ; TbN = TO - TP; } { E T30, T31, T32, T33, T34, T35; T30 = iio[-WS(ios, 30)]; T31 = rio[WS(ios, 62)]; T32 = T30 - T31; T33 = iio[-WS(ios, 14)]; T34 = rio[WS(ios, 46)]; T35 = T33 - T34; T36 = T32 - T35; TbV = T33 + T34; T7t = T32 + T35; TbO = T31 + T30; } { E TU, TbG, T2T, TbH, TX, TbJ, T2W, TbK; { E TS, TT, T2R, T2S; TS = rio[WS(ios, 6)]; TT = iio[-WS(ios, 38)]; TU = TS + TT; TbG = TS - TT; T2R = iio[-WS(ios, 6)]; T2S = rio[WS(ios, 38)]; T2T = T2R - T2S; TbH = T2R + T2S; } { E TV, TW, T2U, T2V; TV = iio[-WS(ios, 54)]; TW = rio[WS(ios, 22)]; TX = TV + TW; TbJ = TV - TW; T2U = iio[-WS(ios, 22)]; T2V = rio[WS(ios, 54)]; T2W = T2U - T2V; TbK = T2V + T2U; } TY = TU + TX; TbR = TbJ - TbK; TbS = TbH - TbG; T2X = T2T - T2W; T2Z = TX - TU; TbI = TbG + TbH; TbL = TbJ + TbK; T7u = T2T + T2W; } TZ = TR + TY; T94 = T7u + T7t; { E T2Y, T37, Tft, Tfu; T2Y = T2Q + T2X; T37 = T2Z + T36; T38 = FNMS(KP382683432, T37, KP923879532 * T2Y); T4G = FMA(KP382683432, T2Y, KP923879532 * T37); Tft = KP707106781 * (TbI + TbL); Tfu = TbU + TbV; Tfv = Tft + Tfu; ThC = Tfu - Tft; } { E T5U, T5V, TbM, TbP; T5U = T2Q - T2X; T5V = T36 - T2Z; T5W = FMA(KP923879532, T5U, KP382683432 * T5V); T6k = FNMS(KP382683432, T5U, KP923879532 * T5V); TbM = KP707106781 * (TbI - TbL); TbP = TbN - TbO; TbQ = TbM + TbP; TdK = TbP - TbM; } Tfq = KP707106781 * (TbS + TbR); Tfr = TbN + TbO; Tfs = Tfq - Tfr; ThD = Tfq + Tfr; { E T7s, T7v, TbT, TbW; T7s = TR - TY; T7v = T7t - T7u; T7w = T7s - T7v; T82 = T7s + T7v; TbT = KP707106781 * (TbR - TbS); TbW = TbU - TbV; TbX = TbT + TbW; TdL = TbW - TbT; } } { E Ti, T2g, Tl, T2j, T2d, T2k, Tfc, Tfb, Tc5, Tc2, Tp, T2p, Ts, T2s, T2m; E T2t, Tff, Tfe, Tcc, Tc9; { E Tc0, Tc4, Tc3, Tc1; { E Tg, Th, T2e, T2f; Tg = rio[WS(ios, 4)]; Th = iio[-WS(ios, 36)]; Ti = Tg + Th; Tc0 = Tg - Th; T2e = iio[-WS(ios, 4)]; T2f = rio[WS(ios, 36)]; T2g = T2e - T2f; Tc4 = T2e + T2f; } { E Tj, Tk, T2h, T2i; Tj = rio[WS(ios, 20)]; Tk = iio[-WS(ios, 52)]; Tl = Tj + Tk; Tc3 = Tj - Tk; T2h = iio[-WS(ios, 20)]; T2i = rio[WS(ios, 52)]; T2j = T2h - T2i; Tc1 = T2h + T2i; } T2d = Ti - Tl; T2k = T2g - T2j; Tfc = Tc0 + Tc1; Tfb = Tc4 - Tc3; Tc5 = Tc3 + Tc4; Tc2 = Tc0 - Tc1; } { E Tc7, Tcb, Tca, Tc8; { E Tn, To, T2n, T2o; Tn = iio[-WS(ios, 60)]; To = rio[WS(ios, 28)]; Tp = Tn + To; Tc7 = Tn - To; T2n = iio[-WS(ios, 28)]; T2o = rio[WS(ios, 60)]; T2p = T2n - T2o; Tcb = T2o + T2n; } { E Tq, Tr, T2q, T2r; Tq = rio[WS(ios, 12)]; Tr = iio[-WS(ios, 44)]; Ts = Tq + Tr; Tca = Tq - Tr; T2q = iio[-WS(ios, 12)]; T2r = rio[WS(ios, 44)]; T2s = T2q - T2r; Tc8 = T2q + T2r; } T2m = Tp - Ts; T2t = T2p - T2s; Tff = Tca + Tcb; Tfe = Tc7 + Tc8; Tcc = Tca - Tcb; Tc9 = Tc7 - Tc8; } { E Tm, Tt, Tfd, Tfg; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; T84 = Tt - Tm; Tfd = FNMS(KP382683432, Tfc, KP923879532 * Tfb); Tfg = FNMS(KP923879532, Tff, KP382683432 * Tfe); Tfh = Tfd + Tfg; ThG = Tfg - Tfd; } { E Tgk, Tgl, T2l, T2u; Tgk = FMA(KP382683432, Tfb, KP923879532 * Tfc); Tgl = FMA(KP923879532, Tfe, KP382683432 * Tff); Tgm = Tgk + Tgl; ThN = Tgk - Tgl; T2l = T2d + T2k; T2u = T2m - T2t; T2v = KP707106781 * (T2l + T2u); T6m = KP707106781 * (T2l - T2u); } { E T4I, T4J, Tc6, Tcd; T4I = T2k - T2d; T4J = T2m + T2t; T4K = KP707106781 * (T4I + T4J); T5P = KP707106781 * (T4J - T4I); Tc6 = FNMS(KP382683432, Tc5, KP923879532 * Tc2); Tcd = FMA(KP923879532, Tc9, KP382683432 * Tcc); Tce = Tc6 + Tcd; TdF = Tcd - Tc6; } { E TcB, TcC, T7j, T7k; TcB = FMA(KP923879532, Tc5, KP382683432 * Tc2); TcC = FNMS(KP382683432, Tc9, KP923879532 * Tcc); TcD = TcB + TcC; Tec = TcB - TcC; T7j = T2g + T2j; T7k = T2s + T2p; T7l = T7j - T7k; T9p = T7j + T7k; } } { E T1z, T1C, T1D, Tbg, TaQ, T4r, T4u, T7Q, Tbh, TaR, T1G, T3V, T1J, T3Y, T1K; E T7R, Tbe, Tbd, TaO, TaL, T1S, TfV, TfW, T41, T48, TaW, TaZ, T7L, T1Z, TfY; E TfZ, T4a, T4h, Tb3, Tb6, T7M; { E T1x, T1y, T1A, T1B; T1x = iio[-WS(ios, 63)]; T1y = rio[WS(ios, 31)]; T1z = T1x + T1y; T1A = rio[WS(ios, 15)]; T1B = iio[-WS(ios, 47)]; T1C = T1A + T1B; T1D = T1z + T1C; Tbg = T1x - T1y; TaQ = T1A - T1B; } { E T4p, T4q, T4s, T4t; T4p = iio[-WS(ios, 31)]; T4q = rio[WS(ios, 63)]; T4r = T4p - T4q; T4s = iio[-WS(ios, 15)]; T4t = rio[WS(ios, 47)]; T4u = T4s - T4t; T7Q = T4r + T4u; Tbh = T4s + T4t; TaR = T4q + T4p; } { E TaJ, TaK, TaM, TaN; { E T1E, T1F, T3T, T3U; T1E = rio[WS(ios, 7)]; T1F = iio[-WS(ios, 39)]; T1G = T1E + T1F; TaJ = T1E - T1F; T3T = iio[-WS(ios, 7)]; T3U = rio[WS(ios, 39)]; T3V = T3T - T3U; TaK = T3T + T3U; } { E T1H, T1I, T3W, T3X; T1H = iio[-WS(ios, 55)]; T1I = rio[WS(ios, 23)]; T1J = T1H + T1I; TaM = T1H - T1I; T3W = iio[-WS(ios, 23)]; T3X = rio[WS(ios, 55)]; T3Y = T3W - T3X; TaN = T3X + T3W; } T1K = T1G + T1J; T7R = T3V + T3Y; Tbe = TaK - TaJ; Tbd = TaM - TaN; TaO = TaM + TaN; TaL = TaJ + TaK; } { E T1O, TaX, T44, TaV, T1R, TaU, T47, TaY; { E T1M, T1N, T42, T43; T1M = rio[WS(ios, 3)]; T1N = iio[-WS(ios, 35)]; T1O = T1M + T1N; TaX = T1M - T1N; T42 = iio[-WS(ios, 3)]; T43 = rio[WS(ios, 35)]; T44 = T42 - T43; TaV = T42 + T43; } { E T1P, T1Q, T45, T46; T1P = rio[WS(ios, 19)]; T1Q = iio[-WS(ios, 51)]; T1R = T1P + T1Q; TaU = T1P - T1Q; T45 = iio[-WS(ios, 19)]; T46 = rio[WS(ios, 51)]; T47 = T45 - T46; TaY = T45 + T46; } T1S = T1O + T1R; TfV = TaV - TaU; TfW = TaX + TaY; T41 = T1O - T1R; T48 = T44 - T47; TaW = TaU + TaV; TaZ = TaX - TaY; T7L = T44 + T47; } { E T1V, Tb4, T4d, Tb2, T1Y, Tb1, T4g, Tb5; { E T1T, T1U, T4b, T4c; T1T = iio[-WS(ios, 59)]; T1U = rio[WS(ios, 27)]; T1V = T1T + T1U; Tb4 = T1T - T1U; T4b = iio[-WS(ios, 27)]; T4c = rio[WS(ios, 59)]; T4d = T4b - T4c; Tb2 = T4c + T4b; } { E T1W, T1X, T4e, T4f; T1W = rio[WS(ios, 11)]; T1X = iio[-WS(ios, 43)]; T1Y = T1W + T1X; Tb1 = T1W - T1X; T4e = iio[-WS(ios, 11)]; T4f = rio[WS(ios, 43)]; T4g = T4e - T4f; Tb5 = T4e + T4f; } T1Z = T1V + T1Y; TfY = Tb4 + Tb5; TfZ = Tb1 + Tb2; T4a = T1V - T1Y; T4h = T4d - T4g; Tb3 = Tb1 - Tb2; Tb6 = Tb4 - Tb5; T7M = T4g + T4d; } T1L = T1D + T1K; T20 = T1S + T1Z; T9c = T1L - T20; T9d = T7R + T7Q; T9e = T7L + T7M; T9f = T9d - T9e; { E T3S, T3Z, TfX, Tg0; T3S = T1z - T1C; T3Z = T3V - T3Y; T40 = T3S + T3Z; T66 = T3S - T3Z; TfX = FNMS(KP382683432, TfW, KP923879532 * TfV); Tg0 = FNMS(KP923879532, TfZ, KP382683432 * TfY); Tg1 = TfX + Tg0; Thu = Tg0 - TfX; } { E Tg6, Tg7, Tg3, Tg4; Tg6 = KP707106781 * (TaL + TaO); Tg7 = Tbg + Tbh; Tg8 = Tg6 + Tg7; Thv = Tg7 - Tg6; Tg3 = FMA(KP382683432, TfV, KP923879532 * TfW); Tg4 = FMA(KP923879532, TfY, KP382683432 * TfZ); Tg5 = Tg3 + Tg4; Thr = Tg3 - Tg4; } { E T4l, T4m, T49, T4i; T4l = T48 - T41; T4m = T4a + T4h; T4n = KP707106781 * (T4l + T4m); T67 = KP707106781 * (T4m - T4l); T49 = T41 + T48; T4i = T4a - T4h; T4j = KP707106781 * (T49 + T4i); T69 = KP707106781 * (T49 - T4i); } { E T4o, T4v, TaP, TaS; T4o = T1J - T1G; T4v = T4r - T4u; T4w = T4o + T4v; T6a = T4v - T4o; TaP = KP707106781 * (TaL - TaO); TaS = TaQ - TaR; TaT = TaP + TaS; TdW = TaS - TaP; } { E Tb0, Tb7, TfS, TfT; Tb0 = FMA(KP923879532, TaW, KP382683432 * TaZ); Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb3); Tb8 = Tb0 + Tb7; TdZ = Tb0 - Tb7; TfS = KP707106781 * (Tbe + Tbd); TfT = TaQ + TaR; TfU = TfS - TfT; Ths = TfS + TfT; } { E T7K, T7N, T7P, T7S; T7K = T1D - T1K; T7N = T7L - T7M; T7O = T7K + T7N; T8y = T7K - T7N; T7P = T1Z - T1S; T7S = T7Q - T7R; T7T = T7P + T7S; T8z = T7S - T7P; } { E Tba, Tbb, Tbf, Tbi; Tba = FNMS(KP382683432, TaW, KP923879532 * TaZ); Tbb = FMA(KP923879532, Tb6, KP382683432 * Tb3); Tbc = Tba + Tbb; TdX = Tbb - Tba; Tbf = KP707106781 * (Tbd - Tbe); Tbi = Tbg - Tbh; Tbj = Tbf + Tbi; Te0 = Tbi - Tbf; } } { E T14, T17, T18, Tax, Tas, T3K, T3N, T7F, Tay, Tat, T1b, T3e, T1e, T3h, T1f; E T7G, TaB, TaA, Taq, Tan, T1n, TfC, TfD, T3k, T3r, Ta8, Tab, T7A, T1u, TfF; E TfG, T3t, T3A, Taf, Tai, T7B; { E T12, T13, T15, T16; T12 = rio[WS(ios, 1)]; T13 = iio[-WS(ios, 33)]; T14 = T12 + T13; T15 = rio[WS(ios, 17)]; T16 = iio[-WS(ios, 49)]; T17 = T15 + T16; T18 = T14 + T17; Tax = T15 - T16; Tas = T12 - T13; } { E T3I, T3J, T3L, T3M; T3I = iio[-WS(ios, 1)]; T3J = rio[WS(ios, 33)]; T3K = T3I - T3J; T3L = iio[-WS(ios, 17)]; T3M = rio[WS(ios, 49)]; T3N = T3L - T3M; T7F = T3K + T3N; Tay = T3I + T3J; Tat = T3L + T3M; } { E Tap, Tao, Tal, Tam; { E T19, T1a, T3c, T3d; T19 = rio[WS(ios, 9)]; T1a = iio[-WS(ios, 41)]; T1b = T19 + T1a; Tap = T19 - T1a; T3c = iio[-WS(ios, 9)]; T3d = rio[WS(ios, 41)]; T3e = T3c - T3d; Tao = T3c + T3d; } { E T1c, T1d, T3f, T3g; T1c = iio[-WS(ios, 57)]; T1d = rio[WS(ios, 25)]; T1e = T1c + T1d; Tal = T1c - T1d; T3f = iio[-WS(ios, 25)]; T3g = rio[WS(ios, 57)]; T3h = T3f - T3g; Tam = T3g + T3f; } T1f = T1b + T1e; T7G = T3e + T3h; TaB = Tal + Tam; TaA = Tap + Tao; Taq = Tao - Tap; Tan = Tal - Tam; } { E T1j, Ta6, T3n, Taa, T1m, Ta9, T3q, Ta7; { E T1h, T1i, T3l, T3m; T1h = rio[WS(ios, 5)]; T1i = iio[-WS(ios, 37)]; T1j = T1h + T1i; Ta6 = T1h - T1i; T3l = iio[-WS(ios, 5)]; T3m = rio[WS(ios, 37)]; T3n = T3l - T3m; Taa = T3l + T3m; } { E T1k, T1l, T3o, T3p; T1k = rio[WS(ios, 21)]; T1l = iio[-WS(ios, 53)]; T1m = T1k + T1l; Ta9 = T1k - T1l; T3o = iio[-WS(ios, 21)]; T3p = rio[WS(ios, 53)]; T3q = T3o - T3p; Ta7 = T3o + T3p; } T1n = T1j + T1m; TfC = Taa - Ta9; TfD = Ta6 + Ta7; T3k = T1j - T1m; T3r = T3n - T3q; Ta8 = Ta6 - Ta7; Tab = Ta9 + Taa; T7A = T3n + T3q; } { E T1q, Tad, T3w, Tah, T1t, Tag, T3z, Tae; { E T1o, T1p, T3u, T3v; T1o = iio[-WS(ios, 61)]; T1p = rio[WS(ios, 29)]; T1q = T1o + T1p; Tad = T1o - T1p; T3u = iio[-WS(ios, 29)]; T3v = rio[WS(ios, 61)]; T3w = T3u - T3v; Tah = T3v + T3u; } { E T1r, T1s, T3x, T3y; T1r = rio[WS(ios, 13)]; T1s = iio[-WS(ios, 45)]; T1t = T1r + T1s; Tag = T1r - T1s; T3x = iio[-WS(ios, 13)]; T3y = rio[WS(ios, 45)]; T3z = T3x - T3y; Tae = T3x + T3y; } T1u = T1q + T1t; TfF = Tad + Tae; TfG = Tag + Tah; T3t = T1q - T1t; T3A = T3w - T3z; Taf = Tad - Tae; Tai = Tag - Tah; T7B = T3z + T3w; } T1g = T18 + T1f; T1v = T1n + T1u; T97 = T1g - T1v; T98 = T7G + T7F; T99 = T7A + T7B; T9a = T98 - T99; { E T3b, T3i, TfE, TfH; T3b = T14 - T17; T3i = T3e - T3h; T3j = T3b + T3i; T5Z = T3b - T3i; TfE = FNMS(KP382683432, TfD, KP923879532 * TfC); TfH = FNMS(KP923879532, TfG, KP382683432 * TfF); TfI = TfE + TfH; Thk = TfH - TfE; } { E TfN, TfO, TfK, TfL; TfN = KP707106781 * (TaA + TaB); TfO = Tas + Tat; TfP = TfN + TfO; Thl = TfO - TfN; TfK = FMA(KP382683432, TfC, KP923879532 * TfD); TfL = FMA(KP923879532, TfF, KP382683432 * TfG); TfM = TfK + TfL; Tho = TfK - TfL; } { E T3E, T3F, T3s, T3B; T3E = T3r - T3k; T3F = T3t + T3A; T3G = KP707106781 * (T3E + T3F); T60 = KP707106781 * (T3F - T3E); T3s = T3k + T3r; T3B = T3t - T3A; T3C = KP707106781 * (T3s + T3B); T62 = KP707106781 * (T3s - T3B); } { E T3H, T3O, Tac, Taj; T3H = T1e - T1b; T3O = T3K - T3N; T3P = T3H + T3O; T63 = T3O - T3H; Tac = FNMS(KP382683432, Tab, KP923879532 * Ta8); Taj = FMA(KP923879532, Taf, KP382683432 * Tai); Tak = Tac + Taj; TdQ = Taj - Tac; } { E Tar, Tau, Tfz, TfA; Tar = KP707106781 * (Tan - Taq); Tau = Tas - Tat; Tav = Tar + Tau; TdT = Tau - Tar; Tfz = Tay - Tax; TfA = KP707106781 * (Taq + Tan); TfB = Tfz + TfA; Thn = Tfz - TfA; } { E T7z, T7C, T7E, T7H; T7z = T18 - T1f; T7C = T7A - T7B; T7D = T7z + T7C; T8v = T7z - T7C; T7E = T1u - T1n; T7H = T7F - T7G; T7I = T7E + T7H; T8w = T7H - T7E; } { E Taz, TaC, TaE, TaF; Taz = Tax + Tay; TaC = KP707106781 * (TaA - TaB); TaD = Taz + TaC; TdP = Taz - TaC; TaE = FMA(KP923879532, Tab, KP382683432 * Ta8); TaF = FNMS(KP382683432, Taf, KP923879532 * Tai); TaG = TaE + TaF; TdS = TaE - TaF; } } { E T11, T9K, T9T, Ta2, T22, T9Q, T9N, Ta3; { E Tv, T10, T9R, T9S; Tv = Tf + Tu; T10 = TK + TZ; T11 = Tv + T10; T9K = Tv - T10; T9R = T9p + T9o; T9S = T93 + T94; T9T = T9R - T9S; Ta2 = T9S + T9R; } { E T1w, T21, T9L, T9M; T1w = T1g + T1v; T21 = T1L + T20; T22 = T1w + T21; T9Q = T21 - T1w; T9L = T99 + T98; T9M = T9e + T9d; T9N = T9L - T9M; Ta3 = T9L + T9M; } rio[0] = T11 + T22; iio[-WS(ios, 63)] = Ta3 + Ta2; { E T9O, T9U, T9J, T9P; T9O = T9K + T9N; T9U = T9Q + T9T; T9J = W[94]; T9P = W[95]; rio[WS(ios, 48)] = FNMS(T9P, T9U, T9J * T9O); iio[-WS(ios, 15)] = FMA(T9P, T9O, T9J * T9U); } { E T9W, T9Y, T9V, T9X; T9W = T9K - T9N; T9Y = T9T - T9Q; T9V = W[30]; T9X = W[31]; rio[WS(ios, 16)] = FNMS(T9X, T9Y, T9V * T9W); iio[-WS(ios, 47)] = FMA(T9X, T9W, T9V * T9Y); } { E Ta0, Ta4, T9Z, Ta1; Ta0 = T11 - T22; Ta4 = Ta2 - Ta3; T9Z = W[62]; Ta1 = W[63]; rio[WS(ios, 32)] = FNMS(Ta1, Ta4, T9Z * Ta0); iio[-WS(ios, 31)] = FMA(Ta1, Ta0, T9Z * Ta4); } } { E T96, T9y, T9r, T9D, T9h, T9C, T9m, T9z; { E T92, T95, T9n, T9q; T92 = Tf - Tu; T95 = T93 - T94; T96 = T92 + T95; T9y = T92 - T95; T9n = TZ - TK; T9q = T9o - T9p; T9r = T9n + T9q; T9D = T9q - T9n; } { E T9b, T9g, T9k, T9l; T9b = T97 + T9a; T9g = T9c - T9f; T9h = KP707106781 * (T9b + T9g); T9C = KP707106781 * (T9b - T9g); T9k = T9a - T97; T9l = T9c + T9f; T9m = KP707106781 * (T9k + T9l); T9z = KP707106781 * (T9l - T9k); } { E T9i, T9s, T91, T9j; T9i = T96 + T9h; T9s = T9m + T9r; T91 = W[110]; T9j = W[111]; rio[WS(ios, 56)] = FNMS(T9j, T9s, T91 * T9i); iio[-WS(ios, 7)] = FMA(T9j, T9i, T91 * T9s); } { E T9G, T9I, T9F, T9H; T9G = T9y - T9z; T9I = T9D - T9C; T9F = W[78]; T9H = W[79]; rio[WS(ios, 40)] = FNMS(T9H, T9I, T9F * T9G); iio[-WS(ios, 23)] = FMA(T9H, T9G, T9F * T9I); } { E T9u, T9w, T9t, T9v; T9u = T96 - T9h; T9w = T9r - T9m; T9t = W[46]; T9v = W[47]; rio[WS(ios, 24)] = FNMS(T9v, T9w, T9t * T9u); iio[-WS(ios, 39)] = FMA(T9v, T9u, T9t * T9w); } { E T9A, T9E, T9x, T9B; T9A = T9y + T9z; T9E = T9C + T9D; T9x = W[14]; T9B = W[15]; rio[WS(ios, 8)] = FNMS(T9B, T9E, T9x * T9A); iio[-WS(ios, 55)] = FMA(T9B, T9A, T9x * T9E); } } { E T8u, T8Q, T8J, T8V, T8B, T8U, T8G, T8R; { E T8s, T8t, T8H, T8I; T8s = T7i - T7l; T8t = KP707106781 * (T82 - T81); T8u = T8s + T8t; T8Q = T8s - T8t; T8H = KP707106781 * (T7r - T7w); T8I = T87 - T84; T8J = T8H + T8I; T8V = T8I - T8H; } { E T8x, T8A, T8E, T8F; T8x = FNMS(KP382683432, T8w, KP923879532 * T8v); T8A = FMA(KP923879532, T8y, KP382683432 * T8z); T8B = T8x + T8A; T8U = T8A - T8x; T8E = FMA(KP382683432, T8v, KP923879532 * T8w); T8F = FNMS(KP382683432, T8y, KP923879532 * T8z); T8G = T8E + T8F; T8R = T8E - T8F; } { E T8C, T8K, T8r, T8D; T8C = T8u + T8B; T8K = T8G + T8J; T8r = W[6]; T8D = W[7]; rio[WS(ios, 4)] = FNMS(T8D, T8K, T8r * T8C); iio[-WS(ios, 59)] = FMA(T8D, T8C, T8r * T8K); } { E T8Y, T90, T8X, T8Z; T8Y = T8Q - T8R; T90 = T8V - T8U; T8X = W[38]; T8Z = W[39]; rio[WS(ios, 20)] = FNMS(T8Z, T90, T8X * T8Y); iio[-WS(ios, 43)] = FMA(T8Z, T8Y, T8X * T90); } { E T8M, T8O, T8L, T8N; T8M = T8u - T8B; T8O = T8J - T8G; T8L = W[70]; T8N = W[71]; rio[WS(ios, 36)] = FNMS(T8N, T8O, T8L * T8M); iio[-WS(ios, 27)] = FMA(T8N, T8M, T8L * T8O); } { E T8S, T8W, T8P, T8T; T8S = T8Q + T8R; T8W = T8U + T8V; T8P = W[102]; T8T = W[103]; rio[WS(ios, 52)] = FNMS(T8T, T8W, T8P * T8S); iio[-WS(ios, 11)] = FMA(T8T, T8S, T8P * T8W); } } { E T7y, T8g, T89, T8l, T7V, T8k, T80, T8h; { E T7m, T7x, T83, T88; T7m = T7i + T7l; T7x = KP707106781 * (T7r + T7w); T7y = T7m + T7x; T8g = T7m - T7x; T83 = KP707106781 * (T81 + T82); T88 = T84 + T87; T89 = T83 + T88; T8l = T88 - T83; } { E T7J, T7U, T7Y, T7Z; T7J = FMA(KP923879532, T7D, KP382683432 * T7I); T7U = FNMS(KP382683432, T7T, KP923879532 * T7O); T7V = T7J + T7U; T8k = T7J - T7U; T7Y = FNMS(KP382683432, T7D, KP923879532 * T7I); T7Z = FMA(KP382683432, T7O, KP923879532 * T7T); T80 = T7Y + T7Z; T8h = T7Z - T7Y; } { E T7W, T8a, T7h, T7X; T7W = T7y + T7V; T8a = T80 + T89; T7h = W[118]; T7X = W[119]; rio[WS(ios, 60)] = FNMS(T7X, T8a, T7h * T7W); iio[-WS(ios, 3)] = FMA(T7X, T7W, T7h * T8a); } { E T8o, T8q, T8n, T8p; T8o = T8g - T8h; T8q = T8l - T8k; T8n = W[86]; T8p = W[87]; rio[WS(ios, 44)] = FNMS(T8p, T8q, T8n * T8o); iio[-WS(ios, 19)] = FMA(T8p, T8o, T8n * T8q); } { E T8c, T8e, T8b, T8d; T8c = T7y - T7V; T8e = T89 - T80; T8b = W[54]; T8d = W[55]; rio[WS(ios, 28)] = FNMS(T8d, T8e, T8b * T8c); iio[-WS(ios, 35)] = FMA(T8d, T8c, T8b * T8e); } { E T8i, T8m, T8f, T8j; T8i = T8g + T8h; T8m = T8k + T8l; T8f = W[22]; T8j = W[23]; rio[WS(ios, 12)] = FNMS(T8j, T8m, T8f * T8i); iio[-WS(ios, 51)] = FMA(T8j, T8i, T8f * T8m); } } { E T6K, T76, T6Z, T7b, T6R, T7a, T6W, T77; { E T6I, T6J, T6X, T6Y; T6I = T5O - T5P; T6J = T6j - T6k; T6K = T6I + T6J; T76 = T6I - T6J; T6X = T5W - T5T; T6Y = T6n - T6m; T6Z = T6X + T6Y; T7b = T6Y - T6X; { E T6N, T6U, T6Q, T6V; { E T6L, T6M, T6O, T6P; T6L = T5Z - T60; T6M = T63 - T62; T6N = FMA(KP831469612, T6L, KP555570233 * T6M); T6U = FNMS(KP555570233, T6L, KP831469612 * T6M); T6O = T66 - T67; T6P = T6a - T69; T6Q = FNMS(KP555570233, T6P, KP831469612 * T6O); T6V = FMA(KP555570233, T6O, KP831469612 * T6P); } T6R = T6N + T6Q; T7a = T6N - T6Q; T6W = T6U + T6V; T77 = T6V - T6U; } } { E T6S, T70, T6H, T6T; T6S = T6K + T6R; T70 = T6W + T6Z; T6H = W[114]; T6T = W[115]; rio[WS(ios, 58)] = FNMS(T6T, T70, T6H * T6S); iio[-WS(ios, 5)] = FMA(T6T, T6S, T6H * T70); } { E T7e, T7g, T7d, T7f; T7e = T76 - T77; T7g = T7b - T7a; T7d = W[82]; T7f = W[83]; rio[WS(ios, 42)] = FNMS(T7f, T7g, T7d * T7e); iio[-WS(ios, 21)] = FMA(T7f, T7e, T7d * T7g); } { E T72, T74, T71, T73; T72 = T6K - T6R; T74 = T6Z - T6W; T71 = W[50]; T73 = W[51]; rio[WS(ios, 26)] = FNMS(T73, T74, T71 * T72); iio[-WS(ios, 37)] = FMA(T73, T72, T71 * T74); } { E T78, T7c, T75, T79; T78 = T76 + T77; T7c = T7a + T7b; T75 = W[18]; T79 = W[19]; rio[WS(ios, 10)] = FNMS(T79, T7c, T75 * T78); iio[-WS(ios, 53)] = FMA(T79, T78, T75 * T7c); } } { E T3a, T52, T4V, T57, T4z, T56, T4E, T53; { E T2w, T39, T4H, T4U; T2w = T2c + T2v; T39 = T2P + T38; T3a = T2w + T39; T52 = T2w - T39; T4H = T4F + T4G; T4U = T4K + T4T; T4V = T4H + T4U; T57 = T4U - T4H; { E T3R, T4C, T4y, T4D; { E T3D, T3Q, T4k, T4x; T3D = T3j + T3C; T3Q = T3G + T3P; T3R = FMA(KP980785280, T3D, KP195090322 * T3Q); T4C = FNMS(KP195090322, T3D, KP980785280 * T3Q); T4k = T40 + T4j; T4x = T4n + T4w; T4y = FNMS(KP195090322, T4x, KP980785280 * T4k); T4D = FMA(KP195090322, T4k, KP980785280 * T4x); } T4z = T3R + T4y; T56 = T3R - T4y; T4E = T4C + T4D; T53 = T4D - T4C; } } { E T4A, T4W, T23, T4B; T4A = T3a + T4z; T4W = T4E + T4V; T23 = W[122]; T4B = W[123]; rio[WS(ios, 62)] = FNMS(T4B, T4W, T23 * T4A); iio[-WS(ios, 1)] = FMA(T4B, T4A, T23 * T4W); } { E T5a, T5c, T59, T5b; T5a = T52 - T53; T5c = T57 - T56; T59 = W[90]; T5b = W[91]; rio[WS(ios, 46)] = FNMS(T5b, T5c, T59 * T5a); iio[-WS(ios, 17)] = FMA(T5b, T5a, T59 * T5c); } { E T4Y, T50, T4X, T4Z; T4Y = T3a - T4z; T50 = T4V - T4E; T4X = W[58]; T4Z = W[59]; rio[WS(ios, 30)] = FNMS(T4Z, T50, T4X * T4Y); iio[-WS(ios, 33)] = FMA(T4Z, T4Y, T4X * T50); } { E T54, T58, T51, T55; T54 = T52 + T53; T58 = T56 + T57; T51 = W[26]; T55 = W[27]; rio[WS(ios, 14)] = FNMS(T55, T58, T51 * T54); iio[-WS(ios, 49)] = FMA(T55, T54, T51 * T58); } } { E T5g, T5C, T5v, T5H, T5n, T5G, T5s, T5D; { E T5e, T5f, T5t, T5u; T5e = T2c - T2v; T5f = T4G - T4F; T5g = T5e + T5f; T5C = T5e - T5f; T5t = T2P - T38; T5u = T4T - T4K; T5v = T5t + T5u; T5H = T5u - T5t; { E T5j, T5q, T5m, T5r; { E T5h, T5i, T5k, T5l; T5h = T3j - T3C; T5i = T3P - T3G; T5j = FNMS(KP555570233, T5i, KP831469612 * T5h); T5q = FMA(KP555570233, T5h, KP831469612 * T5i); T5k = T40 - T4j; T5l = T4w - T4n; T5m = FMA(KP831469612, T5k, KP555570233 * T5l); T5r = FNMS(KP555570233, T5k, KP831469612 * T5l); } T5n = T5j + T5m; T5G = T5m - T5j; T5s = T5q + T5r; T5D = T5q - T5r; } } { E T5o, T5w, T5d, T5p; T5o = T5g + T5n; T5w = T5s + T5v; T5d = W[10]; T5p = W[11]; rio[WS(ios, 6)] = FNMS(T5p, T5w, T5d * T5o); iio[-WS(ios, 57)] = FMA(T5p, T5o, T5d * T5w); } { E T5K, T5M, T5J, T5L; T5K = T5C - T5D; T5M = T5H - T5G; T5J = W[42]; T5L = W[43]; rio[WS(ios, 22)] = FNMS(T5L, T5M, T5J * T5K); iio[-WS(ios, 41)] = FMA(T5L, T5K, T5J * T5M); } { E T5y, T5A, T5x, T5z; T5y = T5g - T5n; T5A = T5v - T5s; T5x = W[74]; T5z = W[75]; rio[WS(ios, 38)] = FNMS(T5z, T5A, T5x * T5y); iio[-WS(ios, 25)] = FMA(T5z, T5y, T5x * T5A); } { E T5E, T5I, T5B, T5F; T5E = T5C + T5D; T5I = T5G + T5H; T5B = W[106]; T5F = W[107]; rio[WS(ios, 54)] = FNMS(T5F, T5I, T5B * T5E); iio[-WS(ios, 9)] = FMA(T5F, T5E, T5B * T5I); } } { E T5Y, T6w, T6p, T6B, T6d, T6A, T6i, T6x; { E T5Q, T5X, T6l, T6o; T5Q = T5O + T5P; T5X = T5T + T5W; T5Y = T5Q + T5X; T6w = T5Q - T5X; T6l = T6j + T6k; T6o = T6m + T6n; T6p = T6l + T6o; T6B = T6o - T6l; { E T65, T6g, T6c, T6h; { E T61, T64, T68, T6b; T61 = T5Z + T60; T64 = T62 + T63; T65 = FNMS(KP195090322, T64, KP980785280 * T61); T6g = FMA(KP195090322, T61, KP980785280 * T64); T68 = T66 + T67; T6b = T69 + T6a; T6c = FMA(KP980785280, T68, KP195090322 * T6b); T6h = FNMS(KP195090322, T68, KP980785280 * T6b); } T6d = T65 + T6c; T6A = T6c - T65; T6i = T6g + T6h; T6x = T6g - T6h; } } { E T6e, T6q, T5N, T6f; T6e = T5Y + T6d; T6q = T6i + T6p; T5N = W[2]; T6f = W[3]; rio[WS(ios, 2)] = FNMS(T6f, T6q, T5N * T6e); iio[-WS(ios, 61)] = FMA(T6f, T6e, T5N * T6q); } { E T6E, T6G, T6D, T6F; T6E = T6w - T6x; T6G = T6B - T6A; T6D = W[34]; T6F = W[35]; rio[WS(ios, 18)] = FNMS(T6F, T6G, T6D * T6E); iio[-WS(ios, 45)] = FMA(T6F, T6E, T6D * T6G); } { E T6s, T6u, T6r, T6t; T6s = T5Y - T6d; T6u = T6p - T6i; T6r = W[66]; T6t = W[67]; rio[WS(ios, 34)] = FNMS(T6t, T6u, T6r * T6s); iio[-WS(ios, 29)] = FMA(T6t, T6s, T6r * T6u); } { E T6y, T6C, T6v, T6z; T6y = T6w + T6x; T6C = T6A + T6B; T6v = W[98]; T6z = W[99]; rio[WS(ios, 50)] = FNMS(T6z, T6C, T6v * T6y); iio[-WS(ios, 13)] = FMA(T6z, T6y, T6v * T6C); } } { E TdO, Tf1, Teq, TeH, Tef, TeW, Ten, TeM, Te3, Ter, Te8, Tem, TeE, Tf0, TeP; E TeX; { E TdG, TeG, TdN, TeF, TdJ, TdM; TdG = TdE + TdF; TeG = Ted - Tec; TdJ = FNMS(KP555570233, TdI, KP831469612 * TdH); TdM = FMA(KP831469612, TdK, KP555570233 * TdL); TdN = TdJ + TdM; TeF = TdM - TdJ; TdO = TdG + TdN; Tf1 = TeG - TeF; Teq = TdG - TdN; TeH = TeF + TeG; } { E Tee, TeK, Teb, TeL, Te9, Tea; Tee = Tec + Ted; TeK = TdE - TdF; Te9 = FMA(KP555570233, TdH, KP831469612 * TdI); Tea = FNMS(KP555570233, TdK, KP831469612 * TdL); Teb = Te9 + Tea; TeL = Te9 - Tea; Tef = Teb + Tee; TeW = TeK - TeL; Ten = Tee - Teb; TeM = TeK + TeL; } { E TdV, Te6, Te2, Te7; { E TdR, TdU, TdY, Te1; TdR = TdP + TdQ; TdU = TdS + TdT; TdV = FNMS(KP290284677, TdU, KP956940335 * TdR); Te6 = FMA(KP290284677, TdR, KP956940335 * TdU); TdY = TdW + TdX; Te1 = TdZ + Te0; Te2 = FMA(KP956940335, TdY, KP290284677 * Te1); Te7 = FNMS(KP290284677, TdY, KP956940335 * Te1); } Te3 = TdV + Te2; Ter = Te6 - Te7; Te8 = Te6 + Te7; Tem = Te2 - TdV; } { E TeA, TeN, TeD, TeO; { E Tey, Tez, TeB, TeC; Tey = TdT - TdS; Tez = TdP - TdQ; TeA = FNMS(KP471396736, Tez, KP881921264 * Tey); TeN = FMA(KP881921264, Tez, KP471396736 * Tey); TeB = TdW - TdX; TeC = Te0 - TdZ; TeD = FMA(KP471396736, TeB, KP881921264 * TeC); TeO = FNMS(KP471396736, TeC, KP881921264 * TeB); } TeE = TeA + TeD; Tf0 = TeN - TeO; TeP = TeN + TeO; TeX = TeD - TeA; } { E Te4, Teg, TdD, Te5; Te4 = TdO + Te3; Teg = Te8 + Tef; TdD = W[120]; Te5 = W[121]; iio[-WS(ios, 2)] = FMA(TdD, Te4, Te5 * Teg); rio[WS(ios, 61)] = FNMS(Te5, Te4, TdD * Teg); } { E TeY, Tf2, TeV, TeZ; TeY = TeW + TeX; Tf2 = Tf0 + Tf1; TeV = W[104]; TeZ = W[105]; iio[-WS(ios, 10)] = FMA(TeV, TeY, TeZ * Tf2); rio[WS(ios, 53)] = FNMS(TeZ, TeY, TeV * Tf2); } { E Tf4, Tf6, Tf3, Tf5; Tf4 = Tf1 - Tf0; Tf6 = TeW - TeX; Tf3 = W[40]; Tf5 = W[41]; rio[WS(ios, 21)] = FNMS(Tf5, Tf6, Tf3 * Tf4); iio[-WS(ios, 42)] = FMA(Tf3, Tf6, Tf5 * Tf4); } { E Tei, Tek, Teh, Tej; Tei = Tef - Te8; Tek = TdO - Te3; Teh = W[56]; Tej = W[57]; rio[WS(ios, 29)] = FNMS(Tej, Tek, Teh * Tei); iio[-WS(ios, 34)] = FMA(Teh, Tek, Tej * Tei); } { E Teo, Tes, Tel, Tep; Teo = Tem + Ten; Tes = Teq + Ter; Tel = W[24]; Tep = W[25]; rio[WS(ios, 13)] = FNMS(Tep, Tes, Tel * Teo); iio[-WS(ios, 50)] = FMA(Tel, Tes, Tep * Teo); } { E TeI, TeQ, Tex, TeJ; TeI = TeE + TeH; TeQ = TeM + TeP; Tex = W[8]; TeJ = W[9]; rio[WS(ios, 5)] = FNMS(TeJ, TeQ, Tex * TeI); iio[-WS(ios, 58)] = FMA(Tex, TeQ, TeJ * TeI); } { E TeS, TeU, TeR, TeT; TeS = TeM - TeP; TeU = TeH - TeE; TeR = W[72]; TeT = W[73]; iio[-WS(ios, 26)] = FMA(TeR, TeS, TeT * TeU); rio[WS(ios, 37)] = FNMS(TeT, TeS, TeR * TeU); } { E Teu, Tew, Tet, Tev; Teu = Teq - Ter; Tew = Ten - Tem; Tet = W[88]; Tev = W[89]; iio[-WS(ios, 18)] = FMA(Tet, Teu, Tev * Tew); rio[WS(ios, 45)] = FNMS(Tev, Teu, Tet * Tew); } } { E Tcr, Tdw, TcX, Td6, TcI, Tdt, TcS, Tdl, Tbm, TcW, TcL, TcT, Tdd, Tdx, Tdi; E Tds; { E Tcq, Td4, TbZ, Td5, TbF, TbY; Tcq = Tce + Tcp; Td4 = TcA - TcD; TbF = FNMS(KP195090322, TbE, KP980785280 * Tbx); TbY = FMA(KP195090322, TbQ, KP980785280 * TbX); TbZ = TbF + TbY; Td5 = TbY - TbF; Tcr = TbZ + Tcq; Tdw = Td4 - Td5; TcX = Tcq - TbZ; Td6 = Td4 + Td5; } { E TcE, Tdk, TcH, Tdj, TcF, TcG; TcE = TcA + TcD; Tdk = Tcp - Tce; TcF = FMA(KP980785280, TbE, KP195090322 * Tbx); TcG = FNMS(KP195090322, TbX, KP980785280 * TbQ); TcH = TcF + TcG; Tdj = TcF - TcG; TcI = TcE + TcH; Tdt = Tdk - Tdj; TcS = TcE - TcH; Tdl = Tdj + Tdk; } { E TaI, TcJ, Tbl, TcK; { E Taw, TaH, Tb9, Tbk; Taw = Tak + Tav; TaH = TaD + TaG; TaI = FNMS(KP098017140, TaH, KP995184726 * Taw); TcJ = FMA(KP995184726, TaH, KP098017140 * Taw); Tb9 = TaT + Tb8; Tbk = Tbc + Tbj; Tbl = FMA(KP098017140, Tb9, KP995184726 * Tbk); TcK = FNMS(KP098017140, Tbk, KP995184726 * Tb9); } Tbm = TaI + Tbl; TcW = TcJ - TcK; TcL = TcJ + TcK; TcT = Tbl - TaI; } { E Td9, Tdg, Tdc, Tdh; { E Td7, Td8, Tda, Tdb; Td7 = TaD - TaG; Td8 = Tav - Tak; Td9 = FNMS(KP634393284, Td8, KP773010453 * Td7); Tdg = FMA(KP634393284, Td7, KP773010453 * Td8); Tda = TaT - Tb8; Tdb = Tbj - Tbc; Tdc = FMA(KP773010453, Tda, KP634393284 * Tdb); Tdh = FNMS(KP634393284, Tda, KP773010453 * Tdb); } Tdd = Td9 + Tdc; Tdx = Tdg - Tdh; Tdi = Tdg + Tdh; Tds = Tdc - Td9; } { E Tcs, TcM, Ta5, Tct; Tcs = Tbm + Tcr; TcM = TcI + TcL; Ta5 = W[0]; Tct = W[1]; rio[WS(ios, 1)] = FNMS(Tct, TcM, Ta5 * Tcs); iio[-WS(ios, 62)] = FMA(Ta5, TcM, Tct * Tcs); } { E Tdu, Tdy, Tdr, Tdv; Tdu = Tds + Tdt; Tdy = Tdw + Tdx; Tdr = W[16]; Tdv = W[17]; rio[WS(ios, 9)] = FNMS(Tdv, Tdy, Tdr * Tdu); iio[-WS(ios, 54)] = FMA(Tdr, Tdy, Tdv * Tdu); } { E TdA, TdC, Tdz, TdB; TdA = Tdw - Tdx; TdC = Tdt - Tds; Tdz = W[80]; TdB = W[81]; iio[-WS(ios, 22)] = FMA(Tdz, TdA, TdB * TdC); rio[WS(ios, 41)] = FNMS(TdB, TdA, Tdz * TdC); } { E TcO, TcQ, TcN, TcP; TcO = TcI - TcL; TcQ = Tcr - Tbm; TcN = W[64]; TcP = W[65]; iio[-WS(ios, 30)] = FMA(TcN, TcO, TcP * TcQ); rio[WS(ios, 33)] = FNMS(TcP, TcO, TcN * TcQ); } { E TcU, TcY, TcR, TcV; TcU = TcS + TcT; TcY = TcW + TcX; TcR = W[96]; TcV = W[97]; iio[-WS(ios, 14)] = FMA(TcR, TcU, TcV * TcY); rio[WS(ios, 49)] = FNMS(TcV, TcU, TcR * TcY); } { E Tde, Tdm, Td3, Tdf; Tde = Td6 + Tdd; Tdm = Tdi + Tdl; Td3 = W[112]; Tdf = W[113]; iio[-WS(ios, 6)] = FMA(Td3, Tde, Tdf * Tdm); rio[WS(ios, 57)] = FNMS(Tdf, Tde, Td3 * Tdm); } { E Tdo, Tdq, Tdn, Tdp; Tdo = Tdl - Tdi; Tdq = Td6 - Tdd; Tdn = W[48]; Tdp = W[49]; rio[WS(ios, 25)] = FNMS(Tdp, Tdq, Tdn * Tdo); iio[-WS(ios, 38)] = FMA(Tdn, Tdq, Tdp * Tdo); } { E Td0, Td2, TcZ, Td1; Td0 = TcX - TcW; Td2 = TcS - TcT; TcZ = W[32]; Td1 = W[33]; rio[WS(ios, 17)] = FNMS(Td1, Td2, TcZ * Td0); iio[-WS(ios, 46)] = FMA(TcZ, Td2, Td1 * Td0); } } { E Tfy, Thd, TgC, TgT, Tgr, Th8, Tgz, TgY, Tgb, TgD, Tgg, Tgy, TgQ, Thc, Th1; E Th9; { E Tfi, TgS, Tfx, TgR, Tfp, Tfw; Tfi = Tfa + Tfh; TgS = Tgp - Tgm; Tfp = FNMS(KP195090322, Tfo, KP980785280 * Tfl); Tfw = FMA(KP980785280, Tfs, KP195090322 * Tfv); Tfx = Tfp + Tfw; TgR = Tfw - Tfp; Tfy = Tfi + Tfx; Thd = TgS - TgR; TgC = Tfi - Tfx; TgT = TgR + TgS; } { E Tgq, TgW, Tgj, TgX, Tgh, Tgi; Tgq = Tgm + Tgp; TgW = Tfa - Tfh; Tgh = FMA(KP195090322, Tfl, KP980785280 * Tfo); Tgi = FNMS(KP195090322, Tfs, KP980785280 * Tfv); Tgj = Tgh + Tgi; TgX = Tgh - Tgi; Tgr = Tgj + Tgq; Th8 = TgW - TgX; Tgz = Tgq - Tgj; TgY = TgW + TgX; } { E TfR, Tge, Tga, Tgf; { E TfJ, TfQ, Tg2, Tg9; TfJ = TfB + TfI; TfQ = TfM + TfP; TfR = FNMS(KP098017140, TfQ, KP995184726 * TfJ); Tge = FMA(KP098017140, TfJ, KP995184726 * TfQ); Tg2 = TfU + Tg1; Tg9 = Tg5 + Tg8; Tga = FMA(KP995184726, Tg2, KP098017140 * Tg9); Tgf = FNMS(KP098017140, Tg2, KP995184726 * Tg9); } Tgb = TfR + Tga; TgD = Tge - Tgf; Tgg = Tge + Tgf; Tgy = Tga - TfR; } { E TgM, TgZ, TgP, Th0; { E TgK, TgL, TgN, TgO; TgK = TfP - TfM; TgL = TfB - TfI; TgM = FNMS(KP634393284, TgL, KP773010453 * TgK); TgZ = FMA(KP773010453, TgL, KP634393284 * TgK); TgN = TfU - Tg1; TgO = Tg8 - Tg5; TgP = FMA(KP634393284, TgN, KP773010453 * TgO); Th0 = FNMS(KP634393284, TgO, KP773010453 * TgN); } TgQ = TgM + TgP; Thc = TgZ - Th0; Th1 = TgZ + Th0; Th9 = TgP - TgM; } { E Tgc, Tgs, Tf7, Tgd; Tgc = Tfy + Tgb; Tgs = Tgg + Tgr; Tf7 = W[124]; Tgd = W[125]; iio[0] = FMA(Tf7, Tgc, Tgd * Tgs); rio[WS(ios, 63)] = FNMS(Tgd, Tgc, Tf7 * Tgs); } { E Tha, The, Th7, Thb; Tha = Th8 + Th9; The = Thc + Thd; Th7 = W[108]; Thb = W[109]; iio[-WS(ios, 8)] = FMA(Th7, Tha, Thb * The); rio[WS(ios, 55)] = FNMS(Thb, Tha, Th7 * The); } { E Thg, Thi, Thf, Thh; Thg = Thd - Thc; Thi = Th8 - Th9; Thf = W[44]; Thh = W[45]; rio[WS(ios, 23)] = FNMS(Thh, Thi, Thf * Thg); iio[-WS(ios, 40)] = FMA(Thf, Thi, Thh * Thg); } { E Tgu, Tgw, Tgt, Tgv; Tgu = Tgr - Tgg; Tgw = Tfy - Tgb; Tgt = W[60]; Tgv = W[61]; rio[WS(ios, 31)] = FNMS(Tgv, Tgw, Tgt * Tgu); iio[-WS(ios, 32)] = FMA(Tgt, Tgw, Tgv * Tgu); } { E TgA, TgE, Tgx, TgB; TgA = Tgy + Tgz; TgE = TgC + TgD; Tgx = W[28]; TgB = W[29]; rio[WS(ios, 15)] = FNMS(TgB, TgE, Tgx * TgA); iio[-WS(ios, 48)] = FMA(Tgx, TgE, TgB * TgA); } { E TgU, Th2, TgJ, TgV; TgU = TgQ + TgT; Th2 = TgY + Th1; TgJ = W[12]; TgV = W[13]; rio[WS(ios, 7)] = FNMS(TgV, Th2, TgJ * TgU); iio[-WS(ios, 56)] = FMA(TgJ, Th2, TgV * TgU); } { E Th4, Th6, Th3, Th5; Th4 = TgY - Th1; Th6 = TgT - TgQ; Th3 = W[76]; Th5 = W[77]; iio[-WS(ios, 24)] = FMA(Th3, Th4, Th5 * Th6); rio[WS(ios, 39)] = FNMS(Th5, Th4, Th3 * Th6); } { E TgG, TgI, TgF, TgH; TgG = TgC - TgD; TgI = Tgz - Tgy; TgF = W[92]; TgH = W[93]; iio[-WS(ios, 16)] = FMA(TgF, TgG, TgH * TgI); rio[WS(ios, 47)] = FNMS(TgH, TgG, TgF * TgI); } } { E ThJ, TiG, Ti7, Tig, ThS, TiD, Ti2, Tiv, Thy, Ti6, ThV, Ti3, Tin, TiH, Tis; E TiC; { E ThI, Tie, ThF, Tif, ThB, ThE; ThI = ThG + ThH; Tie = ThM - ThN; ThB = FNMS(KP555570233, ThA, KP831469612 * Thz); ThE = FNMS(KP555570233, ThD, KP831469612 * ThC); ThF = ThB + ThE; Tif = ThE - ThB; ThJ = ThF + ThI; TiG = Tie - Tif; Ti7 = ThI - ThF; Tig = Tie + Tif; } { E ThO, Tiu, ThR, Tit, ThP, ThQ; ThO = ThM + ThN; Tiu = ThH - ThG; ThP = FMA(KP831469612, ThA, KP555570233 * Thz); ThQ = FMA(KP831469612, ThD, KP555570233 * ThC); ThR = ThP - ThQ; Tit = ThP + ThQ; ThS = ThO + ThR; TiD = Tiu - Tit; Ti2 = ThO - ThR; Tiv = Tit + Tiu; } { E Thq, ThT, Thx, ThU; { E Thm, Thp, Tht, Thw; Thm = Thk + Thl; Thp = Thn + Tho; Thq = FNMS(KP290284677, Thp, KP956940335 * Thm); ThT = FMA(KP956940335, Thp, KP290284677 * Thm); Tht = Thr - Ths; Thw = Thu + Thv; Thx = FMA(KP290284677, Tht, KP956940335 * Thw); ThU = FNMS(KP290284677, Thw, KP956940335 * Tht); } Thy = Thq + Thx; Ti6 = ThT - ThU; ThV = ThT + ThU; Ti3 = Thx - Thq; } { E Tij, Tiq, Tim, Tir; { E Tih, Tii, Tik, Til; Tih = Thn - Tho; Tii = Thl - Thk; Tij = FNMS(KP471396736, Tii, KP881921264 * Tih); Tiq = FMA(KP471396736, Tih, KP881921264 * Tii); Tik = Thv - Thu; Til = Ths + Thr; Tim = FNMS(KP881921264, Til, KP471396736 * Tik); Tir = FMA(KP471396736, Til, KP881921264 * Tik); } Tin = Tij + Tim; TiH = Tiq - Tir; Tis = Tiq + Tir; TiC = Tim - Tij; } { E ThK, ThW, Thj, ThL; ThK = Thy + ThJ; ThW = ThS + ThV; Thj = W[4]; ThL = W[5]; rio[WS(ios, 3)] = FNMS(ThL, ThW, Thj * ThK); iio[-WS(ios, 60)] = FMA(Thj, ThW, ThL * ThK); } { E TiE, TiI, TiB, TiF; TiE = TiC + TiD; TiI = TiG + TiH; TiB = W[20]; TiF = W[21]; rio[WS(ios, 11)] = FNMS(TiF, TiI, TiB * TiE); iio[-WS(ios, 52)] = FMA(TiB, TiI, TiF * TiE); } { E TiK, TiM, TiJ, TiL; TiK = TiG - TiH; TiM = TiD - TiC; TiJ = W[84]; TiL = W[85]; iio[-WS(ios, 20)] = FMA(TiJ, TiK, TiL * TiM); rio[WS(ios, 43)] = FNMS(TiL, TiK, TiJ * TiM); } { E ThY, Ti0, ThX, ThZ; ThY = ThS - ThV; Ti0 = ThJ - Thy; ThX = W[68]; ThZ = W[69]; iio[-WS(ios, 28)] = FMA(ThX, ThY, ThZ * Ti0); rio[WS(ios, 35)] = FNMS(ThZ, ThY, ThX * Ti0); } { E Ti4, Ti8, Ti1, Ti5; Ti4 = Ti2 + Ti3; Ti8 = Ti6 + Ti7; Ti1 = W[100]; Ti5 = W[101]; iio[-WS(ios, 12)] = FMA(Ti1, Ti4, Ti5 * Ti8); rio[WS(ios, 51)] = FNMS(Ti5, Ti4, Ti1 * Ti8); } { E Tio, Tiw, Tid, Tip; Tio = Tig + Tin; Tiw = Tis + Tiv; Tid = W[116]; Tip = W[117]; iio[-WS(ios, 4)] = FMA(Tid, Tio, Tip * Tiw); rio[WS(ios, 59)] = FNMS(Tip, Tio, Tid * Tiw); } { E Tiy, TiA, Tix, Tiz; Tiy = Tiv - Tis; TiA = Tig - Tin; Tix = W[52]; Tiz = W[53]; rio[WS(ios, 27)] = FNMS(Tiz, TiA, Tix * Tiy); iio[-WS(ios, 36)] = FMA(Tix, TiA, Tiz * Tiy); } { E Tia, Tic, Ti9, Tib; Tia = Ti7 - Ti6; Tic = Ti2 - Ti3; Ti9 = W[36]; Tib = W[37]; rio[WS(ios, 19)] = FNMS(Tib, Tic, Ti9 * Tia); iio[-WS(ios, 44)] = FMA(Ti9, Tic, Tib * Tia); } } } return W; } static const tw_instr twinstr[] = { {TW_FULL, 0, 64}, {TW_NEXT, 1, 0} }; static const hc2hc_desc desc = { 64, "hb_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 }; void X(codelet_hb_64) (planner *p) { X(khc2hc_dif_register) (p, hb_64, &desc); }