/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Sat Jul 5 22:12:16 EDT 2003 */ #include "codelet-rdft.h" /* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2r -compact -variables 4 -sign 1 -n 32 -name hc2rIII_32 -dft-III -include hc2rIII.h */ /* * This function contains 174 FP additions, 84 FP multiplications, * (or, 138 additions, 48 multiplications, 36 fused multiply/add), * 66 stack variables, and 64 memory accesses */ /* * Generator Id's : * $Id: hc2rIII_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hc2rIII_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ * $Id: hc2rIII_32.c,v 1.1 2008/10/17 06:12:08 scuri Exp $ */ #include "hc2rIII.h" static void hc2rIII_32(const R *ri, const R *ii, R *O, stride ris, stride iis, stride os, int v, int ivs, int ovs) { DK(KP1_913880671, +1.913880671464417729871595773960539938965698411); DK(KP580569354, +0.580569354508924735272384751634790549382952557); DK(KP942793473, +0.942793473651995297112775251810508755314920638); DK(KP1_763842528, +1.763842528696710059425513727320776699016885241); DK(KP1_546020906, +1.546020906725473921621813219516939601942082586); DK(KP1_268786568, +1.268786568327290996430343226450986741351374190); DK(KP196034280, +0.196034280659121203988391127777283691722273346); DK(KP1_990369453, +1.990369453344393772489673906218959843150949737); DK(KP765366864, +0.765366864730179543456919968060797733522689125); DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); DK(KP390180644, +0.390180644032256535696569736954044481855383236); DK(KP1_111140466, +1.111140466039204449485661627897065748749874382); DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, O = O + ovs) { E T7, T2i, T2F, Tz, T1k, T1I, T1Z, T1x, Te, T22, T2E, T2j, T1f, T1y, TK; E T1J, Tm, T2B, TW, T1a, T1C, T1L, T28, T2l, Tt, T2A, T17, T1b, T1F, T1M; E T2d, T2m; { E T3, Tv, T1j, T2h, T6, T1g, Ty, T2g; { E T1, T2, T1h, T1i; T1 = ri[0]; T2 = ri[WS(ris, 15)]; T3 = T1 + T2; Tv = T1 - T2; T1h = ii[0]; T1i = ii[WS(iis, 15)]; T1j = T1h + T1i; T2h = T1i - T1h; } { E T4, T5, Tw, Tx; T4 = ri[WS(ris, 8)]; T5 = ri[WS(ris, 7)]; T6 = T4 + T5; T1g = T4 - T5; Tw = ii[WS(iis, 8)]; Tx = ii[WS(iis, 7)]; Ty = Tw + Tx; T2g = Tw - Tx; } T7 = T3 + T6; T2i = T2g + T2h; T2F = T2h - T2g; Tz = Tv - Ty; T1k = T1g + T1j; T1I = T1g - T1j; T1Z = T3 - T6; T1x = Tv + Ty; } { E Ta, TA, TD, T21, Td, TF, TI, T20; { E T8, T9, TB, TC; T8 = ri[WS(ris, 4)]; T9 = ri[WS(ris, 11)]; Ta = T8 + T9; TA = T8 - T9; TB = ii[WS(iis, 4)]; TC = ii[WS(iis, 11)]; TD = TB + TC; T21 = TB - TC; } { E Tb, Tc, TG, TH; Tb = ri[WS(ris, 3)]; Tc = ri[WS(ris, 12)]; Td = Tb + Tc; TF = Tb - Tc; TG = ii[WS(iis, 3)]; TH = ii[WS(iis, 12)]; TI = TG + TH; T20 = TH - TG; } Te = Ta + Td; T22 = T20 - T21; T2E = T21 + T20; T2j = Ta - Td; { E T1d, T1e, TE, TJ; T1d = TA + TD; T1e = TF + TI; T1f = KP707106781 * (T1d - T1e); T1y = KP707106781 * (T1d + T1e); TE = TA - TD; TJ = TF - TI; TK = KP707106781 * (TE + TJ); T1J = KP707106781 * (TE - TJ); } } { E Ti, TM, TU, T25, Tl, TR, TP, T26, TQ, TV; { E Tg, Th, TS, TT; Tg = ri[WS(ris, 2)]; Th = ri[WS(ris, 13)]; Ti = Tg + Th; TM = Tg - Th; TS = ii[WS(iis, 2)]; TT = ii[WS(iis, 13)]; TU = TS + TT; T25 = TS - TT; } { E Tj, Tk, TN, TO; Tj = ri[WS(ris, 10)]; Tk = ri[WS(ris, 5)]; Tl = Tj + Tk; TR = Tj - Tk; TN = ii[WS(iis, 10)]; TO = ii[WS(iis, 5)]; TP = TN + TO; T26 = TN - TO; } Tm = Ti + Tl; T2B = T26 + T25; TQ = TM - TP; TV = TR + TU; TW = FNMS(KP382683432, TV, KP923879532 * TQ); T1a = FMA(KP382683432, TQ, KP923879532 * TV); { E T1A, T1B, T24, T27; T1A = TM + TP; T1B = TU - TR; T1C = FNMS(KP923879532, T1B, KP382683432 * T1A); T1L = FMA(KP923879532, T1A, KP382683432 * T1B); T24 = Ti - Tl; T27 = T25 - T26; T28 = T24 - T27; T2l = T24 + T27; } } { E Tp, TX, T15, T2a, Ts, T12, T10, T2b, T11, T16; { E Tn, To, T13, T14; Tn = ri[WS(ris, 1)]; To = ri[WS(ris, 14)]; Tp = Tn + To; TX = Tn - To; T13 = ii[WS(iis, 1)]; T14 = ii[WS(iis, 14)]; T15 = T13 + T14; T2a = T14 - T13; } { E Tq, Tr, TY, TZ; Tq = ri[WS(ris, 6)]; Tr = ri[WS(ris, 9)]; Ts = Tq + Tr; T12 = Tq - Tr; TY = ii[WS(iis, 6)]; TZ = ii[WS(iis, 9)]; T10 = TY + TZ; T2b = TY - TZ; } Tt = Tp + Ts; T2A = T2b + T2a; T11 = TX - T10; T16 = T12 - T15; T17 = FMA(KP923879532, T11, KP382683432 * T16); T1b = FNMS(KP382683432, T11, KP923879532 * T16); { E T1D, T1E, T29, T2c; T1D = TX + T10; T1E = T12 + T15; T1F = FNMS(KP923879532, T1E, KP382683432 * T1D); T1M = FMA(KP923879532, T1D, KP382683432 * T1E); T29 = Tp - Ts; T2c = T2a - T2b; T2d = T29 + T2c; T2m = T2c - T29; } } { E Tf, Tu, T2L, T2M, T2N, T2O; Tf = T7 + Te; Tu = Tm + Tt; T2L = Tf - Tu; T2M = T2B + T2A; T2N = T2F - T2E; T2O = T2M + T2N; O[0] = KP2_000000000 * (Tf + Tu); O[WS(os, 16)] = KP2_000000000 * (T2N - T2M); O[WS(os, 8)] = KP1_414213562 * (T2L + T2O); O[WS(os, 24)] = KP1_414213562 * (T2O - T2L); } { E T2t, T2x, T2w, T2y; { E T2r, T2s, T2u, T2v; T2r = T1Z - T22; T2s = KP707106781 * (T2m - T2l); T2t = T2r + T2s; T2x = T2r - T2s; T2u = T2j + T2i; T2v = KP707106781 * (T28 - T2d); T2w = T2u - T2v; T2y = T2v + T2u; } O[WS(os, 6)] = FMA(KP1_662939224, T2t, KP1_111140466 * T2w); O[WS(os, 30)] = FNMS(KP1_961570560, T2x, KP390180644 * T2y); O[WS(os, 22)] = FNMS(KP1_111140466, T2t, KP1_662939224 * T2w); O[WS(os, 14)] = FMA(KP390180644, T2x, KP1_961570560 * T2y); } { E T2D, T2J, T2I, T2K; { E T2z, T2C, T2G, T2H; T2z = T7 - Te; T2C = T2A - T2B; T2D = T2z + T2C; T2J = T2z - T2C; T2G = T2E + T2F; T2H = Tm - Tt; T2I = T2G - T2H; T2K = T2H + T2G; } O[WS(os, 4)] = FMA(KP1_847759065, T2D, KP765366864 * T2I); O[WS(os, 28)] = FNMS(KP1_847759065, T2J, KP765366864 * T2K); O[WS(os, 20)] = FNMS(KP765366864, T2D, KP1_847759065 * T2I); O[WS(os, 12)] = FMA(KP765366864, T2J, KP1_847759065 * T2K); } { E T19, T1n, T1m, T1o; { E TL, T18, T1c, T1l; TL = Tz + TK; T18 = TW + T17; T19 = TL + T18; T1n = TL - T18; T1c = T1a + T1b; T1l = T1f + T1k; T1m = T1c + T1l; T1o = T1c - T1l; } O[WS(os, 1)] = FNMS(KP196034280, T1m, KP1_990369453 * T19); O[WS(os, 25)] = FNMS(KP1_546020906, T1n, KP1_268786568 * T1o); O[WS(os, 17)] = -(FMA(KP196034280, T19, KP1_990369453 * T1m)); O[WS(os, 9)] = FMA(KP1_268786568, T1n, KP1_546020906 * T1o); } { E T1r, T1v, T1u, T1w; { E T1p, T1q, T1s, T1t; T1p = Tz - TK; T1q = T1b - T1a; T1r = T1p + T1q; T1v = T1p - T1q; T1s = T1f - T1k; T1t = TW - T17; T1u = T1s - T1t; T1w = T1t + T1s; } O[WS(os, 5)] = FMA(KP1_763842528, T1r, KP942793473 * T1u); O[WS(os, 29)] = FNMS(KP1_913880671, T1v, KP580569354 * T1w); O[WS(os, 21)] = FNMS(KP942793473, T1r, KP1_763842528 * T1u); O[WS(os, 13)] = FMA(KP580569354, T1v, KP1_913880671 * T1w); } { E T1T, T1X, T1W, T1Y; { E T1R, T1S, T1U, T1V; T1R = T1x + T1y; T1S = T1L + T1M; T1T = T1R - T1S; T1X = T1R + T1S; T1U = T1J + T1I; T1V = T1C - T1F; T1W = T1U - T1V; T1Y = T1V + T1U; } O[WS(os, 7)] = FMA(KP1_546020906, T1T, KP1_268786568 * T1W); O[WS(os, 31)] = FNMS(KP1_990369453, T1X, KP196034280 * T1Y); O[WS(os, 23)] = FNMS(KP1_268786568, T1T, KP1_546020906 * T1W); O[WS(os, 15)] = FMA(KP196034280, T1X, KP1_990369453 * T1Y); } { E T2f, T2p, T2o, T2q; { E T23, T2e, T2k, T2n; T23 = T1Z + T22; T2e = KP707106781 * (T28 + T2d); T2f = T23 + T2e; T2p = T23 - T2e; T2k = T2i - T2j; T2n = KP707106781 * (T2l + T2m); T2o = T2k - T2n; T2q = T2n + T2k; } O[WS(os, 2)] = FMA(KP1_961570560, T2f, KP390180644 * T2o); O[WS(os, 26)] = FNMS(KP1_662939224, T2p, KP1_111140466 * T2q); O[WS(os, 18)] = FNMS(KP390180644, T2f, KP1_961570560 * T2o); O[WS(os, 10)] = FMA(KP1_111140466, T2p, KP1_662939224 * T2q); } { E T1H, T1P, T1O, T1Q; { E T1z, T1G, T1K, T1N; T1z = T1x - T1y; T1G = T1C + T1F; T1H = T1z + T1G; T1P = T1z - T1G; T1K = T1I - T1J; T1N = T1L - T1M; T1O = T1K - T1N; T1Q = T1N + T1K; } O[WS(os, 3)] = FMA(KP1_913880671, T1H, KP580569354 * T1O); O[WS(os, 27)] = FNMS(KP1_763842528, T1P, KP942793473 * T1Q); O[WS(os, 19)] = FNMS(KP580569354, T1H, KP1_913880671 * T1O); O[WS(os, 11)] = FMA(KP942793473, T1P, KP1_763842528 * T1Q); } } } static const khc2r_desc desc = { 32, "hc2rIII_32", {138, 48, 36, 0}, &GENUS, 0, 0, 0, 0, 0 }; void X(codelet_hc2rIII_32) (planner *p) { X(khc2rIII_register) (p, hc2rIII_32, &desc); }